<b>Genetic admixture in species of <i>Conyza</i> (Asteraceae) as revealed by microsatellite markers

  • Carlos Alexandre Marochio Universidade Estadual de Maringá
  • Maycon Rodrigo Ruiz Bevilaqua Universidade Estadual de Maringá
  • Hudson Kagueyama Takano Universidade Estadual de Maringá http://orcid.org/0000-0002-8018-3868
  • Claudete Aparecida Mangolim Universidade Estadual de Maringá
  • Rubem Silvério de Oliveira Junior Universidade Estadual de Maringá
  • Maria de Fátima Pires Silva Machado Universidade Estadual de Maringá

Resumo

The distinction among Conyza canadensis, C. bonariensis, and C. sumatrensis is a challenge for weed science. In the current study, primers for microsatellite (SSR) loci were used to investigate the molecular divergence among the three species, the genetic structure of the populations at the molecular level and the level of genetic admixture among Conyza plants from southern Brazil. Twelve primers amplified well-defined DNA segments for all 88 samples of the three Conyza species. The estimated proportion of SSR polymorphic loci, number of alleles, and mean expected heterozygosity were higher in samples of C. bonariensis than in samples of C. sumatrensis or C. canadensis. Conyza canadensis was the species with the lowest molecular diversity. High genetic divergence was observed among the three species. The well-defined ancestral groups for each species led to the identification of samples of Conyza with ancestral genomes from the three species. Hybridization events between pairs of these species may have occurred in crop fields from southern Brazil. The high molecular diversity in resistant biotypes of C. sumatrensis indicated that these biotypes have a high potential to colonize new areas, which increases its potential as a weed.

 

Downloads

Não há dados estatísticos.

Biografia do Autor

Carlos Alexandre Marochio, Universidade Estadual de Maringá
Engenheiro Agrônomo pela Universidade Estadual de Maringá, e atualmente é mestrando em Agronomia na área de ciência das plantas daninhas
Maycon Rodrigo Ruiz Bevilaqua, Universidade Estadual de Maringá
Doutor em Biologia, Programa de Pós-graduação em Biologia Comparada, Universidade Estadual de Maringá
Hudson Kagueyama Takano, Universidade Estadual de Maringá
Mestrando em Agronomia, Programa de Pós-graduação em Agronomia, Universidade Estadual de Maringá
Claudete Aparecida Mangolim, Universidade Estadual de Maringá
Professor Associado, Programa de Pós-graduação em Genética e Melhoramento, Universidade Estadual de Maringá
Rubem Silvério de Oliveira Junior, Universidade Estadual de Maringá
Professor Associado, Programa de Pós-graduação em Agronomia, Universidade Estadual de Maringá
Maria de Fátima Pires Silva Machado, Universidade Estadual de Maringá
Professor Associado, Programa de Pós-graduação em Agronomia, Universidade Estadual de Maringá

Referências

Abercrombie, L. G., Anderson, C. M., & Baldwin, B. G. (2009). Permanent genetic resources added to Molecular Ecology Resources database 1 January 2009–30 April 2009. Molecular Ecology Resources, 9(5), 1375-1379.

Bossdorf, O., Auge, H., Lafuma, L., Rogers, W. E., Siemann, E., & Prati, D. (2005). Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia, 144(1), 1-11.

Cullings, K. W. (1992). Design and testing of a plant-specific PCR primer for ecological and evolutionary studies. Molecular Ecology, 1(4), 233-240.

Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12(1), 13-15.

Earl, D., & Vonholdt, B. M. (2012). Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conservation Genetic Resources, 4(2), 359-361.

Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software Structure: a simulation study. Molecular Ecology, 14(8), 2611-2620.

Ferrer, M. M., & Good-Avila, S. V. (2007). Macrophylogenetic analyses of the gain and loss of self-incompatibility in the Asteraceae. New Phytologyst, 173(2), 401-414.

Gao, H., Williamson, S., & Bustamante, C. D. (2007). An MCMC approach for joint inference of population structure and inbreeding rates from multi-locus genotype data. Genetics, 176(3), 1635-1651.

Gonzalez-Torralva, F., Cruz-Hipolito, H., Bastida, F., Malleder, N., Smeda, R. J., & De Prado, R. (2010). Differential susceptibility to glyphosate among the Conyza weed species in Spain. Journal of Agricultural and Food Chemistry, 58(7), 4361-4366.

Govindaraju, D. R. (1989). Variation in gene flow levels among predominantly self-pollinated plants. Journal of Evolutionary Biology, 2(3), 173-181.

Heap, I. (2016). International survey of herbicide resistant weeds. Retrieved on July 24, 2016 from http://www. weedscience.org

Kalia, R. K., Rai, M. K., Kalia, S., Singh, R., & Dhawan, A. K. (2011). Microsatellite markers: an overview of the recent progress in plants. Euphytica, 177(3), 309-334.

Lazaroto, C. A., Fleck, N. G., & Vidal, R. A. (2008). Biologia e ecofisiologia de buva (Conyza bonariensis e Conyza canadensis). Ciência Rural, 38(3), 852-860.

Matzrafi, M., Lazar, T. W., Sibony, M., & Rubin, B. (2015). Conyza species: distribution and evolution of multiple target-site herbicide resistances. Planta, 242(1), 259-67.

Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a number of individuals. Genetics, 89(3), 538-590.

