Synthesis of Stable Polypyrrole and Polyaniline Nanospheres

Article Preview

Abstract:

One of the major obstacles associated with the synthesis of conducting polymer nanoparticles in water is their unstable nature, which is traditionally overcome through the use of soft or hard templates. Such methods use expensive surfactants, often in large amounts, and require the removal of the template, which adds complexity, expense, and environmental hazard. This study explores a facile, one-pot synthesis of stable polypyrrole and polyaniline nanospheres in water that uses ozone as the oxidant. Multiple variables were investigated in order to study the mechanism of this reaction, including monomer concentration, ozone exposure time, reaction temperature, pH, and the solvent system. Particle size measurements revealed that the size of the nanospheres, ranging from 50 nm to 500 nm in diameter, can be controlled via these reaction conditions. These self-stabilizing nanospheres were also characterized using Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and zeta potential.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-15

Citation:

Online since:

September 2012

Export:

Price:

[1] Tran, H.D., D. Li, and R.B. Kaner, One‐Dimensional Conducting Polymer Nanostructures: Bulk Synthesis and Applications, Advanced Materials, 21 (2009) 1487-1499.

DOI: 10.1002/adma.200802289

Google Scholar

[2] Li, C., H. Bai, and G. Shi, Conducting polymer nanomaterials: electrosynthesis and applications, Chem. Soc. Rev., 38 (2009) 2397-2409.

DOI: 10.1039/b816681c

Google Scholar

[3] Gupta, V. and N. Miura, Large-area network of polyaniline nanowires prepared by potentiostatic deposition process, Electrochemistry Communications, 7 (2005) 995-999.

DOI: 10.1016/j.elecom.2005.07.008

Google Scholar

[4] Huang, L., et al., Polyaniline nanowires by electropolymerization from liquid crystalline phases, J. Mater. Chem., 12 (2002) 388-391.

DOI: 10.1039/b107499g

Google Scholar

[5] Wang, X., et al., A facile route to ultra-long polyaniline nanowires and the fabrication of photoswitch, Journal of colloid and interface science, 332 (2009) 74-77.

DOI: 10.1016/j.jcis.2008.12.033

Google Scholar

[6] Ma, Y., et al., Polyaniline nanowires on Si surfaces fabricated with DNA templates, Journal of the American Chemical Society, 126 (2004) 7097-7101.

DOI: 10.1021/ja039621t

Google Scholar

[7] Bhadra, J. and D. Sarkar, Self-assembled polyaniline nanorods synthesized by facile route of dispersion polymerization, Materials Letters, 63 (2009) 69-71.

DOI: 10.1016/j.matlet.2008.09.005

Google Scholar

[8] Jiang, L. and Z. Cui, One-step synthesis of oriented polyaniline nanorods through electrochemical deposition, Polymer Bulletin, 56 (2006) 529-537.

DOI: 10.1007/s00289-005-0494-y

Google Scholar

[9] Zhang, Z. and M. Wan, Nanostructures of polyaniline composites containing nano-magnet, SYNTHETIC METALS, 132 (2003) 205-212.

DOI: 10.1016/s0379-6779(02)00447-2

Google Scholar

[10] Dhand, C., et al., Preparation, characterization and application of polyaniline nanospheres to biosensing, Nanoscale, 2 (2010) 747-754.

Google Scholar

[11] Lei, Z., et al., Structural evolution and electrocatalytic application of nitrogen-doped carbon shells synthesized by pyrolysis of near-monodisperse polyaniline nanospheres, Journal of Materials Chemistry, 19 (2009) 5985-5995.

DOI: 10.1039/b908223a

Google Scholar

[12] Zhang, L. and P. Liu, Polyaniline Micro/Nano Capsules via Facile Interfacial Polymerization Approach, Soft Materials, 8 (2010) 29-38.

DOI: 10.1080/15394451003598460

Google Scholar

[13] Liu, P. and L. Zhang, Hollow nanostructured polyaniline: Preparation, properties and applications, Critical Reviews in Solid State and Material Sciences, 34, 1 (2009) 75-87.

DOI: 10.1080/10408430902875968

Google Scholar

[14] Cheng, Q., et al., Surfactant-assisted polypyrrole/titanate composite nanofibers: Morphology, structure and electrical properties, Synthetic Metals, 158 (2008) 953-957.

