Synthesis, Crystal Structure, Luminescence and Electronic Band Structure of K2BiZr(PO4)3 Phosphate Compound

Article Preview

Abstract:

The single crystals of langbeinite-related K2BiZr(PO4)3 have been obtained for the first time by spontaneous crystallization method from K-Zr-P-O-F molten system. The compound crystallizes in a space group P213 with cell parameter a = 10.30360 Å. The framework is built up from isolated Bi/ZrO6 octahedra connected together by PO4 units. For the two K+ cations two types of oxygen coordination numbers 9 and 12 are observed. The photoluminescence (PL) spectroscopy studies of K2BiZr(PO4)3 are carried out under the VUV synchrotron excitations. The electronic structure of K2BiZr(PO4)3 crystal is calculated by the FLAPW method. The PL spectra reveal two main components in the UV and visible spectral regions (peaking near 3.6 and 2.7 eV respectively). It is assumed that the UV PL component of K2BiZr(PO4)3 originates from transitions in ZrO6 polyhedra, while the visible one is related to Bi3+ ions in oxygen coordination.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 230)

Pages:

55-61

Citation:

Online since:

June 2015

Export:

Price:

* - Corresponding Author

[1] Zh. Zhang, J. Yuan, H. Chen, X. Yang, J. Zhao, G. Zhang, C. Shi, Vacuum ultraviolet spectroscopic properties of rare-eart (RE) (RE = Eu, Tb, Dy, Sm, Tm)-doped K2GdZr(PO4)3 phosphate, Solid State Sciences 11 (2009) 549-555.

DOI: 10.1016/j.solidstatesciences.2008.07.008

Google Scholar

[2] L. Shi, H. J. Seo, Tunable white-light emission in single-phased K2Y1-xEuxZr(PO4)3 phosphor, Optics Express 19 (2011) 7147-7152.

DOI: 10.1364/oe.19.007147

Google Scholar

[3] W. Liang, Yu. Wang, Energy transfer between Pr3+ and Mn2+ in K2YZr(PO4)3: Pr, Mn, Materials Chemistry and Physics 127 (2011) 170-173.

DOI: 10.1016/j.matchemphys.2011.01.052

Google Scholar

[4] S. Nedilko, V. Chornii, Yu. Hizhnyi, V. Scherbatskyi, M. Slobodyanik, K. Terebilenko, V. Boyko, V. Sheludko, Luminescence spectroscopy and electronic structure of Eu3+- doped Bi- containing oxide compounds, Functional Materials 20 (2013) 29-36.

DOI: 10.1016/j.radmeas.2016.01.014

Google Scholar

[5] P. Arunkumar, C. Jayajothi, D. Jeyakumar, N. Lakshminarasimhan, Structure-property relations in hexagonal and monoclinic BiPO4: Eu3+ nanoparticles synthesized by polyol-mediated method, RSC Advances 2 (2012) 1477-1485.

DOI: 10.1039/c1ra00389e

Google Scholar

[6] Naidu B. Sanyasi, B. Vishwanadh, V. Sudarsan, Vatsa R. Kumar, BiPO4: A better host for doping lanthanide ions, Dalton Trans. 41 (2012) 3194-3203.

DOI: 10.1039/c2dt11944g

Google Scholar

[7] G.M. Sheldrick, SHELXS-97, University of Gottingen, Germany, (1997).

Google Scholar

[8] G.M. Sheldrick, SHELXL-97: Program for crystal structure refinement, University of Gottingen, Germany, (1997).

Google Scholar

[9] G. Zimmerer, SUPERLUMI: A unique setup for luminescence spectroscopy with synchrotron radiation, Radiation Measurements 42 (2007) 859-864.

DOI: 10.1016/j.radmeas.2007.02.050

Google Scholar

[10] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka and J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universitet Wien, Austria) ISBN 3-9501031-1-2, (2001).

Google Scholar

[11] J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron­gas correlation energy, Phys. Rev. B 45 (1992) 13244-13249.

DOI: 10.1103/physrevb.45.13244

Google Scholar

[12] A. Zemann, J. Zemann, Kristallstruktur von Langbeinit, K2Mg2(SO4)3, Acta Crystallographica 10 (1957) 409-413.

DOI: 10.1107/s0365110x57001346

Google Scholar

[13] S.T. Norberg, New phosphate langbeinites, K2MTi(PO4)3 (M = Er, Yb or Y), and an alternative description of the langbeinite framework, Acta Cryst. B58 (2002) 743-749.