Okada, M., Hanson, B. D., Hembree, K. J., Peng, Y., Shrestha, A., Stewart Jr., C. N., ... Jasienuk, M. (2013). Evolution and spread of glyphosate resistance in Conyza canadensis in California. Evolutionary Applications, 6(5), 761-777.

Peakall, R., & Smouse, P. E. (2006). GenAIEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Resources, 6(1), 288-295.

Pritchard, K. J., Wen, W., & Falush, D. (2010). Documentation for Structure software: Version 2.3. Chicago, IL: University of Chicago.

Pruski, J. F., & Sancho, G. (2006). Conyza sumatrensis var. leiotheca (Compositae: Astereae), a new combination for a common neotropical weed. Novon: A Journal for Botanical Nomenclature, 16(1), 96-101.

Rosenberg, N. A., Pritchard, J. K., Weber, J. L., Cann, H. M., Kidd, K. K., Zhivotovsky, L. A., & Feldman, M. W. (2002). Genetic structure of human populations. Science, 298(5602), 2381-2385.

Sansom, M., Saborido, A. A., & Dubois, M. (2013). Control of Conyza spp. with glyphosate – a review of the situation in Europe. Plant Protection Science, 49(1), 44-53.

Santos, G., Oliveira Jr., R. S., Constantin, J., Francischini, A. C., & Osipe, J. B. (2014a). Multiple resistance of Conyza sumatrensis to chlorimuron-ethyl and to glyphosate. Planta Daninha, 32(2), 409-416.

Santos, G., Oliveira Jr., R. S., Constantin, J., Francischini, A. C., Machado, M. F. P. S., Mangolin, C. A., & Nakajima, J. S. (2014b). Conyza sumatrensis: A new weed species resistant to glyphosate in the Americas. Weed Biology and Management, 14(2), 106-114.

Soares, A. A. F., Fregonezi, A. M. D. T., Bassi, D., Mangolin, C. A., Collet, S. A. O., Oliveira Jr., R. S. O., & Machado, M. F. P. S. (2015). Evidence of high gene flow between samples of Conyza canadensis and C. bonariensis as revealed by isozyme polymorphisms. Weed Science, 63(3), 604-612.

Steckel, L. E., & Gwathmey, C. O. (2009) Glyphosate-Resistant Horseweed (Conyza canadensis) Growth, Seed Production, and Interference in Cotton. Weed Science, 57(3), 346-350.

Thebaud, C., & Abbott, R. J. (1995). Characterization of invasive Conyza species (Asteraceae) in Europe: quantitative trait and isozyme analysis. American Journal of Botany, 82(3), 360-368.

Thorpe, J. P., & Solé-Cava, A. M. (1994). The use of allozyme electrophoresis in invertebrate systematics. Zoologica Scripta, 23(1), 3-18.

Vladimirov, V. (2009). Erigeron sumatrensis (Asteraceae): a recently recognized alien species in the Bulgarian flora. Phytologia Balcanica, 15(3), 361-365.

Weaver, S. E. (2001). The biology of Canadian weeds: Conyza canadensis. Canadian Journal of Plant Science, 81(4), 867-875.

Wright, S. (1965). The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 19(3), 395-420.

Xiao-Ling, S., Wu, J., Zhang, H., & Qiang, S. (2011). Occurrence of glyphosate-resistant horseweed (Conyza canadensis) population in China. Agricultural Sciences in China, 10(7), 1049-1055.

Yamauti, M. S., Barroso, A. A. M., Souza, M. C., & Alves, P. L. C. A. (2010). Chemical control of glyphosate-resistant horseweed (Conyza canadensis) and hairy fleabane (Conyza bonariensis) biotypes. Revista Ciência Agronômica, 41(3), 495-500.

Yeh, F. C., Boyle, T. Y. Z., & Xiyan, J. M. (1999). Popgene Version 1.31: Microsoft Window-based freeware for population genetic analysis. Edmonton, AL: University of Alberta.

Yuan, J., Abercrombie, L., Cao, Y., Halfhill, M., Zhou, X., Peng, Y., & Stewart, C. (2010). Functional genomics analysis of horseweed (Conyza canadensis) with special reference to the evolution of non-target-site glyphosate resistance. Weed Science, 58(2), 109-117.

Zelaya, I. A., Owen, M. D. K., & Vangessel, M. J. (2007). Transfer of glyphosate resistance: evidence of hybridization in Conyza (Asteraceae). American Journal of Botany, 94(4), 660-673.

Zheng, Q. A., Tai, C., Hu, J., Lin, H., Zhang, R., Su, F., & Yang, X. (2011). Satellite altimeter observations of nonlinear Rossby eddy-Kuroshio interaction at the Luzon Strait. Journal of Oceanography, 67(4), 365-376.

Publicado
2017-08-11
Como Citar
Marochio, C. A., Bevilaqua, M. R. R., Takano, H. K., Mangolim, C. A., Oliveira Junior, R. S. de, & Machado, M. de F. P. S. (2017). <b>Genetic admixture in species of <i>Conyza</i&gt; (Asteraceae) as revealed by microsatellite markers. Acta Scientiarum. Agronomy, 39(4), 437-445. https://doi.org/10.4025/actasciagron.v39i4.32947
Seção
Genética e Melhoramento

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus

 

2.0
2019CiteScore
 
 
60th percentile
Powered by  Scopus