La1.97Sr0.03Zr2O7 Pyrochlore Powder for Advanced Energy Application

Article Preview

Abstract:

Materials with A2B2O7 (pyrochlore) structure have received a significant attention for their applications as new protonic conductors and materials used in electronic devices. One of the unique synthesis routes for La2Zr2O7 (pyrochlore) powders is the glycine-nitrate combustion method, which shows superior properties of the synthesized powder by using glycine as a complexing agent. The Sr doped La2Zr2O7 powders in pure pyrochlore structure were produced using this approach. Selected characteristics of the synthesized powders, such as crystal structure, lattice parameters, crystallite size, the vibrational properties, the morphology of the particles, along with the specific surface area and particle size have been investigated. The dependence of some properties on annealing temperatures of the powders has been studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-60

Citation:

Online since:

October 2010

Export:

Price:

[1] M.A. Subramanian, G. Aravamudan, G.V.S. Rao: Proj. Solid St. Chem. Vol. 15 (1983), p.55.

Google Scholar

[2] M.P. VanDijk, K.J. de Vries, A.J. Burggraaf: Solid State Ionics. Vol. 9-10 (1983), p.913.

Google Scholar

[3] B. Saruhan, P. Francois, K. Fritscher, U. Schulz: Surface and Coating Technology. Vol. 182 (2004), p.175.

Google Scholar

[4] B.J. Wuensch, K.W. Eberman, C. Heremans, E.H. Ku, P. Onnerud, E.M.E. Yeo, et al.: Solid State Ionics. Vol. 129 (2000), p.111.

Google Scholar

[5] A. Mitterdorfer, L.J. Gauckler: Solid State Ionics. Vol. 111 (1998), p.185.

Google Scholar

[6] T. Omata, K. Okuda, S. Tsugimoto, S. Otsuka-Matsuo-Yao: Solid State Ionics. Vol. 104 (1997), p.249.

Google Scholar

[7] T. Omata, K. Ikeda, R. Tokashiki, S. Otsuka-Yao-Matsuo: Solid State Ionics. Vol. 167 (2004), p.389.

Google Scholar

[8] Y.H. Xie, J.D. Wang, R.Q. Liu, X.T. Su, Z.P. Sun, Z.J. Li: Solid State Ionics. Vol. 168 (2004), p.117.

Google Scholar

[9] M.F. Björketun, C.S. Knee, B.J. Nyman, G. Wahnström: Solid State Ionics. Vol. 178 (2008), p.1642.

DOI: 10.1016/j.ssi.2007.10.014

Google Scholar

[10] K.K. Rao, T. Banu, M. Vithal, G.Y.S.K. Swamy, K. Ravi Kumar: Materials Letters. Vol. 54 (2002), p.205.

Google Scholar

[11] A. Zhang, M. LÜ, G. Zhou, S. Wang, Y. Zhou: J. Physics Chem. Solids. Vol. 67 (2006), p.2430.

Google Scholar

[12] Y. Tong, Y. Wang, Z. Yu, X. Wang, X. Yang, L. Lu: Materials Letters. Vol. 62 (2008), p.889.

Google Scholar

[13] L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas, G.J. Exarhos: Materials Letters. Vol. 10 (1990), p.6.

Google Scholar

[14] J. Nair, P. Nair, G.B.M. Doesburg, J.G. Van Ommen, J.R.H. Ross, A.J. Burggraaf, F. Mizukami: J. Am. Ceram. Soc. Vol. 82 (1999), p. (2066).

DOI: 10.1023/a:1009653604649

Google Scholar

[15] Z.H. Xu, L.M. He, X.H. Zhong, J.F. Zhang, X.L. Chen, H.M. Ma, X.Q. Cao: J. Alloys Comp. Vol. 480 (2009), p.220.

Google Scholar

[16] A.N. Radhakrishnan, R.P. Prabhakar, K.S. Sibi, M. Deepa, P. Koshy: Journal of Solid State Chemistry. Vol. 182 (2009), p.2312.

Google Scholar

[17] D. Michel, M. Perezyjorba, R. Collongues: Journal of Raman Spectroscopy. Vol. 5 (1976), p.163.

Google Scholar