Advanced Design Concepts and Modeling of Composite Materials in Emerging Applications

Article Preview

Abstract:

Nanoparticles and carbon nanotubes-containing composites were deposited on a metal substrate by a micro-arc oxidizing technique. The nanocomposites were developed for their applied researches in fuel tanks and containers of space shuttles. Carbon-nanotube-reinforced composite materials are relatively new class of materials that require extensive investigations in emerging applications at low (cryogenic) and high temperature environments. Two types of nanoparticlereinforced polymeric composites were studied at flexural tests and thermal cycling between 200°C and -80°C temperature with no visual cracks for two and half times more than a matrix. The polymer type and the curing process control the thermal cycle response and ultimate durability of the composites in extreme temperature environments. To validate the use of the simplified twodimensional models, a comparison is made with three-dimensional calculations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

124-129

Citation:

Online since:

October 2006

Export:

Price:

[1] C. Koulic: Macromolecules 37(3) (2004), p.888.

Google Scholar

[2] ASTM Standards for Composite Materials, ASTM Comm. D-30, ASTM, Philadelphia, PA, 1987, pp.347-359.

Google Scholar

[3] S.L. Rosen, Fundamental Principles of Polymeric Materials, Wiley and Sons, Inc., New York, 1993, pp.9-31.

Google Scholar

[4] M.V. Kireitseu et al. Fullerenes, Nanotubes & Nanostructures Vol. 13(4) (2005), p.312.

Google Scholar

[5] R. Heydenreich: Cryogenics Vol. 38 (1998), p.125.

Google Scholar

[6] M.J. Robinson, J.D. Eichinger, S.E. Johnson: In: Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, CO; 2002, AIAA-2002-1418.

DOI: 10.2514/6.2002-1418

Google Scholar

[7] F. Abdi, D. Huang, S. Johnson, R. Messinger: In: Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, VA; 2003, AIAA-2003-1761.

DOI: 10.2514/6.2003-1761

Google Scholar

[8] A.T. Nettles, E.S. Biss: Low temperature mechanical testing of carbon-fiber/epoxy resin composite materials (NASA Center for Aerospace Information, USA, 1996), TM-1996-3663.

Google Scholar

[9] C.H. Park, H.L. McManus: Compos. Sci. Technol. Vol. 56 (1996), p.1209.

Google Scholar

[10] H.K. Rivers, J.G. Sikora, S.N. Sankaran: In: Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Seattle, WA; 2001, AIAA-2001-1218.

DOI: 10.2514/msdm09

Google Scholar

[11] J.F. Timmerman, M.S. Tillman, B.S. Hayes, J.C. Seferis: Composites A Vol. 33 (2002), p.323.

Google Scholar

[12] S. Kobayashi, K. Terada, S. Ogihara, N. Takeda: Compos. Sci. Technol. Vol. 61 (2001), p.1735.

Google Scholar

[13] T. Shimokawa, H. Katoh, Y. Hamaguchi, S. Sanbongi: J. Compos. Mater. Vol. 36 (2002), p.885.

Google Scholar

[14] J.F. Timmerman, J.C. Seferis. In Proceedings of the 48th SAMPE International Symposium, Long Beach, CA (2003), p.719.

Google Scholar

[15] V.T. Bechel, M.B. Fredin, S.L. Donaldson, R.Y. Kim: Composites A 34 (2003), p.663.

Google Scholar

[16] A.S. Ganpatye, K. Maslov, V.K. Kinra, D.C. Lagoudas: In Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, VA; 2003, AIAA-2003-1433.

DOI: 10.2514/6.2003-1433

Google Scholar

[17] R. Messinger, J. Pulley: In Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, VA, 2003, AIAA-2003-1766.

DOI: 10.2514/msdm03

Google Scholar

[18] C. Henaff-Gardin, M.C. Lafarie-Frenot, D. Gamby: Compos Struct. Vol. 36 (1996), p.131.

DOI: 10.1016/s0263-8223(96)00072-4

Google Scholar

[19] J.H. Huang: Materials Science and Engineering A 315 (2001), p.11.

Google Scholar

[20] F.T. Fisher, L.C. Brinson: Composites Science and Technology 61(5) (2001), p.731.

Google Scholar