Skip to main content
Log in

Atomistic processes of Ni and Pd atoms on MgO(001) surfaces with surface-functional hydroxyl groups: Ab-initio calculations

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

By using ab-initio calculations based on the density functional theory, we systematically studied the adsorption and the diffusion properties of Ni and Pd (X M) atoms on hydroxylated MgO(001) [MgOhdr(001)] surfaces. The energetics of adsorption, binding, and diffusion are presented and compared with those of X M atoms on clean MgO(001). The calculated energetics showed considerably enhanced adsorption of X M on MgOhdr(001) compared to that on MgO(001). The stronger binding of X M and OH on MgO(001) indicated the favorable formation of X MOH complexes instead of X M dimers on the surface. In the case of surface diffusion, X MOH on MgO(001) was observed to diffuse via a hopping process over the surface hollow sites. The diffusion of X MOH on MgO(001) was slightly faster than that of X M atoms. Compared to the surface diffusion of PtOH on MgO(001), the surface diffusion energy barriers were in the following order, PtOH (0.89 eV) > NiOH (0.71 eV) > PdOH (0.43 eV). Therefore, the surface dynamics of Ni, Pd, and Pt on MgOhdr(001) driven thermally at temperatures relevant to the catalytic activities of metal clusters are expected to be different. The electronic structures and the charge states of X MOH on MgO(001) were analyzed further and compared with those of X M on MgO(001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Haruta, Catal. Today 36, 153 (1997).

    Article  Google Scholar 

  2. G. J. Hutchings and M. Haruta, Appl. Catal. A 291, 2 (2005).

    Article  Google Scholar 

  3. G. J. Hutchings, J. Catal. 96, 292 (1985).

    Article  Google Scholar 

  4. G. C. Bond and D. T. Thompson, Catal. Rev. Sci. Eng. 41, 319 (1999).

    Article  Google Scholar 

  5. H.-J. Freund, Angew. Chem. Int. Ed. 36, 452 (1997).

    Article  Google Scholar 

  6. C. Stampfl, M. Veronica Ganduglia-Pirovano, K. Reuter, and M. Scheffler, Surf. Sci. 500, 368 (2002).

    Article  ADS  Google Scholar 

  7. W. H. Butler, X. G. Zhang, T. C. Schulthess and J. M. MacLaren, Phys. Rev. B 63, 054416 (2001).

    Article  ADS  Google Scholar 

  8. X. G. Zhang, W. H. Butler and A. Bandyopadhyay, Phys. Rev. B 68, 092402 (2003).

    Article  ADS  Google Scholar 

  9. S. Yuasa, J. Phys. Soc. Jpn. 77, 031001 (2008).

    Article  ADS  Google Scholar 

  10. B. D. Yu and J. S. Kim, Phys. Rev. B 73, 125408 (2006).

    Article  ADS  Google Scholar 

  11. J. N. Yeo, G. M. Jee, B. D. Yu and B. C. Choi, J. Korean Phys. Soc. 52, 1938 (2008).

    Article  ADS  Google Scholar 

  12. J. Park and B. D. Yu, Phys. Rev. B 83, 144431 (2011).

    Article  ADS  Google Scholar 

  13. M. A. Brown, E. Carrasco, M. Sterrer and H.-J. Freund, J. Am. Chem. Soc. 132, 4064 (2010).

    Article  Google Scholar 

  14. M. A. Brown, Y. Fujimori, F. Ringleb, X. Shao, F. Stavale, N. Nilius, M. Sterrer and H.-J. Freund, J. Am. Chem. Soc. 133, 10668 (2011).

    Article  Google Scholar 

  15. C. H. Bartholomew, Appl. Catal. A 107, 1 (1993).

    Article  Google Scholar 

  16. J. Sehested, J. Catal. 217, 417 (2003).

    Google Scholar 

  17. S. B. Simonsen, I. Chorkendorff, S. Dahl, M. Skoglundh, J. Sehested and S. Helveg, J. Am. Chem. Soc. 132, 7968 (2010).

