Skip to main content
Log in

Energy of a slowly-rotating black hole in Horava-Lifshitz gravity by using approximate Lie symmetry methods

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The energy content of the Lee-Kim-Myung slowly-rotating black hole (Lee et al., Eur. Phys. J. C 70, 361 (2010)), in the Horava-Lifshitz (HL) theory of gravity is investigated by using approximate Lie symmetry methods for differential equations. The energy of this slowly-rotating black hole in the HL gravity is found to be is rescaled by a r-dependent factor. From the rescaling of energy, the rotation is observed to be added to the mass of the black hole, and this effect decreases with increasing coordinate r. This expression of energy rescaling reduces to the Schwarzschild mass for the limits in which the Lee-Kim-Myung slowly rotating black hole solution in the HL gravity reduces to the Schwarzschild solution in general relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, (W. H. Freeman, San Francisco, 1973).

    Google Scholar 

  2. L. B. Szabados, Class. Quantum Grav. 9, 2521 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1987).

    Google Scholar 

  4. A. Papapetrou Proc. R. Ir. Acad. A 52, 11 (1948).

    MathSciNet  Google Scholar 

  5. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972).

    Google Scholar 

  6. M. Sharif, Nuovo Cimento B 118, 669 (2003).

    ADS  MathSciNet  Google Scholar 

  7. I. Hussain, Ph. DThesis, National University of Sciences and Technology, Islamabad, 2010.

    Google Scholar 

  8. C. Möller, Ann. Phys. 4, 347 (1958).

    Article  MATH  ADS  Google Scholar 

  9. C. Möller, Ann. Phys. 12, 118 (1961)

    Article  MATH  ADS  Google Scholar 

  10. H. Bondi, Nature 186, 535 (1960).

    Article  MATH  ADS  Google Scholar 

  11. A. Komar, Phys. Rev. 113, 934 (1959).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. A. Ashtekar and R. O. Hansen, J. Math. Phys. 19, 1542 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  13. R. Penrose, Proc. R. Soc. A 381, 53 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  14. R. A. Isaacson, Phys. Rev. 166, 1263 (1968).

    Article  ADS  Google Scholar 

  15. R. A. Isaacson, Phys. Rev. 166, 1272 (1968).

    Article  ADS  Google Scholar 

  16. D. Christodoulou, Phys. Rev. Lett. 67, 1486 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. G. Bergqvist, Class. Quantum Grav. 9, 1753 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. D. H. Bernstein and K. P. Tod, Phys. Rev. D 49, 2808 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  19. L. B. Szabados, Living Rev. Relativ. 7, 4 (2004).

    Article  ADS  Google Scholar 

  20. A. Komar, Phys. Rev. 127, 1411 (1962).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. A. Komar, Phys. Rev. 129, 1873 (1963).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. R. Matzner, J. Math. Phys. 9, 1063 (1968).

    Article  ADS  MathSciNet  Google Scholar 

  23. R. Matzner, J. Math. Phys. 9, 1657 (1968).

    Article  ADS  MathSciNet  Google Scholar 

  24. J. W. York, Ann. Inst. Henri Poincar 21, 319 (1974).

    ADS  MathSciNet  Google Scholar 

  25. A. H. Taub, Ann. Math. 53, 472 (1951).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. A. Spero and R. Baierlein, J. Math. Phys. 18, 1330 (1977).

    Article  MATH  ADS  Google Scholar 

  27. A. Spero and R. Baierlein, J. Math. Phys. 19, 1324 (1978).

    Article  MATH  ADS  Google Scholar 

  28. G. B. Cook and B. F. Whiting, Phys. Rev. D 76, 041501 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  29. C. Beetle, (2008), [arXiv:0808.1745v1].

  30. I. Hussain, F. M. Mahomed and A. Qadir, Phys. Rev. D 79, 125014 (2009).

    Article  ADS  Google Scholar 

  31. N. H. Ibragimov, Elementary Lie group Analysis and Ordinary Differential Equations, (Wiely, Chichester, 1999).

    MATH  Google Scholar 

  32. N. H. Ibragimov, A. H. Kara and F. M. Mahomed, Nonlinear Dynamics 15, 115 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  33. A. H. Kara, F. M. Mahomed and A. Qadir, Nonlinear Dyn. 51, 183 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  34. I. Hussain, F. M. Mahomed and A. Qadir, SIGMA 3, 115 (2007), [arXiv:0712.1089].

    ADS  MathSciNet  Google Scholar 

  35. I. Hussain, F. M. Mahomed and A. Qadir, Gen. Relativ. Grav. 41, 2399 (2009).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. I. Hussain and A. Qadir, Nuovo Cimento B 122, 593 (2007).

    ADS  MathSciNet  Google Scholar 

  37. I. Hussain, Gen. Relativ. Grav. 43 1037 (2011).

    Article  MATH  ADS  Google Scholar 

  38. M. Sharif and S. Waheed, Phys. Scr. 83, 015014 (2011).

    Article  ADS  Google Scholar 

  39. M. Sharif and S. Waheed, Can. J. Phys. 88, 833 (2010).

    Article  ADS  Google Scholar 

  40. I. Hussain, Phys. Scripta, 83, 055002 (2011).

    Article  ADS  Google Scholar 

  41. H. Goldstein, Classical Mechanics (Addison-Wesley World Student Series) (Addison-Wesley, Reading, MA, 1980).

    Google Scholar 

  42. C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, 2004).

    Book  MATH  Google Scholar 

  43. P. Horava, Phys. Rev. D 79, 084008 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  44. A. Kehagias and K. Sfetsos, Phys. lett. B 678, 123 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  45. R. G. Cai, L. M. Cao and N. Ohta, Phys. Lett. B 679, 504 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  46. E. Barausse and T. P. Sotiriou, Phys. Rev. Lett. 109, 181101 (2013).

    Article  ADS  Google Scholar 

  47. E. Barausse and T. P. Sotiriou, Phys. Rev. D 87, 087504 (2012).

    Article  ADS  Google Scholar 

  48. E. Barausse, T. Jacobson and T. P. Sotiriou, Phys. Rev. D 84, 124043 (2011).

    Article  ADS  Google Scholar 

  49. H. Lu, J. Mei and C. N. Pope, Phys. Rev. Lett. 103, 091301 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  50. H. Lee, Y. Kim and Y. S. Myung, Eur. Phys. J. C 70, 361 (2010).

    Article  ADS  Google Scholar 

  51. J. Sadeghi and B. Pourhassan, Eur. Phys. J. C 72, 1984 (2012).

    Article  ADS  Google Scholar 

  52. E. Noether, Math. Phys. Kl. 2, 235 (1918). (English translation in Transport Theory and Statistical Physics 1, 186 (1971)).

    Google Scholar 

  53. L. V. Ovsiannikov, Group Analysis of Differential Equations, (Academic Press, New York, 1980).

    Google Scholar 

  54. T. Feroze, Ph. D Thesis, Quaid-i-Azam University, Islamabad, 2006.

    Google Scholar 

  55. D. Kramer, H. Stephani, M. A. H. MacCullum and E. Herlt, Exact Solutions of Einstein Field Equations (Cambridge University Press, Cambridge, 1980).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrar Hussain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, I. Energy of a slowly-rotating black hole in Horava-Lifshitz gravity by using approximate Lie symmetry methods. Journal of the Korean Physical Society 65, 879–883 (2014). https://doi.org/10.3938/jkps.65.879

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.879

Keywords

Navigation