Application of 3D Traction Force Microscopy to Mechanotransduction of Cell Clusters

Article Preview

Abstract:

With increasing understanding of the important role mechanics plays in cell behavior, the experimental technique of traction force microscopy has grown in popularity over the past decade. While researchers have assumed that cells on a flat substrate apply tractions in only two dimensions, a finite element simulation is discussed here that demonstrates how cells apply tractions in all three dimensions. Three dimensional traction force microscopy is then used to experimentally confirm the finite element results. Finally, the implications that the traction distributions of cell clusters have on the study of inhibition of proliferation due to cell contact and scattering of cells in a cluster are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-27

Citation:

Online since:

August 2011

Export:

Price:

[1] D.E. Discher, P. Janmey, and Y.L. Wang: Science Vol. 310 (2005), p.1139.

Google Scholar

[2] T. Oliver, M. Dembo, and K. Jacobson: Journal of Cell Biology Vol. 145 (1999), p.589.

Google Scholar

[3] S. Suresh: Acta Biomaterialia Vol. 3 (2007), p.3989.

Google Scholar

[4] T. Oliver, M. Dembo, and K. Jacobson: Cell Motility and the Cytoskeleton Vol. 31 (1995), p.225.

Google Scholar

[5] M. Dembo and Y.L. Wang: Biophys J Vol. 76 (1999), p.2307.

Google Scholar

[6] C.A. Reinhart-King, M. Dembo, and D.A. Hammer: Biophs J Vol. 95 (2008), p.6044.

Google Scholar

[7] X. Trepat, M.R. Wasserman, T.E. Angelini, E. Millet, D.A. Weitz, J. P. Butler, and J.J. Fredberg: Nature Physics Vol. 5 (2009), p.426.

DOI: 10.1038/nphys1269

Google Scholar

[8] B. Sabass, M.L. Gardel, C.M. Waterman, and U.S. Schwarz: Biophys J Vol. 94 (2008), p.207.

Google Scholar

[9] S.A. Maskarinec, C. Franck, D.A. Tirrell, and G. Ravichandran: Proc. Nat. Acad. Sci. USA Vol. 106 (2009), p.22108.

Google Scholar

[10] S.S. Hur, Y. Zhao, Y.S. Li, E. Botvinick, and S. Chien: Cellular and Molecular Bioeng. Vol. 2 (2009), p.425.

Google Scholar

[11] C.M. Nelson, R.P. Jean, J.L. Tan, W.F. Liu, N.J. Sniadecki, A.A. Spector, and C.S. Chen: Proc. Nat. Acad. Sci. USA Vol. 102 (2005), p.11594.

Google Scholar

[12] J. de Rooij, A. Kerstens, G. Danuser, M.A. Schwartz, and C.M. Waterman-Storer: Journal of Cell Biology Vol. 171 (2005), p.153.

DOI: 10.1083/jcb.200506152

Google Scholar

[13] R.J. Pelham and Y.L. Wang: Proc. Natl. Acad. Sci. USA Vol. 94 (1997), p.13661.

Google Scholar

[14] C. Franck, S. Hong, S.A. Maskarinec, D.A. Tirrell, and G. Ravichandran: Experimental Mechanics Vol. 47 (2007), p.427.

Google Scholar

[15] J.W. Dally and W.F. Riley: Experimental Stress Analysis, 4th ed. (College House Enterprises, Knoxville, TN 2005).

Google Scholar

[16] J.H. Kim, K. Kushiro, N.A. Graham, and A.R. Asthagiri: Proc. Natl. Acad. Sci. USA Vol. 106 (2009) p.11149.

Google Scholar