Effect of Sr Addition on Microstructure and Mechanical Properties of Semi-Solid 2024 Al Alloys

Article Preview

Abstract:

Semi-solid 2024 Al alloys with strontium (Sr) addition of 0.15 wt% and 0.3 wt% were prepared by Gas Induced Semi-Solid (GISS) process. Effect of Sr addition on the microstructure and mechanical properties of the semi-solid 2024 alloy was investigated. It was found that the tensile strength and % elongation of the T6 heat treated alloy with the Sr addition were higher than those without Sr addition owing to the reduction of Mg2Si phase formation. The semi-solid 2024 Al alloy with 0.15%Sr addition obtained the average highest tensile strength of 382 MPa and elongation of 6.45%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

336-339

Citation:

Online since:

January 2014

Export:

Price:

* - Corresponding Author

[1] L. Sorrentino, L. Carrino, 2024 aluminium alloy wettability and superficial cleaning improvement by air cold plasma treatment, J. Mater. Process. Technol. 209 (2009) 1400-1409.

DOI: 10.1016/j.jmatprotec.2008.03.061

Google Scholar

[2] C.K.S. Moy, M. Weiss, J. Xia, G. Sha, S.P. Ringer, G. Ranzi, Influence of heat treatment on the microstructure, texture and formability of 2024 aluminium alloy, Mater. Sci. Eng., A. 552 (2012) 48-60.

DOI: 10.1016/j.msea.2012.04.113

Google Scholar

[3] N. Mahathaninwong, T. Plookphol, J. Wannasin, S. Wisutmethangoon, T6 heat treatment of rheocasting 7075 Al alloy, Mater. Sci. Eng., A. 532 (2012) 91-99.

DOI: 10.1016/j.msea.2011.10.068

Google Scholar

[4] J. Wannasin, S. Janudom, T. Rattanochaikul, R. Canyook, R. Burapa, T. Chucheep, S. Thanabumrungkul, Research and development of gas induced semi-solid process for industrial applications, Trans. Nonferrous Met. Soc. China. 20 (2010) 1010-1015.

DOI: 10.1016/s1003-6326(10)60622-x

Google Scholar

[5] ASM handbook: Heat treating(ASM International), USA, Vol. 4 p. (1991) 1876-1878.

Google Scholar

[6] H. Guo, X. Yang, M. Zhang, Microstructure characteristics and mechanical properties of rheoformed wrought aluminum alloy 2024, Trans. Nonferrous Met. Soc. China. 18 (2008) 555-561.

DOI: 10.1016/s1003-6326(08)60097-7

Google Scholar

[7] S.C. Wang, M.J. Starink, N. Gao, Precipitation hardening in Al–Cu–Mg alloys revisited, Scr. Mater. 54 (2006) 287-291.

DOI: 10.1016/j.scriptamat.2005.09.010

Google Scholar

[8] T. Shou-qiu, Z. Ji-xue, T. Chang-wen, Y. Yuan-sheng, Morphology modification of Mg2Si by Sr addition in Mg-4%Si alloy, Trans. Nonferrous Met. Soc. China. 21 (2011) 1932-(1936).

DOI: 10.1016/s1003-6326(11)60952-7

Google Scholar

[9] S. Nafisi, R. Ghomashchi, Effects of modification during conventional and semi-solid metal processing of A356 Al-Si alloy, Mater. Sci. Eng., A. 415 (2006) 273-285.

DOI: 10.1016/j.msea.2005.09.108

Google Scholar

[10] L. Hengcheng, S. Yu, S. Guoxiong, Restraining effect of strontium on the crystallization of Mg2Si phase during solidification in Al–Si–Mg casting alloys and mechanisms, Mater. Sci. Eng., A. 358 (2003) 164-170.

DOI: 10.1016/s0921-5093(03)00276-4

Google Scholar

[11] E.S. Shin, E.S. Kim, G.Y. Yeom, J.C. Lee, Modification effect of Sr on the microstructures and mechanical properties of Al–10. 5Si–2. 0Cu recycled alloy for die casting, Mater. Sci. Eng., A. 532 (2012) 151-157.

DOI: 10.1016/j.msea.2011.10.076

Google Scholar

[12] J.A. Garci, A. Hinojosa, C.R. González, G.M. González, Y. Houbaert, Structure and properties of Al–7Si–Ni and Al–7Si–Cu cast alloys nonmodified and modified with Sr, J. Mater. Process. Technol. 143-144 (2003) 306-310.

DOI: 10.1016/s0924-0136(03)00479-5

Google Scholar

[13] S. Pannaray, S. Wisutmethangoon, T. Plookphol, J. Wannasin, Microstructure evolution during solution heat treatment of semisolid cast 2024 aluminum alloy, Adv. Mater. Res. 339 (2011) 714-717.

DOI: 10.4028/www.scientific.net/amr.339.714

Google Scholar