    Article  Google Scholar 

  18. S. B. Simonsen, I. Chorkendorff, S. Dahl, M. Skoglundh, J. Sehested and S. Helveg, J. Catal. 281, 147 (2011).

    Article  Google Scholar 

  19. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J. Catal. 115, 301 (1989).

    Article  Google Scholar 

  20. F. Boccuzzi and A. Chiorino, J. Phys. Chem. B 104, 5414 (2000).

    Article  Google Scholar 

  21. C. K. Costello, M. C. Kung, H. S. Oh, Y. Wang and H. H. Kung, Appl. Catal. A 232, 159 (2002).

    Article  Google Scholar 

  22. W. T. Wallace, R. B. Wyrwas, R. L. Whetten, R. Mitrić and V. Bonačić-Koutecky, J. Am. Chem. Soc. 125, 8408 (2003).

    Article  Google Scholar 

  23. D. A. H. Cunningham, W. Vogel and M. Haruta, Catal. Lett. 63, 43 (1999).

    Article  Google Scholar 

  24. B. Qiao, J. Zhang, L. Liu and Y. Deng, Appl. Catal. A 340, 220 (2008).

    Article  Google Scholar 

  25. J. Jeon, A. Soon, J. N. Yeo, J. Park, S. Hong, K. Cho and B. D. Yu, J. Phys. Soc. Jpn. 81, 054601 (2012).

    Article  ADS  Google Scholar 

  26. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  27. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  28. J. Jeon, A. Soon, J. Park, S. Hong, K. Cho and B. D. Yu, J. Phys. Soc. Jpn. 82, 034603 (2013).

    Article  ADS  Google Scholar 

  29. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  30. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  31. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  32. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  33. F. Birch, Phys. Rev. 71, 809 (1947).

    Article  ADS  MATH  Google Scholar 

  34. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders, Philadelphia, 1976).

    Google Scholar 

  35. S. V. Sinogeikin and J. D. Bass, Phys. Rev. B 59, R14141 (1999).

    Article  ADS  Google Scholar 

  36. J. Park and B. D. Yu, J. Korean Phys. Soc. 53, 1976 (2008).

    Google Scholar 

  37. H. Baltache, R. Khenata, M. Sahnoun, M. Driz, B. Abbar and B. Bouhafs, Physica B 344, 334 (2004).

    Article  ADS  Google Scholar 

  38. L.-Y. Lu, Y. Cheng, X.-R. Chen and J. Zhu, Physica B 370, 236 (2005).

    Article  ADS  Google Scholar 

  39. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  40. A. V. Matveev, K. M. Neyman, I. V. Yudanov and N. Rösch, Surf. Sci. 426, 123 (1999).

    Article  ADS  Google Scholar 

  41. J. Park, B. D. Yu and H. Kim, Phys. Rev. B 79, 233407 (2009).

    Article  ADS  Google Scholar 

  42. J. Park and B. D. Yu, J. Phys. Soc. Jpn. 79, 074718 (2010).

    Article  ADS  Google Scholar 

  43. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  ADS  Google Scholar 

  44. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  45. G. Henkelman, B. P. Uberuaga and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).

    Article  ADS  Google Scholar 

  46. R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, New York, 1990).

    Google Scholar 

  47. G. Henkelman, A. Arnaldsson and H. Jónsson, Comput. Mater. Sci. 36, 354 (2006).

    Article  Google Scholar 

  48. W. Tang, E. Sanville and G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Deok Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, J., Yu, B.D. Atomistic processes of Ni and Pd atoms on MgO(001) surfaces with surface-functional hydroxyl groups: Ab-initio calculations. Journal of the Korean Physical Society 64, 554–560 (2014). https://doi.org/10.3938/jkps.64.554

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.554

Keywords

Navigation