Skip to main content
Log in

Effects of Velocity Fluctuation on Active Matter Diffusion

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Systematic motion exhibited by biological cells is fluctuated by various random external forces and unknown, complex internal biological mechanisms. To simulate the fluctuation of this systematic motion and its effect on cell diffusion, we develop a theoretical model, where we treat fluctuation from external forces as a simple diffusion process and fluctuation from internal biological mechanisms as an Ornstein-Uhlenbeck (OU) process. Our exactly solvable theoretical model with various initial conditions yields the analytic results for mean-square displacement of cell diffusion, which are confirmed by comparing with stochastic simulation results. This study demonstrates that the velocity fluctuation systematically increases the diffusion coefficient. In particular, our model with pulse initial conditions shows a time-dependent transient diffusion pattern that changes from superdiffusion to subdiffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Di Leonardo, D. Dell’Arciprete, L. Angelani and V. Iebba, Phys. Rev. Lett. 106, 038101 (2011).

    Article  ADS  Google Scholar 

  2. O. Sliusarenko, J. Neu, D. R. Zusman and G. Oster, Proc. Natl. Acad. Sci. U. S. A. 103, 1534 (2006).

    Article  ADS  Google Scholar 

  3. Y. Wu, A. D. Kaiser, Y. Jiang and M. S. Alber, Proc. Natl. Acad. Sci. U. S. A. 106, 1222 (2009).

    Article  ADS  Google Scholar 

  4. J. Elgeti, R. G. Winkler and G. Gompper, Rep. Prog. Phys. 78, 056601 (2015).

    Article  ADS  Google Scholar 

  5. R. Grossmann, F. Peruani and M. Bar, New J. Phys. 18, 043009 (2016).

    Article  ADS  Google Scholar 

  6. C. Bechinger, R. Di Leonardo, H. Lowen, C. Reichhardt, G. Volpe and G. Volpe, Rev. Mod. Phys. 88, 045006 (2016).

    Article  ADS  Google Scholar 

  7. M. Theves, J. Taktikos, V. Zaburdaev, H. Stark and C. Beta, Biophys. J. 105, 1915 (2013).

    Article  ADS  Google Scholar 

  8. J. E. Johansen, J. Pinhassi, N. Blackburn, U. L. Zweifel and A. Hagstrom, Aquat. Microb. Ecol. 28, 229 (2002).

    Article  Google Scholar 

  9. D. Selmeczi, S. Mosler, P. H. Hagedorn, N. B. Larsen and H. Flyvbjerg, Biophys. J. 89, 912 (2005).

    Article  Google Scholar 

  10. D. Campos, V. Mendez and I. Llopis, J. Theor. Biol. 267, 526 (2010).

    Article  Google Scholar 

  11. L. Li, E. C. Cox and H. Flyvbjerg, Phys. Biol. 8, 046006 (2011).

    Article  ADS  Google Scholar 

  12. G. Ariel, A. Rabani, S. Benisty, J. D. Partridge, R. M. Harshey and A. Be’er, Nat. Commun. 6, 8396 (2015).

    Article  ADS  Google Scholar 

  13. P. Romanczuk, M. Bar, W. Ebeling, B. Lindner and L. Schimansky-Geier, Eur. Phys. J. Spec. Top. 202, 1 (2012).

    Article  Google Scholar 

  14. C. L. Stokes, D. A. Lauffenburger and S. K. Williams, J. Cell Sci. 99, 419 (1991).

    Google Scholar 

  15. G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823 (1930).

    Article  ADS  Google Scholar 

  16. A. Einstein, Annalen der physik 17, 549 (1905).

    Article  ADS  Google Scholar 

  17. S. Havlin and D. Ben-Avraham, Adv. Phys. 36, 695 (1987).

    Article  ADS  Google Scholar 

  18. R. Metzler and J. Klafter, J. Phys. A: Math. Gen. 37, R161 (2004).

    Article  ADS  Google Scholar 

