Skip to main content
Log in

Properties of the phase transition in a ZnO film on silicon substrate

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

ZnO films were spin-coated on silicon substrates by using the sol-gel method and were characterized as a function of the sintering temperature (600 ∼ 1000 °C). The phase transition from the ZnO phase to the Zn2SiO4 phase was investigated by using X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), and cathodoluminescence (CL). The XRD pattern of the ZnO film sintered at 600 °C showed a typical polycrystalline hexagonal wurtzite structure. However, at a sintering temperature of 1000 °C, only the 21.72° and the 32.64° peaks were found, which could be attributed to the (300) and the (013) planes of Zn2SiO4, respectively. In FE-SEM, the grain size of the ZnO film sintered at 900 °C increases abruptly, and the samples sintered at 1000 °C showed dense, grains with enlarged grains. In EDX, as the sintering temperatures were increased, the relative amounts of silicon atom were decreased, and the relative amounts of oxygen were increased. In CL, the UV emission (375 ∼ 379 nm) was well measured in the ZnO films sintered at 600 ∼ 800 °C. However, the intensity of the UV emission at 379 nm in the ZnO film decreased abruptly when the film was sintered at 900 °C, and the very intensive peaks were measured at 284 nm and 589 nm. At a sintering temperature of 1000 °C, the UV emission at about 375 nm in the ZnO film disappeared. From this study, we could confirm that a phase transition toward the Zn2SiO4 phase had completely occurred at a sintering temperature at 1000 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Webb, D. F. Williams and M. Buchanan, Appl. Phys. Lett. 39, 640 (1981).

    Article  ADS  Google Scholar 

  2. M. J. Brett, R. W. Mcmohan, J. Affinito and R. R. Parsons, J. Vac. Sci. Technol. A 1, 352 (1983).

    Article  ADS  Google Scholar 

  3. H. Sato, T. Minami, Y. Tamura, S. Takata, T. Mouri and N. Ogawa, Thin Solid Films 246, 86 (1994).

    Article  ADS  Google Scholar 

  4. D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H Yang, S. J. Park, K. K. Kim, D. C. Look and Y. S. Park, Appl. Phys. Lett. 86, 151917 (2005).

    Article  ADS  Google Scholar 

  5. D. K. Lee, S. Kim, M. C. Kim, S. H. Eom, H. T. Oh and S. H. Choi, J. Korean Phys. Soc. 51, 1378 (2007).

    Article  ADS  Google Scholar 

  6. Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omeav, M. V. Chukichev and D. M. Bagnall, Appl. Phys. Lett. 83, 4719 (2003).

    Article  ADS  Google Scholar 

  7. G. Yi, Z. Wu and M. Sayer, J. Appl. Phys. 64, 2717 (1988).

    Article  ADS  Google Scholar 

  8. R. G. Singh, F. Singh, R. M. Mehra, D. Kanjilal and V. Agarwal, Solid State Commun. 151, 701 (2011).

    Article  ADS  Google Scholar 

  9. J. W. Hyun, Y. J. Kim, G. B. Kim, J. H. Lee and J. S. Shin, J. Korean Phys. Soc. 60, 1118 (2012).

    Article  ADS  Google Scholar 

  10. J. B. Kim, J. Korean. Phys. Soc. 54, 1640 (2009).

    Article  ADS  Google Scholar 

  11. Y. Nakajima, A. Kojima and N. Koshisa, Appl. Phys. Lett. 81, 2472 (2002).

    Article  ADS  Google Scholar 

  12. J. E. Ghoul, K. Omri, L. E. Mir, C. Barthou and S. Alaya, J. Luminescence 132, 2288 (2012).

    Article  ADS  Google Scholar 

  13. H. Ogawa, A. Kan, N. Ikeda and A. Fujita, Physica B 407, 4308 (2012).

    Article  ADS  Google Scholar 

  14. W. C. Wang, Y. T. Tian, K. Li, E. Y. Lu, D. S. Gong and X. J. Li, Appl. Surf. Sci. 273, 372 (2013).

    Article  ADS  Google Scholar 

  15. Q. Lu, P. Wang and J. Li, Mater. Res. Bull. 46, 791 (2011).

    Article  Google Scholar 

  16. E. S. Jung, H. J. Lee and H. S. Kim, J. Korean Phys. Soc. 49, S764 (2006).

    Google Scholar 

  17. Z. Ye, G. Yuan, B. Li, L. Zhu, B. Zhao and J. Huang, Mater. Chem. Phys. 93, 170 (2005).

    Article  Google Scholar 

  18. S. Yilmaz, I. Polat, S. Altindal and E. Bacaksiz, Mater. Sci. Engin. B 177, 588 (2012).

    Article  Google Scholar 

  19. C. Z. Wang, Z. Chen, H. Hu and D. Zhang, Physica B 404, 4075 (2009).

    Article  ADS  Google Scholar 

  20. H. Kind, H. Yan, M. Law, B. Messer and P. Yang, Adv. Mater. 14, 158 (2002).

    Article  Google Scholar 

  21. X. L. Xu, C. X. Guo, Z. M. Qi, H. T. Liu, J. Xu, C. S. Shi, C. Chong, W. H. Huang, Y. J. Zhou and C. M. Xu, Chem. Phys. Lett. 364, 57 (2002).

    Article  ADS  Google Scholar 

  22. A. V. Dijken, E. A. Meulenkamp, K. Vanmaekelbergh and A. Meijerink, J. Phys. Chem. B 104, 1715 (2000).

    Article  Google Scholar 

  23. H. He, Y. Wang and Y. Zou, J. Phys. D: Appl. Phys. 36, 2972 (2003).

    Article  ADS  Google Scholar 

  24. C. K. Xu, J. H. Chun, K. H. Rho and D. E. Kim, Nanotechnology 16, 2808 (2005).

    Article  ADS  Google Scholar 

  25. Y. Zou, Y. Wang, Z. Cheng, J. Wang and Y. Li, Mater. Lett. 59, 3042 (2005).

    Article  Google Scholar 

  26. B. Lin, Z. Fu and Y. Jia, Appl. Phys. Lett. 79, 943 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to June Won Hyun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyun, J.W., Kim, G.B. & Lee, J.H. Properties of the phase transition in a ZnO film on silicon substrate. Journal of the Korean Physical Society 64, 886–890 (2014). https://doi.org/10.3938/jkps.64.886

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.886

Keywords

Navigation