Mesoporous Sulfur-Doped TiO2 Microspheres for Catalytic Degradation of Methylene Blue under Visible Light

Article Preview

Abstract:

Mesoporous S-doped TiO2 microspheres were synthesized via hydrothermal method using Ti (SO4)2 precursor and urea as homogeneous precipitate agent. The TiO2-based catalyst samples were characterized by means of Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), N2 adsorption/desorption and UV-vis diffuse reflectance spectra (UV-vis DRS). Photo-catalytic experiments were carried out by catalytic degradation of methylene blue aqueous solution under visible light. It was found that the S-doped TiO2 microspheres gave better photo-catalytic performances. The higher absorbance in the visible region explained this phenomenon. There was an appropriate Ti (SO4)2 amount for the catalyst with better photo-catalytic degradation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

242-250

Citation:

Online since:

July 2015

Export:

Price:

* - Corresponding Author

[1] N. Todorova, T. Vaimakis, D. Petrakis, S. Hishita, N. Boukos, T. Giannakopoulou, M. Giannouri, S. Antiohos, D. Papageorgiou, E. Chaniotakis, C. Trapalis, N and N, S-doped TiO2 photocatalysts and their activity in NOx oxidation, Catal. Today 209 (2013).

DOI: 10.1016/j.cattod.2012.11.019

Google Scholar

[2] M. D. Hernández-Alonso, S. García-Rodríguez, S. Suárez, R. Portela, B. Sánchez, J. M. Coronado, Highly selective one-dimensional TiO2-based nanostructures for air treatment applications, Appl. Catal. B-Environ. 110 (2011) 251-259.

DOI: 10.1016/j.apcatb.2011.09.009

Google Scholar

[3] L. Zhong, C. S. Lee, F. Haghighat, Adsorption performance of titanium dioxide (TiO2) coated air filters for volatile organic compounds, J. Hazard. Mater. 243 (2012) 340-349.

DOI: 10.1016/j.jhazmat.2012.10.042

Google Scholar

[4] E. Ronca, M. Pastore, L. Belpassi, F. Tarantelli, F. D. Angelis, Influence of the dye molecular structure on the TiO2 conduction band in dye-sensitized solar cells: disentangling charge transfer and electrostatic effects, Energy Environ. Sci. 6 (2013).

DOI: 10.1039/c2ee23170k

Google Scholar

[5] I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, W. I. Lee, Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells, J. Mater. Chem. 21 (2011) 532-538.

DOI: 10.1039/c0jm02606a

Google Scholar

[6] H. H. Niu, L. Liu, H. P. Wang, S. W. Zhang, Q. Ma, X. L. Mao, L. Wan, S. D. Miao, J, Z. Xu, Significant influence of nano-SiO2 on the performance of dye-sensitized solar cells based on P25, Electrochim. Acta 81 (2012) 246-253.

DOI: 10.1016/j.electacta.2012.07.028

Google Scholar

[7] Z. Q. Liu, Y. C. Wang, W. Chu, Z. H. Li, C. C. Ge, Characteristics of doped TiO2 photocatalysts for the degradation of methylene blue waste water under visible light, J. Alloy. Compd. 501 (2010) 54-59.

DOI: 10.1016/j.jallcom.2010.04.027

Google Scholar

[8] P. Y. Xu, X. J. Chu, Y. Q. Li, F. Zhang, Research on Coal Chemical Wastewater Treatment by Nano-TiO2 Powder Photocatalytic Oxidation Process, Adv. Mater. Res. 550 (2012) 2232-2236.

DOI: 10.4028/www.scientific.net/amr.550-553.2232

Google Scholar

[9] P. Bouras, E. Stathatos, P. Lianos, Pure versus metal-ion-doped nanocrystalline titania for photocatalysis, Appl. Catal. B: Environ. 73 (2007) 51-59.

DOI: 10.1016/j.apcatb.2006.06.007

Google Scholar

[10] J. F. Ju, X. Chen, Y. J. Shi, J. W. Miao, D. H. Wu, Hydrothermal preparation and photocatalytic performance of N, S-doped nanometer TiO2 under sunshine irradiation, Powder Technol. 237 (2013) 616-622.

DOI: 10.1016/j.powtec.2012.12.048

Google Scholar

[11] H. Q. Wang, Z. B. Wu, Y. Liu, A simple two-step template approach for preparing carbon-doped mesoporous TiO2 hollow microspheres, J. Phys. Chem. C. 113 (2009) 13317-13324.

