Skip to main content
Log in

Thermal properties of a fiber-optic radiation sensor for measuring gamma-rays in high-temperature conditions

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A fiber-optic radiation sensor (FORS) was fabricated using a cerium-doped silicate-yttriumlutetium (LYSO:Ce) scintillator crystal and a silica optical fiber (SOF) to measure gamma-rays accurately in elevated temperature conditions. Throughout this study, a LYSO:Ce crystal was employed as a sensing material of the FORS due to its high light yield (32,000 photons/MeV), fast decay time (≤ 47 ns) and high detection efficiency. Although the LYSO:Ce crystal has many desirable qualities, the thermoluminescence (TL) should be eliminated by using a heat annealing process because the light yield of the LYSO:Ce crystal varies with its TL. In this study, therefore, we obtained the TL curve of the LYSO:Ce crystal by increasing the temperature up to 280 ℃, and we demonstrated that almost all of the TL of the LYSO:Ce crystal was eliminated by the heat annealing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. C. Song, H. Lee, J. M. Hur, J. G. Kim, D. H. Ahn and Y. Z. Cho, Nucl. Eng. Technol. 42, 131 (2010).

    Article  Google Scholar 

  2. J. M. Hur, S. Hong, S. M. Jeong and H. Lee, J. Kor. Rad. Waste Soc. 8, 77 (2010).

    Google Scholar 

  3. T. Inoue and L. Koch, Nucl. Eng. Technol. 40, 183 (2008).

    Article  Google Scholar 

  4. G.-S. You et al., J. Kor. Rad. Waste Soc. 5, 339 (2007).

    Google Scholar 

  5. R. C. Ewing, W. J. Weber and F. W. Clinard, Prog. Nucl. Energy 29, 63 (1995).

    Article  Google Scholar 

  6. P. K. Dey and N. K. Bansal, Nucl. Eng. Des. 236, 723 (2006).

    Article  Google Scholar 

  7. J. Roh, Y. Yu, S. Jang, S. Park and J. Kim, Tunn. Undergr. Sp. Tech. 22, 429 (2012).

    Google Scholar 

  8. K. W. Jang et al., J. Korean Phys. Soc. 61, 1704 (2012).

    Article  ADS  Google Scholar 

  9. K. W. Jang, B. Lee and J. H. Moon, Appl. Radiat. Isot. 69, 711 (2011).

    Article  Google Scholar 

  10. B. D. Gupta and S. Sharma, Opt. Commum. 154, 282 (1998).

    Article  ADS  Google Scholar 

  11. L. A. Boatner, J. S. Neal, J. A. Kolopus, J. O. Ramey and H. Akkurt, Nucl. Instrum. Methods Phys. Res. Sect. A 709, 95 (2013).

    Article  ADS  Google Scholar 

  12. S. Blahuta, A. Bessière, B. Viana, V. Ouspenski, E. Mattmann, J. Lejay and D. Gourier, Materials 4, 1224 (2011).

    Article  ADS  Google Scholar 

  13. G. F. Knoll, Radiation detection and measurement, 3rd ed. (John Wiley & Sons, Inc., USA, 1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bongsoo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, D., Yoo, W.J., Shin, S.H. et al. Thermal properties of a fiber-optic radiation sensor for measuring gamma-rays in high-temperature conditions. Journal of the Korean Physical Society 66, 46–50 (2015). https://doi.org/10.3938/jkps.66.46

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.46

Keywords

Navigation