On the Study of PbTe-Based Nanocomposite Thermoelectric Materials

Article Preview

Abstract:

We Report on the Structural and Vibrational Properties of the X = 0.11 and X = 0.33 Compositions of a New Class of Nanostructured Thermoelectric System (PbTe)1-X(PbSnS2)x by Means of X-Ray Diffraction, Scanning and Transmission Electron Microscopy and Infrared Reflectivity. both Compositions Are Phase Separated, where Pbsns2 Self-Segregates from Pbte to Form Features with Dimensions Ranging from Tens of Micrometers to Tens of Nanometers. Effective Medium Approximation Was Used in Order to Determine the Volume Fraction and the Dielectric Function of the Nanoscale Pbsns2 Embedded in Pbte. by Comparing the Phonon Parameters of the Nanoscale Pbsns2 and Bulk Pbsns2 Single Crystals, we Concluded that Phonon Confinement Effects and Bilayer Thickness Anisotropy within the Pbsns2 Nanostructures Embedded within Pbte Are Responsible for the Observed Variations in the Frequencies of the Shear and the Compression Modes Not Observed in Pure Crystals of Pbsns2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-174

Citation:

Online since:

February 2012

Export:

Price:

[1] M.G. Kanatzidis, Nanostructured Thermoelectrics: The New Paradigm?, Chem. Mater. 22 (2010) 648-659.

DOI: 10.1021/cm902195j

Google Scholar

[2] J. Androulakis, C.H. Lin, H.J. Kong, C. Uher, C.I. Wu, B.A. Cook, K.M. Paraskevopoulos and M.G. Kanatzidis, Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: Enhanced performance in Pb1-xSnxTe−PbS, J. Am. Chem. Soc. 129 (2007).

DOI: 10.1021/ja071875h

Google Scholar

[3] S. N. Girard, J. He, V. P. Dravid and M. G. Kanatzidis, Thermoelectric Properties of Composite PbTe – PbSnS2 Materials, Mater. Res. Soc. Symp. Proc. (2010) 1267.

DOI: 10.1557/proc-1267-dd06-09

Google Scholar

[4] S.N. Girard, Th.C. Hasapis, J. He, X. Zhou, E. Hatzikraniotis, C.D. Morris, C. Uher, K.M. Paraskevopoulos, V.P. Dravid, and M.G. Kanatzidis, Reduced lattice thermal conductivity in layered PbTe – PbSnS2 thermoelectric materials, Chem. Mater. Submitted (2011).

DOI: 10.1039/c2ee22495j

Google Scholar

[5] G. A. Niklasson, Modeling the optical properties of nanoparticles, SPIE Newsroom [Online Early Access]. DOI: 10. 1117/2. 1200603. 0182. Published Online: April 20, 2006. http: /spie. org/x8777. xml?ArticleID=x8777.

DOI: 10.1117/2.1200603.0182

Google Scholar

[6] D. M. Sanders, W. B. Person, L. L. Hench, Quantitative analysis of glass structure by the use of infrared reflection spectra, Appl. Spectrosc. 28 (1974) 247-255.

DOI: 10.1366/000370274774332623

Google Scholar

[7] G. A. Niklasson, C.G. Granqvist, O. Hunderi, Effective medium models for the optical properties of inhomogeneous materials, Appl. Opt. 20 (1981) 26-30.

DOI: 10.1364/ao.20.000026

Google Scholar

[8] F. Gervais, Infrared and Millimeter Waves; Button, K. J., Ed.; Academic Press: New York, 1983; Vol. 8.

Google Scholar

[9] J. R. Dixon, H.R. Riedl, Electric-susceptibility hole mass of lead telluride Phys. Rev. 138 (1965) A873-A881.

DOI: 10.1103/physrev.138.a873

Google Scholar

[10] Th.C. Hasapis, S.N. Girard, E. Hatzikraniotis, K.M. Paraskevopoulos, M.G. Kanatzidis, Infrared studies of (1-x)PbTe-(x)PbSnS2 system, Mater. Res. Soc. Symp. Proc. (2011) in press.

DOI: 10.1557/opl.2011.848

Google Scholar

[11] N. Romčević, J. Trajić, M. Romčević, A. Golubović, S. Nikolić, V. N. Nikiforov, Raman spectroscopy of PbTe1−xSx alloys, Journal of Alloys and Compounds 387 (2005) 24-31.

DOI: 10.1016/j.jallcom.2004.06.059

Google Scholar

[12] J.M. Miljković, N. Romčević, Z.V. Popovic, W. Köunig, V.N. Nikiforov, Transport and optical properties of PbTel -xSx (x = 0. 02 and x = 0. 05) mixed crystals, physica status solidi (b) 193 (1996) 43-51.

DOI: 10.1002/pssb.2221930105

Google Scholar

[13] J. Trajić, N. Romčević, M. Romčević, V.N. Nikiforov, Pb1-xMnxTe and PbTe1-xSx compounds and their optical properties, J. Serb. Chem. Soc. 73 (2008) 369-376.

DOI: 10.1016/j.jallcom.2004.06.059

Google Scholar

[14] G. Dionne and J. C. Woolley, Optical Properties of Some Pb1-xSnxTe alloys determined from infrared plasma reflectivity measurements, Phys. Rev. B, 6 (1972) 3898-3913.

Google Scholar

[15] H.R. Chandrasekhar, R.G. Humphreys, U. Zwick and M. Cardona, Infrared and Raman spectra of the IV-VI compounds SnS and SnSe, Phys. Rev. B 15 (1977) 2177-2183.

DOI: 10.1103/physrevb.15.2177

Google Scholar

[16] L.M. Yu, A. Degiovanni, P.A. Thiry, J. Ghijsen, and M. Caudano, Infrared optical constants of orthorhombic IV-VI lamellar semiconductors refined by a combined study using optical and electronic spectroscopies, Phys. Rev. B 47 (1993) 16222-16228.

DOI: 10.1103/physrevb.47.16222

Google Scholar

[17] H.C. Hsueh, M.C. Warren, H. Vass, G.J. Ackland, S.J. Clark, and J. Crain, Vibrational properties of the layered semiconductor germanium sulfide under hydrostatic pressure: Theory and experiment, Phys. Rev. B 53 (1996) 14806-14817.

DOI: 10.1103/physrevb.53.14806

Google Scholar

[18] J. Pezoldt, R. Nader, F. Niebelschütz, V. Cimalla, Th. Stauden, Ch. Zgheib, and P. Masri, Stress and stress monitoring in SiC–Si heterostructures, physica status solidi (a ) 205 (2008) 867-871.

DOI: 10.1002/pssa.200777785

Google Scholar

[19] S. Sohilaa, M. Rajalakshmib, Ch. Ghoshc, A.K. Arorab, C. Muthamizhchelvana, Optical and Raman scattering studies on SnS nanoparticles, Journal of Alloys and Compounds 509 (2011) 5843-5847.

Google Scholar

[20] K. A. Akhilesh M. Rajalakshmi, T. R. Ravindran and V. Sivasubramanian, Raman spectroscopy of optical phonon confinement in nanostructured materials, J. Raman Spectrosc. 38 (2007) 604–617.

DOI: 10.1002/jrs.1684

Google Scholar