Skip to main content
Log in

Electrical and dielectric properties and intersection behavior of G/ω-V plots for Al/Co-PVA/p-Si (MPS) structures at temperatures below room temperature

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Both the electrical and the dielectric properties of the Al/Co-doped polyvinyl alcohol/p-Si metal-polymer-semiconductor (MPS) structure have been studied using temperature-dependent admittance-voltage (C/G-V) measurements at temperatures below room temperature at 300 kHz. The C-V plot indicates two peaks for each temperature corresponding to inversion and accumulation regions, respectively. The first peak was attributed to a particular distribution of interface traps (D it ), and the second was attributed to the series resistance (R s ) and interfacial polymer layer. G/ω-V plots show almost U-shape behavior for all temperatures and a crossing at almost 3 V. Such behavior of the G/ω-V plots may be attributed to the lack of free charge at low temperatures. After this intersection point, while the value of the capacitance (C) starts decreasing, the G/ω continues to increase. The temperature-dependent real and imaginary parts of the dielectric constant (ε′, ε″) and of the electric modulus (M′, M″), as well as the ac electrical conductivity (σ ac ), of structure were obtained using C and G data before and after the intersection point (at 2 and 6 V), respectively. Experimental results show that the ε′, ε″, loss tangent (tan δ), σ ac , M′, and M″ values were strong functions of the temperature and the applied bias voltage. In addition, G/ω-T and ε″-T plots show two different behaviors, one before and the other after the intersection point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Beecroft and C. K. Ober, Chem. Mater. 9, 1302 (1997).

    Article  Google Scholar 

  2. R. V. Kumar, R. Elgamiel, Y. Diamant and A. Gedanken, Langmuir 17, 1406 (2001).

    Article  Google Scholar 

  3. A. Anis and A. K. Banthia, Mater. Manufact. Proces. 22, 737 (2007).

    Article  Google Scholar 

  4. M. E. Aydin and F. Yakuphanoglu, Microelectron. Eng. 85, 1836 (2008).

    Article  Google Scholar 

  5. R. Şahingöz, H. Kanbur, M. Voigt and C. Soykan, Synth. Met. 158, 727 (2008).

    Article  Google Scholar 

  6. A. A. M. Farag, E. A. A. El-Shazly, M. Abdel Rafea and A. Ibrahim, Sol. Ener. Mat. Solar Cells 93, 1853 (2009).

    Article  Google Scholar 

  7. İ. Yücedağ, A. Kaya, Ş. Altindal and I. Uslu, Chin. Phys. B 23, 047304 (2014).

    Article  Google Scholar 

  8. P. Syed Abthagir and R. Saraswathi, Organ. Electron. 5, 299 (2004).

    Article  Google Scholar 

  9. Y. O. Yakovlev and V. F. Zolin, Synth. Met. 91, 205 (1997).

    Article  Google Scholar 

  10. F. Garten, J. Vrijmoeth, A. R. Schlatmann, R. E. Gill, T. M. Klapwijk and G. Hadziioannou, Synth. Met. 76, 85 (1996).

    Article  Google Scholar 

  11. A. Bohler, S. Dirr, H. H. Johannes, D. Ammermann and W. Kowalsky, Synth. Met. 91, 95 (1997).

    Article  Google Scholar 

  12. N. B. Ukah, D. Adil, J. Granstrom, R. K. Gupta, K. Ghosh and S. Guha, Org. Electron. 12, 1580 (2011).

    Article  Google Scholar 

  13. S. Guha, D. Adil, N. B. Ukah, R. K. Gupta and K. Ghosh, Appl. Phys. A 105, 547 (2011).

    Article  ADS  Google Scholar 

  14. X. Huang, C. Zhi, P. Jiang, D. Golberg, Y. Bando and T. Tanaka, Nanotechnology 23, 455705 (2012).

    Article  ADS  Google Scholar 

  15. T. A. Hanafy, J. App. Poly. Sci. 108, 2540 (2008).

    Article  Google Scholar 

  16. H. Guan, C. Shao, S. Wen, B. Chen, J. Gong and X. Yang, Mater. Chem. Phys. 82, 1002 (2003).

    Article  Google Scholar 

  17. J. S. Lee, K. H. Choi, H. D. Ghim, S. S. Kim, D. H. Chun, H. Y. Kim and W. S. Lyoo, J. Appl. Poly. Sci. 93, 1638 (2004).