DOI: 10.1021/jp9047693

Google Scholar

[12] A. Charanpahari, S. S. Umare, R. Sasikala, Effect of Ce, N and S multi-doping on the photocatalytic activity of TiO2 , Appl. Surf. Sci. 282 (2013) 408-414.

DOI: 10.1016/j.apsusc.2013.05.144

Google Scholar

[13] F. Spadavecchia, S. Ardizzone, G. Cappelletti, C. Oliva, S. Cappelli, Time effects on the stability of the induced defects in TiO2 nanoparticles doped by different nitrogen sources, J. Nanopart. Res. 14 (2012) 1-12.

DOI: 10.1007/s11051-012-1301-y

Google Scholar

[14] T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Band gap narrowing of titanium dioxide by sulfur doping, Appl. Phys. Lett. 81 (2002) 454-456.

DOI: 10.1063/1.1493647

Google Scholar

[15] M. Jalalah, M. Faisal, H. Bouzid, A. A. Ismail, S. A. Al-Sayari, Dielectric and photocatalytic properties of sulfur doped TiO2 nanoparticles prepared by ball milling, Mater. Res. Bull. 48 (2013) 3351-3356.

DOI: 10.1016/j.materresbull.2013.05.023

Google Scholar

[16] Z. Wang, X. Liu, W. Li, H. Wang, H. Li, Enhancing the photocatalytic degradation of salicylic acid by using molecular imprinted S-doped TiO2 under simulated solar light, Ceram. Int. 40 (2014) 8863-8867.

DOI: 10.1016/j.ceramint.2014.01.110

Google Scholar

[17] G. Yang, Z. Yan, T. Xiao, Low-temperature solvothermal synthesis of visible-light-responsive S-doped TiO2 nanocrystal, Appl. Surf. Sci. 258 (2012) 4016-4022.

DOI: 10.1016/j.apsusc.2011.12.092

Google Scholar

[18] W. Ho, J. C. Yu, S. Lee, Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity, J. Solid State Chem. 179 (2006) 1171-1176.

DOI: 10.1016/j.jssc.2006.01.009

Google Scholar

[19] (a) W. Chu, M. F. Ran, X. Zhang, N. Wang, Y. F. Wang, H. P. Xie, X. S. Zhao, Remarkable carbon dioxide catalytic capture (CDCC) leading to solid-form carbon material via a new CVD integrated process (CVD-IP): An alternative route for CO2 sequestration, J. Energ. Chem. 22 (2013).

DOI: 10.1016/s2095-4956(13)60018-2

Google Scholar

[20] X. Liu, Z. Q. Liu, J. Zheng, X. Yan, D. Li, S. Chen, W. Chu, Characteristics of N-doped TiO2 nanotube arrays by N2-plasma for visible light-driven photocatalysis, J. Alloy. Compd. 509 (2011) 9970-9976.

DOI: 10.1016/j.jallcom.2011.08.003

Google Scholar

[21] J. G. Yu, G. H. Wang, B. Cheng, M. H. Zhou, Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders, Appl. Catal. B: Environ. 69 (2007) 171-180.

DOI: 10.1016/j.apcatb.2006.06.022

Google Scholar

[22] J. Senthilnathan, L. Philip, Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2, Chem. Eng. J. 161 (2010) 83-92.

DOI: 10.1016/j.cej.2010.04.034

Google Scholar

[23] J. K. Zhou, L. Lv, J. Yu, H. L. Li, P. Z. Guo, H. Sun, X. S. Zhao, Synthesis of self-organized polycrystalline F-doped TiO2 hollow microspheres and their photocatalytic activity under visible light, J. Phys. Chem. C 112 (2008) 5316-5321.

DOI: 10.1021/jp709615x

Google Scholar

[24] R. Zanella, L. Delannoy, C. Louis, Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition-precipitation with NaOH and urea, Appl. Catal. A: Gen. 291 (2005) 62-72.

DOI: 10.1016/j.apcata.2005.02.045

Google Scholar

[25] Y. H. Ao, J. J. Xu, S. H. Zhang, D. G. Fu, A one-pot method to prepare N-doped titania hollow spheres with high photocatalytic activity under visible light, Appl. Surf. Sci. 256 (2010) 2754-2758.

DOI: 10.1016/j.apsusc.2009.11.023

Google Scholar

[26] M. H. Zhou, J. Xu, H. G. Yu, S. W. Liu, Low-temperature hydrothermal synthesis of highly photoactive mesoporous spherical TiO2 nanocrystalline, J. Phys. Chem. Solids. 71 (2010) 507-510.

DOI: 10.1016/j.jpcs.2009.12.023

Google Scholar