Heat Transport in Superlattices and Nanocomposites for Thermoelectric Applications

Article Preview

Abstract:

Energy transport in nanostructures differs significantly from macrostructures because of classical and quantum size effects on energy carriers. Experimental results show that the thermal conductivity values of nanostructures such as superlattices are significantly lower than that of their bulk constituent materials. The reduction in thermal conductivity led to a large increase in the thermoelectric figure of merit in several superlattice systems. Materials with a large thermoelectric figure of merit can be used to develop efficient solid-state devices that convert waste heat into electricity. Superlattices grown by thin-film deposition techniques, however, are not suitable for large scale applications. Nanocomposites represent one approach that can lead to high thermoelectric figure merit. This paper reviews the current understanding of thermal conductivity reduction mechanisms in superlattices and presents theoretical studies on thermoelectric properties in semiconducting nanocomposites, aiming at developing high efficiency thermoelectric energy conversion materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

104-110

Citation:

Online since:

October 2006

Authors:

Export:

Price:

[1] G. Slack, in CRC Handbook of Thermoelectrics (Ed: D.M. Rowe), (CRC Press, 1995) pp.407-440.

Google Scholar

[2] A.F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling, (Infosearch Ltd., 1957).

Google Scholar

[3] H.J. Goldsmid, Thermoelectronic Refrigeration, (Plenum Press, 1964).

Google Scholar

[4] T.M. Tritt, Ed., Semiconductor and Semimetals Vol. 71 (2001).

Google Scholar

[5] L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B, Vol. 47 (1993), p.16631.

Google Scholar

[6] G. Chen, Phys. Rev. B Vol. 57 (1998), p.14958.

Google Scholar

[7] B. Yang, and G. Chen, Thermal Conductivity: Theory, Properties and Applications, Ed: T.M. Tritt, (Kluwar Press, 2005), p.167.

Google Scholar

[8] T.C. Harman, P.J. Taylor, M.P. Walsh, and B. E. LaForge, Science Vol. 297 (2002), p.2229.

Google Scholar

[9] R. Venkatasubramanian, E. Silvona, T. Colpitts, and B. O'Quinn, Nature, Vol. 413 (2001), p.597.

Google Scholar

[10] C.R. Tellier and A.J. Tosser, Size Effects in Thin Films, (Elsevier, 1982).

Google Scholar

[11] G. Chen, J. of Heat Trans, Vol. 119 (1997), p.220.

Google Scholar

[12] S. Tamura, Y. Tanaka, and H. J. Maris, Phy. Rev. B Vol. 60 (1999), p.2627.

Google Scholar

[13] B. Yang and G. Chen, Phys. Rev. B, Vol. 67 (2003), 195311 (1-4).

Google Scholar

[14] W. S. Capinski, H. J. Maris, T. Ruf, M. Cardona, K. Ploog, and D. S. Katzer, Phys. Rev. B. Vol. 59 (1999), p.8105.

DOI: 10.1103/physrevb.59.8105

Google Scholar

[15] G. Chen, D. Borca-Tasciuc, and R.G. Yang, Nanoscale Heat Transfer" in "Encyclopedia of Nanoscience and Nanotechnology, eds. H.S. Nalwa, (American Scientific Publishers, 2004), Vol. 7, p.429.

Google Scholar

[16] G. Chen, Semiconductors and Semimetals, Vol. 71 (2001), p.203.

Google Scholar

[17] R.G. Yang and G. Chen, Phys. Rev. B Vol. 69 (2004), 195316.

Google Scholar

[18] M. -S. Jeng, R.G. Yang, D. Song, and G. Chen, Monte Carlo Simulation of Thermal Conductivity and Phonon Transport in Nanocomposites, " Proceedings of ASME InterPACK, 05, HT2005-72780.

Google Scholar

[19] K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science, Vol. 303 (2004), p.819.

Google Scholar

[20] X.B. Zhao, X.H. Ji, Y.H. Zhang, et al, Appl. Phys. Lett. Vol. 86 (2005), 062111.

Google Scholar

[21] M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, Advanced Materials, submitted.

Google Scholar

[22] N. Scoville, C, Bajgar, J. Rolfe, J.P. Fleurial, and J. Vandersande, Nanostructured Materials, Vol. 5 (1995), p.207.

DOI: 10.1016/0965-9773(95)00018-6

Google Scholar

[23] P.L. Kapitza, J. Phys. Vol. 4 (1941), p.181; E.T. Swartz and R.O. Pohl, Rev. Mod. Phys. Vol. 61 (1989), p.605.

Google Scholar

[24] Y. Benvensite and T. Miloh, J. Appl. Phys. Vol. 69 (1991), p.1337.

Google Scholar

[25] C. -W. Nan, R. Birringer, D.R. Clarke, and H. Gleiter, J. Appl. Phys., Vol. 81 (1997), p.6692.

Google Scholar

[26] S. Torquato and M.D. Rintoul, Phys. Rev. Lett. Vol. 75 (1995), p.4067.

Google Scholar

[27] R. Lipton and B. Vernescu, J. Appl. Phys. Vol. 79 (1996), p.8964.

Google Scholar

[28] D.J. Bergman andL.G. Fel, J. Appl. Phys., Vol. 85 (1999), p.8205.

Google Scholar

[29] R.G. Yang and G. Chen, Thermoelectric Transport in Nanocomposites, SAE Conference Paper 2006-01-0289.

Google Scholar