Novel Direct Synthesis of Mesoporous Tin Dioxide Network Intact up to 500 °C

Article Preview

Abstract:

We present a direct soft templating method to synthesise mesoporous tin dioxide network that maintains a porous structure after calcination at 400 °C and 500 °C and has a relatively high BET surface area of 220 and 100 m2 g-1, respectively. TEM, BET and XRD results confirm that both crystal and pore sizes increase as a result of increasing the temperatures during the calcination step. This method is highly reproducible.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-89

Citation:

Online since:

March 2016

Export:

Price:

[1] Y. Wang, I. Ramos, J. J. Santiago-Aviles, J. Appl. Phys., (2007) 102, 093517.

Google Scholar

[2] A. Eberheim, D. Kohl and P. Schieberle, Phys. Chem. Chem. Phys., (2003) 5, 5203–5206.

DOI: 10.1039/b307501j

Google Scholar

[3] G. Gaggiotti, A. Galdikas, S. Kaciulis, G. Mattogno, A. Setkus, J. Appl. Phys., (1994) Vol. 76, 8, 15.

Google Scholar

[4] V. A. Moshnikov, I. E. Gracheva, and M. G. An'chkov, Glass Phys. Chem., (2011) 37, 485.

Google Scholar

[5] C. J. Martinez, B. Hockey, C. B. Montgomery, S. Semancik, Langmuir, (2005) 21, 7937.

Google Scholar

[6] Y. Zhang, Y. Liu, and M. Liu, Chem. Mater., (2006) 18, 4643.

Google Scholar

[7] A.H. Whitehead, J.M. Elliott, J.R. Owen, J. Power Sources, (1999) 81–82, 33.

Google Scholar

[8] Md. T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M. M. Müller, H. -J. Kleebe, J. Ziegler, and W. Jaegermann, Inorg. Chem., (2012) 51, 7764.

DOI: 10.1021/ic300794j

Google Scholar

[9] P. Zhu, M. V. Reddy, Y. Wu, S. Peng, S. Yang, A. S. Nair, K. P. Loh, B. V. R. Chowdari, S. Ramakrishna, J. Mater. Chem., (2008) 18, 771.

Google Scholar

[10] J. H. Pan, S. Y. Chai, C. Lee, S. -E. Park, W. I. Lee, J. Phys. Chem. C, (2007) 111, 5582.

Google Scholar

[11] V. N. Urade and H. W. Hillhouse, J. Phys. Chem. B, (2005) 109, 10538.

Google Scholar

[12] Y. Aksu, S. Frasca, U. Wollenberger, M. Driess, and A. Thomas, Chem. Mater., (2011) 23, 1798.

Google Scholar

[13] F. A. Garcés , L. N. Acquaroli, R. Urteaga, A. Dussan, R. R. Koropecki and R.D. Arce, Thin Solid Films, (2012) 520, 4254.

DOI: 10.1016/j.tsf.2012.02.009

Google Scholar

[14] H. Kim, J. Cho, J. Mater. Chem., (2008) 18, 771.

Google Scholar

[15] J. K. Shon, S. S. Kong, Y. S. Kim, J. -H. Lee, W. K. Park, S. C. Park, J. M. Kim, Micropor. Mesopor. Mat., (2009) 120, 441.

Google Scholar

[16] D. Chandra, N. Mukherjee, A. Mondal, and A. Bhaumik, J. Phys. Chem. C, (2008) 112, 8668.

Google Scholar

[17] K. G. Severin, T. M. Abdel-Fattah and T. J. Pinnavaia, Chem. Commun., (1998) 1471.

Google Scholar

[18] X. Wang, S. S. Yee, W. P. Carey, Sensors and Actuators, B 24-25 (1995) 454-457.

Google Scholar

[19] A. Dieguez, A. Romano-Rodringuez, J.R. Morante, U. Weimar, Sens. Actuators B, (1996) 31, 1.

Google Scholar

[20] D. P. Tunstall, S. Patou, R. S. Liu, and Y. H. Kao, Mat. Res. Bull., (1999) 34, 1513.

Google Scholar

[21] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Mouscou, R. A. Pierottin, J. Rouquerol and T. Siemieniewska, Pure Appl. Chem., (1985) 57, 603.

Google Scholar

[22] Wenbo. B. Yue, Wuzong Z. Zhou, Prog. Natural Sci., (2008) 18, 1329.

Google Scholar

[23] Xianfeng Yang, Junxiang Fu, Chongiun Jin, Jian Chen, Chaolun Liang, Mingmei Wu, Wuzong Zhou, J. Am. Chem. Soc., (2010) 132, 40, p.14279–14287.

Google Scholar

[24] The XPS data were interpreted based on the following http: /lasurface. com/database/elementxps. php. and the references contained therein.

Google Scholar

[25] Soumen Das, Dae-Young Kim, Cheol-Min Choi, Yoon-Bong Hahn, Materials Research Bulletin, 46 (2011) 609–614.

Google Scholar