    Article  Google Scholar 

  18. I. Uslu, B. Başer, A. Yayli and M. L. Aksu, e-Polymers 145, 1699 (2007).

    Google Scholar 

  19. E. Arslan, Y. Şafak, Ş. Altindal, Ö. Kelekçi and E. özbay, J. Non-crystalline Solids 356, 1006 (2010).

    Article  ADS  Google Scholar 

  20. P. Cattopadyay, Solid State Electron. 37, 1759 (1994).

    Article  ADS  Google Scholar 

  21. E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed. (Clarendon, Oxford, 1978).

    Google Scholar 

  22. P. Chattopadhyay and B. Raychaudhuri, Solid State Electron. 35, 1023 (1992).

    Article  ADS  Google Scholar 

  23. E. H. Nicollian and J. R. Brews, MOS (Metal-Oxide-Semiconductor) Physics and Technology (Bell Laboratories Murray Hill, New Jersey, 1982).

    Google Scholar 

  24. H. C. Card and E. H. Rhodercik, J. Phys. D 4, 1589 (1971).

    Article  ADS  Google Scholar 

  25. M. K. Hudait and S. B. Krupanidhi, Solid-State Electron. 44, 1089 (2000).

    Article  ADS  Google Scholar 

  26. P. Cahttopadhyay and A. N. Daw, Solid-State Electron. 29, 555 (1986).

    Article  ADS  Google Scholar 

  27. İ. Yücedağ, Optoelectron. and Adv. Mater. Rapid Comm. 3, 612 (2009).

    Google Scholar 

  28. P. L. Hanselaer, W. H. Laflére, R. L. Van Meirhaeghe and F. Cardon, J. Appl. Phys. 56, 2309 (1984).

    Article  ADS  Google Scholar 

  29. Ş. Altindal, S. Karadeniz, N. Tuğluoğlu and A. Tataroğlu, Solid-State Electron. 47, 1847 (2003).

    Article  ADS  Google Scholar 

  30. P. B. Macedo, C. T. Moyniham and R. Bose, Phys. Chem. Glass. 13, 171 (1972).

    Google Scholar 

  31. Y.-S. Jin, G.-J. Kim and S.-G. Jeon, J. Korean Phys. Soc. 49, 513 (2006).

    Google Scholar 

  32. P. Pissis and A. Kyritsis, Solid State Ionics 97, 105 (1997).

    Article  Google Scholar 

  33. V. Singh, A. R. Kulkarni and T. R. Rama Mohan, J. Appl. Polym. Sci. 90, 3602 (2003).

    Article  Google Scholar 

  34. D. Maurya, J. Kumar and D. Shripal, J. Phys. Chem. Solids 66, 161 (2005).

    Article  Google Scholar 

  35. A. Eroğlu, A. Tataroğlu and Ş. Altindal, Microelectro. Eng. 91, 154 (2012).

    Article  Google Scholar 

  36. T. Tunc, I. Uslu, I. B. Dökme, Ş. Altindal and H. Uslu, Int. J. Polym. Mat. 59, 739 (2010).

    Article  Google Scholar 

  37. P. P. Sahay, R. K. Mishra S. N. Pandey, S. Jha and M. Shamsuddin, Cur. Appl. Phys. 13, 479 (2013).

    Article  ADS  Google Scholar 

  38. K. Majhi, R. Vaish, G. Paramesh and K. B. R. Varma, Ionics 19, 99 (2013).

    Article  Google Scholar 

  39. A. Tataroğlu, İ. Yücedağ and Ş. Altindal, Microelectro. Eng. 85, 1518 (2008).

    Article  Google Scholar 

  40. M. S. Mattsson, G. A. Niklasson, K. Forsgren and A. Harsta, J. Appl. Phys. 85, 2185 (1999).

    Article  ADS  Google Scholar 

  41. A. S. Md, S. Rahman, M. H. Islam and C. A. Hogarth, Int. J. Electron. 62, 167 (1987).

    Article  Google Scholar 

  42. İ. B. Dökme and Ş. Altindal, IEEE Trans. Electron. Dev. 58, 4042 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Kaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yücedağ, İ., Kaya, A., Altindal, Ş. et al. Electrical and dielectric properties and intersection behavior of G/ω-V plots for Al/Co-PVA/p-Si (MPS) structures at temperatures below room temperature. Journal of the Korean Physical Society 65, 2082–2089 (2014). https://doi.org/10.3938/jkps.65.2082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.2082

Keywords

Navigation