DOI: 10.1107/s0108768102013782

Google Scholar

[14] I.V. Ogorodnyk, V.N. Baumer, I.V. Zatovsky, N.S. Slobodyanik, O.V. Shishkin, K.V. Domasevitch, Equilibrium langbeinite-related phosphates Cs1+xLnxZr2-x(PO4)3 (Ln = Sm-Lu) in the melted systems Cs2O-P2O5-LnF3-ZrF4, Acta Cryst. B63 (2007) 819-827.

DOI: 10.1107/s0108768107049385

Google Scholar

[15] I.V. Ogorodnyk, I.V. Zatovsky, V.N. Baumer, N.S. Slobodyanik, O.V. Shishkin, Synthesis and crystal structure of langbeinite related mixed-metal phosphates K1. 822Nd0. 822Zr1. 178(PO4)3 and K2LuZr(PO4)3, Cryst. Res. Technol., 42 (2007) 1076-1081.

DOI: 10.1002/crat.200710961

Google Scholar

[16] V.V. Antonov-Romanovskyi, Kinetics of Photoluminescence of Crystallophosphores, Moskow: Nauka, (1966) 323.

Google Scholar

[17] V.V. Sobolev, V.V. Nemoshkalenko, Electronic Structure of Solids in the Region of Fundamental Absorption Edge, Kiev: Naukova Dumka, (1992) 566.

Google Scholar

[18] Yu. Hizhnyi, S. Nedilko, V. Chornii, T. Nikolaenko, I. Zatovsky, K. Terebilenko, R. Boiko, Electronic structure and luminescence spectroscopy of MIBi(MoO4)2 (MI = Li, Na, K), LiY(MoO4)2 and NaFe(MoO4)2 molybdates, Solid State Phenomena 200 (2013).

DOI: 10.4028/www.scientific.net/ssp.200.114

Google Scholar

[19] M. Kirm, J. Aarik, M. Jurgens, I. Sildos, Thin films of HfO2 and ZrO2 as potentional scintillators, Nucl. Instr. Meth. Phys. Res. A 537 (2005) 251-255.

DOI: 10.1016/j.nima.2004.08.020

Google Scholar

[20] M. Kaneyoshi, Luminescence of some zirconium-containing compounds under vacuum ultraviolet excitation, Journal of Luminescence 121 (2006) 102-108.

DOI: 10.1016/j.jlumin.2005.09.017

Google Scholar

[21] Yu. Hizhnyi, V. Chornii, S. Nedilko, M. Slobodyanik, I. Zatovsky, K. Terebilenko, V. Boyko, Luminescence spectroscopy and electronic structure of ZrP2O7 and K2Zr2(PO4)3 crystals, Radiation Measurements 56 (2013) 397-401.

DOI: 10.1016/j.radmeas.2013.01.068

Google Scholar

[22] Z. Zhang, H. Chen, X. Yang, J. Zhao, G. Zhang, C. Shi, VUV spectroscopic properties of rare-earth (RE3+ = Eu, Tb, Tm)-doped AZr2(PO4)3 (A+ = Li, Na, K) type phosphate, J. Phys. D: Appl. Phys. 41 (2008) 105503-1-5.

DOI: 10.1088/0022-3727/41/10/105503

Google Scholar

[23] S. Nedilko, V. Chornii, Electronic band structure and luminescence properties of powdered ZrP2O7 crystals, Ukr. J. Phys. Opt. 14 (2013) 187-195.

DOI: 10.3116/16091833/14/4/187/2013

Google Scholar

[24] R. Moncorge, G. Boulon, J. -P. Denist, Fluorescence properties of bismuth-doped LaPO4, J. Phys. C: Solid State Physics, 12 (1979) 1165-1171.

DOI: 10.1088/0022-3719/12/6/028

Google Scholar

[25] Yu.A. Hizhnyi, S.G. Nedilko, V.P. Chornii, M.S. Slobodyanik, I.V. Zatovsky, K.V. Terebilenko, Electronic structures and origin of intrinsic luminescence in Bi-containing oxide crystals BiPO4, K3Bi5(PO4)6, K2Bi(PO4)(MoO4), K2Bi(PO4)(WO4) and K5Bi(MoO4)4, Journal Alloys and Compounds 614 (2014).

DOI: 10.1016/j.jallcom.2014.06.111

Google Scholar