Skip to main content
Log in

Correlation between friction and thickness of vanadium-pentoxide nanowires

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigated the correlation between friction and thickness of vanadium-pentoxide nanowires (V2O5 NWs) by using friction/atomic force microscopy (FFM/AFM). We observed that the friction signal generally increased with thickness in the FFM/AFM image of the V2O5 NWs. We constructed a two-dimensional (2D) correlation distribution of the frictional force and the thickness of the V2O5 NWs and found that they are strongly correlated; i.e., thicker NWs had higher friction. We also generated a histogram for the correlation factors obtained from each distribution and found that the most probable factor is ~0.45. Furthermore, we found that the adhesion force between the tip and the V2O5 NWs was about −3 nN, and that the friction increased with increasing applied load for different thicknesses of V2O5 NWs. Our results provide an understanding of tribological and nanomechanical studies of various one-dimensional NWs for future fundamental research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert and R. E. Smalley, Nature 384, 147 (1996).

    Article  ADS  Google Scholar 

  2. L. Qin, S. Park, L. Huang and C. A. Mirkin, Science 309, 113 (2005).

    Article  ADS  Google Scholar 

  3. A. Javey, J. Guo, Q. Wang, M. Lundstrom and H. Dai, Nature 424, 654 (2003).

    Article  ADS  Google Scholar 

  4. E. Pop, D. Mann, Q. Wang, K. Goodson and H. Dai, Nano Lett. 6, 96 (2006).

    Article  ADS  Google Scholar 

  5. A. Javey, P. Qi, Q. Wang, and H. Dai, Proceedings of the National Academy of Sciences of the United States of America 101 (2004), p. 13408.

    Article  ADS  Google Scholar 

  6. M. S. Strano et al., Science 301, 1519 (2003).

    Article  ADS  Google Scholar 

  7. M. G. Ancona, S. E. Kooi, W. Kruppa, A. W. Snow, E. E. Foos, L. J. Whitman, D. Park and L. Shirey, Nano Lett. 3, 135 (2003).

    Article  ADS  Google Scholar 

  8. A. Bachtold, P. Hadley, T. Nakanishi and C. Dekker, Science 294, 1317 (2001).

    Article  ADS  Google Scholar 

  9. Z. Chen, J. Appenzeller, J. Knoch, Y. M. Lin and P. Avouris, Nano Lett. 5, 1497 (2005).

    Article  ADS  Google Scholar 

  10. J. Appenzeller, Y. M. Lin, J. Knoch and P. Avouris, Phys. Rev. Lett. 93, 196805 (2004).

    Article  ADS  Google Scholar 

  11. J. Appenzeller, J. Knoch, M. Radosavljevic and P. Avouris, Phys. Rev. Lett. 92, 226802 (2004).

    Article  ADS  Google Scholar 

  12. S. J. Wind, J. Appenzeller and P. Avouris, Phys. Rev. Lett. 91, 058301 (2003).

    Article  ADS  Google Scholar 

  13. A. Star, T. R. Han, V. Joshi, J. C. P. Gabriel and G. Grüner, Adv. Mater. 16, 2049 (2004).

    Article  Google Scholar 

  14. Z. Liu and P. C. Searson, J. Phys. Chem. B 110, 4318 (2006).

    Article  Google Scholar 

  15. C. Lee, Q. Li, W. Kalb, X.-Z. Liu, H. Berger, R. W. Carpick and J. Hone, Science 328, 76 (2010).

    Article  ADS  Google Scholar 

  16. S. Kwon, J.-H. Ko, K.-J. Jeon, Y.-H. Kim and J. Y. Park, Nano Lett. 12, 6043 (2012).

    Article  ADS  Google Scholar 

  17. J. S. Choi et al., Science 333, 607 (2011).

    Article  ADS  Google Scholar 

  18. S. Myung, M. Lee, G. T. Kim, J. S. Ha and S. Hong, Adv. Mater. 17, 2361 (2005).

    Article  Google Scholar 

  19. J. Muster, G. T. Kim, V. Krstic, J. G. Park, Y. W. Park, S. Roth and M. Burghard, Adv. Mater. 12, 420 (2000).

    Article  Google Scholar 

  20. D. Zhang, X.-q. Chen, Y. Wang, F.-h. Zhang and Y. Gan, Langmuir 30, 3729 (2014).

    Article  Google Scholar 

  21. M. Benz, K. J. Rosenberg, E. J. Kramer and J. N. Israelachvili, J. Phys. Chem. B 110, 11884 (2006).

    Article  Google Scholar 

  22. K. Meine, K. Klo, T. Schneider and D. Spaltmann, Surf. Interface Anal. 36, 694 (2004).

    Article  Google Scholar 

  23. T. Kim, P. Darancet, J. R. Widawsky, M. Kotiuga, S. Y. Quek, J. B. Neaton and L. Venkataraman, Nano Lett. 14, 794 (2014).

    Article  ADS  Google Scholar 

  24. S. V. Aradhya, M. Frei, A. Halbritter and L. Venkataraman, ACS Nano 7, 3706 (2013).

    Article  Google Scholar 

  25. A. Halbritter, P. Makk, S. Mackowiak, S. Csonka, M. Wawrzyniak and J. Martinek, Phys. Rev. Lett. 105, 266805 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taekyeong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T. Correlation between friction and thickness of vanadium-pentoxide nanowires. Journal of the Korean Physical Society 67, 1657–1660 (2015). https://doi.org/10.3938/jkps.67.1657

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.67.1657

Keywords

Navigation