DOI: 10.1016/j.synthmet.2008.06.022

Google Scholar

[15] Meng, S., Z. Zhang, and M. Rouabhia, Surfactant-templated crystalline polygon nanoparticles of heterocyclic polypyrrole prepared with Fenton's reagent, Synthetic Metals, 160 (2010) 116-122.

DOI: 10.1016/j.synthmet.2009.10.017

Google Scholar

[16] Zhang, X., et al., Inorganic/organic mesostructure directed synthesis of wire/ribbon-like polypyrrole nanostructures, Chemical Communications, (2004) 1852-1853.

DOI: 10.1039/b405255b

Google Scholar

[17] Stejskal, J., P. Kratochvíl, and M. Helmstedt, Polyaniline dispersions. 5. Poly (vinyl alcohol) and poly (N-vinylpyrrolidone) as steric stabilizers, Langmuir, 12 (1996) 3389-3392.

DOI: 10.1021/la9506483

Google Scholar

[18] Jackowska, K., A. Bieguński, and M. Tagowska, Hard template synthesis of conducting polymers: a route to achieve nanostructures, Journal of Solid State Electrochemistry, 12 (2008) 437-443.

DOI: 10.1007/s10008-007-0453-7

Google Scholar

[19] Xu, Q., et al., Controlled fabrication of gold and polypyrrole nanowires with straight and branched morphologies via porous alumina template-assisted approach, Materials Letters, 63 (2009) 1431-1434.

DOI: 10.1016/j.matlet.2009.03.026

Google Scholar

[20] Yoo, S. -H., L. Liu, and S. Park, Nanoparticle films as a conducting layer for anodic aluminum oxide template-assisted nanorod synthesis, Journal of Colloid and Interface Science, 339 (2009) 183-186.

DOI: 10.1016/j.jcis.2009.07.049

Google Scholar

[21] Pan, L., et al., Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage, International Journal of Molecular Sciences, 11 (2010) 2636-2657.

DOI: 10.3390/ijms11072636

Google Scholar

[22] Wei, M. and Y. Lu, Templating fabrication of polypyrrole nanorods/nanofibers, Synthetic Metals, 159 (2009) 1061-1066.

DOI: 10.1016/j.synthmet.2009.01.031

Google Scholar

[23] Park, M.C., Q. Sun, and Y. Deng, Polyaniline microspheres consisting of highly crystallized nanorods, Macromolecular Rapid Communications, 28 (2007) 1237-1242.

DOI: 10.1002/marc.200700066

Google Scholar

[24] Zhang, L., et al., Self Assembled Hollow Polyaniline/Au Nanospheres Obtained by a One Step Synthesis, Macromolecular Rapid Communications, 29 (2008) 598-603.

DOI: 10.1002/marc.200700771

Google Scholar

[25] Kim, S.W., H.G. Cho, and C.R. Park, Fabrication of Unagglomerated Polypyrrole Nanospheres with Controlled Sizes From a Surfactant-Free Emulsion System, Langmuir, 25 (2009) 9030-9036.

DOI: 10.1021/la9007872

Google Scholar

[26] Armes, S.P., Conducting polymer colloids, Current Opinion in Colloid & Interface Science, 1 (1996) 214-220.

DOI: 10.1016/s1359-0294(96)80007-0

Google Scholar

[27] Armes, S.P. and M. Aldissi, Preparation and characterization of colloidal dispersions of polypyrrole using poly(2-vinyl pyridine)-based steric stabilizers, Polymer, 31 (1990) 569-574.

DOI: 10.1016/0032-3861(90)90404-m

Google Scholar

[28] Maeda, S., R. Corradi, and S.P. Armes, Synthesis and characterization of carboxylic acid-functionalized polypyrrole-silica microparticles, Macromolecules, 28 (1995) 2905-2911.

DOI: 10.1021/ma00112a042

Google Scholar

[29] Skotheim, T.A. and J.R. Reynolds. Handbook of conducting polymers. Vol. 1. 1998: CRC Press. 423.

Google Scholar

[30] Buehler, R.E., J. Staehelin, and J. Hoigne, Ozone decomposition in water studied by pulse radiolysis. 1. Perhydroxyl (HO2)/hyperoxide (O2-) and HO3/O3- as intermediates, The Journal of Physical Chemistry, 88 (1984) 2560-2564.

