Optimization of UHV-CVD Thin Films for Gate Dielectric Applications

Article Preview

Abstract:

In-situ and ex-situ spectroscopic ellipsometry (SE), atomic force microscopy (AFM), transmission electron microscopy (TEM), and time of flight medium energy backscattering (ToF MEBS), are used to investigate the properties of 30 and 60 Å ZrO2 films deposited at different temperatures on hydrogen terminated silicon (H-Si) and native silicon oxide surfaces. Results show that the initial-stage deposition of ZrO2 on H-Si and native silicon oxide surfaces are different. A 3-dimesional (3D) type nucleation process of ZrO2 on H-Si leads to high surface roughness films, while layer-by-layer deposition on native silicon oxide surfaces leads to smooth, uniform ZrO2 films. An interfacial layer, between the substrate and the metal oxide, is formed through two independent mechanisms: reaction between the starting surfaces and ZTB or its decomposition intermediates, and diffusion of reactive oxidants through the forming ZrO2 interfacial stack layer to react with the substrate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1351-1354

Citation:

Online since:

October 2006

Export:

Price:

[1] H. Iwai, Micro. Journ., 29, 671-68, (1998).

Google Scholar

[2] L.M. Terman, Appl. Sur. Sci. 117/118, 1-10, (1997).

Google Scholar

[3] A. Shah, and P. Yang, Microelectron. Reliab, 37(9), 1301-1307, (1997).

Google Scholar

[4] H. Hara, Appl. Sur. Sci., 117/118, 11-19, (1997).

Google Scholar

[5] L.C. Feldman, E.P. Gusev, and E. Garfunkel, in Fundamental Aspects of Ultrathin Dielectrics on Si-Based Devices, (Kluwer Academic Publishers, Dordrecht, 1998) 1-24.

DOI: 10.1007/978-94-011-5008-8_1

Google Scholar

[6] G.D. Wilk, R.M. Wallace, and J.M. Anthony, Journ. Appl. Phys., 89(10), 5243-5274, (2001).

Google Scholar

[7] S. Sayan, S. Aravamudhan, B.W. Busch, W.H. Schulte, F. Cosandey, G.D. Wilk, T. Gustafsson, E. Garfunkel, J. Vac. Sci. Technol. A, 20(2), 507-512, (2002).

DOI: 10.1116/1.1450584

Google Scholar

[8] K.J. Hubbard and D.G. Shlom, J. Mater. Res., 11(11), 2757-2776, (1996).

Google Scholar

[9] Besling, WFA, Young, E., Conrad, T., Zhao, C., Carter, R., Vandervorst, W., Caymax,.M., De Gendt, S., Heyns, M., Maes, J., Tuominen, M., Haukka, S., J. Non-Crystall. Solids 303, 123, (2002).

DOI: 10.1016/s0022-3093(02)00969-9

Google Scholar

[10] J.P. Chang, Y-S. Lin, and K. Chu, J. Vac. Sci. Technol. B 19(5), 1782-1787, (2001).

Google Scholar

[11] Y-Z Hu, and S-P Tay, J. Vac. Sci. B 19(5), 1706-1714, (2001).

Google Scholar

[12] A. Nakajima, T. Yoshimoto, T. Kidera, and S. Yokoyama, Appl. Phys. Lett. 79, 665, (2001).

Google Scholar

[13] J. Aarik, A. Aidla, T. Uustare, M. Ritala, and M. Leskela, Appl. Surf. Sci., 161, 385, (2000).

Google Scholar

[14] M. A. Cameron and S. M. George, Thin Solid Films 348 (1999) 90.

Google Scholar

[15] D. C. Bradley and M. M. Faktor, Trans. Faraday Soc. 55 (1959) 2117 X-OH* Zr O C CH3 CH3 CH3.

Google Scholar

[3] OX * (CH3)3COH ZTB + Zr O C CH3 CH3 CH3.

Google Scholar

[3] OX * Zr(OH)* CH2=C(CH3)2 β−H−elimination + Zr(OH)* Zr O C CH3 CH3 CH3.

DOI: 10.1006/jcht.1994.1039

Google Scholar

[3] OZr * (CH3)3COH ZTB + Zr O C CH3 CH3 CH3.

Google Scholar

[3] OZr * Zr(OH)* CH2=C(CH3)2 β−H−elimination + Figure 6. Decomposition mechanism of zirconium t-butoxide.

Google Scholar