Ferroelectric-Relaxor Behavior of Highly Epitaxial Barium Zirconium Titanate Thin Films

Article Preview

Abstract:

Ferroelectric-relaxor behavior on highly epitaxial Barium Zirconium Titanate (Ba (Zr0.2Ti0.8)O3) thin film was investigated using the Piezoresponse Force Microscopy specifically to investigate the onset of relaxor behavior. The surface roughness, microstructure and the grain size of the film were systematically studied. Ferroelectric switching at random localized points were observed at room temperature though it has been previously reported that the phase transition in BZT-20 occurs at 285K. Phase reversal with the reversal of the applied voltage was also seen. Scanning Capacitance Microscope has been employed to interrogate the localized change in the capacitance with change in voltage. The thin film sample showed the presence of ferroelectric nanoregions at room temperature unlike its bulk counterparts which is paraelectric at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-72

Citation:

Online since:

July 2015

Export:

Price:

* - Corresponding Author

[1] L.E. Cross, Ferroelectrics, 76 (1987) 241-267.

Google Scholar

[2] C.A. Randall, A.S. Bhalla, Japanese Journal of Applied Physics, 29 (1990) 6.

Google Scholar

[3] P. Seung-Eek, T.R. Shrout, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 44 (1997) 1140-1147.

DOI: 10.1109/58.655639

Google Scholar

[4] K. Uchino, Ferroelectrics, 151 (1994) 321-330.

Google Scholar

[5] G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, S.N. Popov, Soviet Physics-Solid State, 2 (1961) 2584-2594.

Google Scholar

[6] T. Maiti, R. Guo, A.S. Bhalla, Ferroelectrics, 425 (2011) 4-26.

Google Scholar

[7] Y. Zhi, R. Guo, A.S. Bhalla, Journal of Applied Physics, 88 (2000) 410-415.

Google Scholar

[8] Z. Yu, C. Ang, R. Guo, A.S. Bhalla, Journal of Applied Physics, 92 (2002) 2655-2657.

Google Scholar

[9] T. Maiti, R. Guo, A.S. Bhalla, Applied Physics Letters, 89 (2006) 122909-122903.

Google Scholar

[10] T. Maiti, E. Alberta, R. Guo, A.S. Bhalla, Materials Letters, 60 (2006) 3861-3865.

Google Scholar

[11] Y. Zhi, A. Chen, R. Guo, A.S. Bhalla, Journal of Applied Physics, 92 (2002) 1489-1493.

Google Scholar

[12] J.C. Jiang, J. He, E.I. Meletis, C.L. Chen, Y. Lin, J.S. Horwitz, A.J. Jacobson, Thin Solid Films, 518 (2009) 147-153.

DOI: 10.1016/j.tsf.2009.06.021

Google Scholar

[13] J.C. Jiang, Y. Lin, C.L. Chen, C.W. Chu, E.I. Meletis, Journal of Applied Physics, 91 (2002) 3188-3192.

Google Scholar

[14] M. Liu, C.R. Ma, G. Collins, J.A. Liu, C.L. Chen, L. Shui, H. Wang, C. Dai, Y.A. Lin, J. He, J.C. Jiang, E.I. Meletis, Q.Y. Zhang, Cryst Growth Des, 10 (2010) 4221-4223.

DOI: 10.1021/cg1006132

Google Scholar

[15] T. Maiti, R. Guo, A.S. Bhalla, Journal of the American Ceramic Society, 91 (2008) 1769-1780.

Google Scholar

[16] M. Liu, C.R. Ma, J. Liu, G. Collins, C.L. Chen, A.D. Alemayehu, G. Subramanyam, C. Dai, Y. Lin, A. Bhalla, Ferroelectrics Letters, 40 ( 2013) 65-69.

DOI: 10.1080/07315171.2013.814487

Google Scholar

[17] M. Liu, J. Liu, G. Collins, C.R. Ma, C.L. Chen, A.D. Alemayehu, G. Subramanyam, C. Dai, Y. Lin, J. He, J.C. Jiang, E.I. Meletis, A. Bhalla, Q.Y. Zhang, Journal of Advanced Dielectrics, 1 (2011) 383-387.

DOI: 10.1142/s2010135x11000562

Google Scholar

[18] J. He, J.C. Jiang, E.I. Meletis, M. Liu, J. Liu, G. Collins, C.R. Ma, C.L. Chen, A. Bhalla, Philosophical Magazine Letters, 91 (2011) 361-374.

DOI: 10.1080/09500839.2011.562249

Google Scholar

[19] A. Dixit, S.B. Majumder, R.S. Katiyar, A.S. Bhalla, Studies on the relaxor behavior of sol-gel derived Ba(ZrxTi1− x)O3 (0. 30≤ x ≤0. 70) thin films, in: S.B. Lang, H.L.W. Chan (Eds. ) Frontiers of Ferroelectricity: A Special Issue of the Journal of Materials Science, Springer US, 2007, pp.87-96.

DOI: 10.1007/978-0-387-38039-1_8

Google Scholar

[20] T. Maiti, R. Guo, A. Bhalla, Journal of Physics D: Applied Physics, 40 (2007) 4355.

Google Scholar

[21] J.A. Hooton, W.J. Merz, Physical Review, 98 (1955) 409-413.

Google Scholar

[22] V.P. Konstantinova, N.A. Tichomirova, M. Glogarova, Ferroelectrics, 20 (1978) 259-260.

Google Scholar

[23] E. Soergel, Applied Physics B: Lasers and Optics, 81 (2005) 729-751.

Google Scholar

[24] A. Gruverman, O. Auciello, H. Tokumoto, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 14 (1996) 602-605.

Google Scholar

[25] A. Gruverman, S. Kalinin, Journal of Materials Science, 41 (2006) 107-116.

Google Scholar

[26] D. Ricinschi, C.E. Ciomaga, L. Mitoseriu, V. Buscaglia, M. Okuyama, Journal of the European Ceramic Society, 30 (2010) 237-241.

DOI: 10.1016/j.jeurceramsoc.2009.05.022

Google Scholar

[27] L.F. Cotica, V.F. Freitas, D.M. Silva, K. Honjoya, K. Honjoya, I.A. Santos, V.C.P. Fontanive, N.M. Khalil, R.M. Mainardes, E.S. Kioshima, R. Guo, A.S. Bhalla, Journal of Nano Research, 28 (2014) 131-140.

DOI: 10.4028/www.scientific.net/jnanor.28.131

Google Scholar

[28] M. Pal, R. Guo, A. Bhalla, Integrated Ferroelectrics, 131 (2011) 56-65.

Google Scholar

[29] M. Pal, R. Guo, A. Bhalla, Ferroelectrics, 425 (2011) 39-44.

Google Scholar

[30] J.R. Matey, J. Blanc, Journal of Applied Physics, 57 (1985) 1437-1444.

Google Scholar