DOI: 10.1021/j150656a026

Google Scholar

[31] Staehelin, J. and J. Hoigne, Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide, Environmental Science & Technology, 16 (1982) 676-681.

DOI: 10.1021/es00104a009

Google Scholar

[32] Johnson, D.C., D.T. Napp, and S. Bruckenstein, Electrochemical reduction of ozone in acidic media, Analytical Chemistry, 40 (1968) 482-488.

DOI: 10.1021/ac60259a031

Google Scholar

[33] Elovitz, M.S., U. von Gunten, and H.P. Kaiser, Hydroxyl radical/ozone ratios during ozonation processes. II. The effect of temperature, pH, alkalinity, and DOM properties, Ozone: science & engineering, 22 (2000) 123-150.

DOI: 10.1080/01919510008547216

Google Scholar

[34] Elovitz, M.S. and U. von Gunten, Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept, (1999).

DOI: 10.1080/01919519908547239

Google Scholar

[35] Vetter, C.A., et al., Novel Synthesis of Stable Polypyrrole Nanospheres Utilizing Ozone, Langmuir, (2011).

Google Scholar

[36] Amarnath, C.A., et al., Nanoflakes to nanorods and nanospheres transition of selenious acid doped polyaniline, POLYMER, 49 (2008) 432-437.

DOI: 10.1016/j.polymer.2007.12.005

Google Scholar

[37] Stejskal, J. and I. Sapurina, On the origin of colloidal particles in the dispersion polymerization of aniline, Journal of colloid and interface science, 274 (2004) 489-495.

DOI: 10.1016/j.jcis.2004.02.053

Google Scholar

[38] Stejskal, J., et al., Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres, Macromolecules, 41 (2008) 3530-3536.

DOI: 10.1021/ma702601q

Google Scholar

[39] Trchová, M., et al., Evolution of polyaniline nanotubes: the oxidation of aniline in water, The Journal of Physical Chemistry B, 110 (2006) 9461-9468.

DOI: 10.1021/jp057528g

Google Scholar

[40] Zhang, Z., Z. Wei, and M. Wan, Nanostructures of polyaniline doped with inorganic acids, Macromolecules, 35 (2002) 5937-5942.

DOI: 10.1021/ma020199v

Google Scholar

[41] Chen, S.A. and H.T. Lee, Structure and properties of poly (acrylic acid)-doped polyaniline, Macromolecules, 28 (1995) 2858-2866.

DOI: 10.1021/ma00112a035

Google Scholar

[42] Trchova, M., et al., FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films, Polymer Degradation and Stability, 86 (2004) 179-185.

DOI: 10.1016/j.polymdegradstab.2004.04.011

Google Scholar

[43] Chen, W., et al., Magnetic and conducting particles: preparation of polypyrrole layer on Fe3O4 nanospheres, Applied surface science, 218 (2003) 216-222.

DOI: 10.1016/s0169-4332(03)00590-7

Google Scholar

[44] Nicho, M. and H. Hu, Fourier transform infrared spectroscopy studies of polypyrrole composite coatings, Solar energy materials and solar cells, 63 (2000) 423-435.

DOI: 10.1016/s0927-0248(00)00061-1

Google Scholar

[45] Vishnuvardhan, T., et al., Synthesis, characterization and ac conductivity of polypyrrole/Y 2 O 3 composites, Bulletin of Materials Science, 29 (2006) 77-83.

Google Scholar

[46] Li, Y. and R. Qian, Electrochemical overoxidation of conducting polypyrrole nitrate film in aqueous solutions, ELECTROCHIMICA ACTA, 45 (2000) 1727-1731.

DOI: 10.1016/s0013-4686(99)00392-8

Google Scholar

[47] Nguyen, M.T., et al., Synthesis and properties of novel water-soluble conducting polyaniline copolymers, Macromolecules, 27 (1994) 3625-3631.

DOI: 10.1021/ma00091a026

Google Scholar

[48] Eftekhari, A., Synthesis of nanostructured large particles of polyaniline, Journal of applied polymer science, 102 (2006) 6060-6063.

DOI: 10.1002/app.25232

Google Scholar