  19. R. Metzler, J. H. Jeon, A. G. Cherstvy and E. Barkai, Phys. Chem. Chem. Phys. 16, 24128 (2014).

    Article  Google Scholar 

  20. M. S. Song, H. C. Moon, J. H. Jeon and H. Y. Park, Nat. Commun. 9, 344 (2018).

    Article  ADS  Google Scholar 

  21. R. Metzler, E. Barkai and J. Klafter, Phys. Rev. Lett. 82, 3563 (1999).

    Article  ADS  Google Scholar 

  22. E. Barkai, Chem. Phys. 284, 13 (2002).

    Article  Google Scholar 

  23. R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).

    Article  ADS  Google Scholar 

  24. H-R. Jiang, N. Yoshinaga and M. Sano, Phys. Rev. Lett. 105, 268302 (2010).

    Article  ADS  Google Scholar 

  25. W. O. Hancock, Nat. Rev. Mol. Cell Biol. 15, 615 (2014).

    Article  Google Scholar 

  26. A. Walther and A. H. Muller, Chem. Rev. 113, 5194 (2013).

    Article  Google Scholar 

  27. L. F. Valadares, Y. G. Tao, N. S. Zacharia, V. Kitaev, F. Galembeck, R. Kapral and G. A. Ozin, Small 6, 565 (2010).

    Article  Google Scholar 

  28. D. Campos and V. Mendez, J. Chem. Phys. 130, 134711 (2009).

    Article  ADS  Google Scholar 

  29. O. Benichou, C. Loverdo, M. Moreau and R. Voituriez, Rev. Mod. Phys. 83, 81 (2011).

    Article  ADS  Google Scholar 

  30. O. Benichou, M. Coppey, M. Moreau, P. H. Suet and R. Voituriez, Phys. Rev. Lett. 94, 198101 (2005).

    Article  ADS  Google Scholar 

  31. J. Taktikos, H. Stark and V. Zaburdaev, PLoS One 8, e81936 (2013).

    Article  ADS  Google Scholar 

  32. P. C. Bressloff, J. Phys. A: Math. Theor. 50, 133001 (2017).

    Article  ADS  Google Scholar 

  33. M. Schienbein and H. Gruler, Bull. Math. Biol. 55, 585 (1993).

    Article  Google Scholar 

  34. F. Raynaud, M. E. Ambuhl, C. Gabella, A. Bornert, I. F. Sbalzarini, J. J. Meister and A. B. Verkhovsky, Nat. Phys. 12, 367 (2016).

    Article  Google Scholar 

  35. E. Sackmann, F. Keber and D. Heinrich, Annu. Rev. Condens. Matter Phys. 1, 257 (2010).

    Article  ADS  Google Scholar 

  36. F. J. Sevilla and M. Sandoval, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91, 052150 (2015).

    Article  ADS  Google Scholar 

  37. N. G. van Kampen, Stochastic processes in physics and chemistry (Elsevier Science, Amsterdam, 2007), 3 edn., p. 83.

    Google Scholar 

  38. H. Risken, The Fokker-Planck equation: methods of solution and applications (Springer-Verlag, New York, 1996), 2 edn., p. 18.

    MATH  Google Scholar 

  39. S. I. Denisov, W. Horsthemke and P. Hanggi, Eur. Phys. J. B 68, 567 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  40. J. H. Jeon, E. Barkai and R. Metzler, J. Chem. Phys. 139, 121916 (2013).

    Article  ADS  Google Scholar 

  41. G. Ariel, A. Rabani, S. Benisty, J. D. Partridge, R. M. Harshey and A. Be’er, Nat. Commun. 6, 8396 (2015).

    Article  ADS  Google Scholar 

  42. R. Zwanzig, J. Chem. Phys. 97, 3587 (1992).

    Article  ADS  Google Scholar 

  43. D. T. Gillespie, Phys. Rev. E 54, 2084 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungsoo Hahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Song, S. & Hahn, S. Effects of Velocity Fluctuation on Active Matter Diffusion. J. Korean Phys. Soc. 73, 242–248 (2018). https://doi.org/10.3938/jkps.73.242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.242

Keywords

Navigation