Skip to main content
Log in

Comparison of complexity measures using two complex system analysis methods applied to the epileptic ECoG

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

A complex system analysis has been widely applied to examine the characteristics of an electroencephalogram (EEG) in health and disease, as well as the dynamics of the brain. In this study, two complexity measures, the correlation dimension and the spectral exponent, are applied to electrocorticogram (ECoG) data from subjects with epilepsy obtained during different states (seizure and non-seizure) and from different brain regions, and the complexities of ECoG data obtained during different states and from different brain regions are examined. From the computational results, the spectral exponent obtained from the wavelet-based fractal analysis is observed to provide information complementary to the correlation dimension derived from the nonlinear dynamical-systems analysis. ECoG data obtained during seizure activity have smoother temporal patterns and are less complex than data obtained during non-seizure activity. In addition, significant differences between these two ECoG complexity measures exist when applied to ECoG data obtained from different brain regions of subjects with epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Institute of Neurological Disorders and Stroke, Seizures and Epilepsy: Hope through research, available at http://www.ninds.nih.gov/disorders/epilepsy/detailepilepsy.htm.

  2. World Health Organization (WHO), Epilepsy, available at http://www.who.int/mediacentre/factsheets/fs999/en/.

  3. A. L. Goldberger, Proc. Am. Thorac. Soc. 3, 467 (2006).

    Article  Google Scholar 

  4. C. J. Stam and W. S. Pritchard, Int. J. Psychophysiol. 34, 5 (1999).

    Article  Google Scholar 

  5. C. J. Stam, Clin. Neurophysiol. 116, 2266 (2005).

    Article  Google Scholar 

  6. C. E. Elger, G. Widman, R. Andrzejak, M. Dumpelman, J. Arnhold, P. Grassberger and K. Lehnertz, in Advances in Neurology, edited by P. D. Williamson, A. M. Siegel, D. W. Roberts, V. M. Thadani and M. S. Gazzaniga (Lippincott Williams & Wilkins, Philadelphia, 2000).

  7. W. S. Tirsch, P. Stude, H. Scherb and M. Keidel, Brain Res. Rev. 45, 79 (2004).

    Article  Google Scholar 

  8. H. D. I. Abarbanel, R. Brown, J. J. Sidorowich and L. S. Tsimring, Rev. Mod. Phys. 65, 1331 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  9. J. Theiler, J. Opt. Soc. Am. A 7, 1055 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  10. P. Grassberger and I. Procaccia, Physica D 9, 189 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. P. Grassberger and I. Procaccia, Phys. Rev. A 28, 2591 (1983).

    Article  ADS  Google Scholar 

  12. B. B. Mandelbrot, The Fractal Geometry of Nature (WH Freeman, San Francisco, 1982).

    MATH  Google Scholar 

  13. G. W. Wornell, Signal Processing with Fractals: a Wavelet-based Approach (Prentice Hall, New Jersey, 1995).

    Google Scholar 

  14. G. W. Wornell, Proc. IEEE 81, 1428 (1993).

    Article  Google Scholar 

  15. G. W. Wornell and A. V. Oppenheim, IEEE Trans. Signal Process. 40, 611 (1992).

    Article  ADS  Google Scholar 

  16. B. B. Mandelbrot and H. W. van Ness, SIAM Rev. 10, 422 (1968).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. P. A. Watters, Complexity International 5, (1998).

  18. S. Havlin, S. V. Buldyrev, A. L. Goldberger, R. N. Mantegna, S. M. Ossadnik, C. K. Peng, M. Simons and H. Stanley, Chaos Sol. F. 6, 171 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  19. C. J. Stam and E. A. de Bruin, Hum. Brain M. 22, 97 (2004).

    Article  Google Scholar 

  20. K. Linkenkaer-Hansen, V. V. Nikouline, J. M. Palva and R. J. Ilmoniemi, J. Neurosc. 21, 1370 (2001).

    Google Scholar 

  21. J. B. Bassingthwaighte, L. S. Liebovitch and B. J. West, Fractal Physiology (Oxford University Press, New York, 1994).

    Book  Google Scholar 

  22. A. L. Barabási and H. E. Stanley,, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995).

    Book  MATH  Google Scholar 

  23. P. Bak, How Nature Works (Oxford University Press, Oxford, 1997).

    Google Scholar 

  24. R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David and C. E. Elger, Phys. Rev. E 64, 1 (2001).

    Article  Google Scholar 

  25. S. Mallat, A Wavelet Tour of Signal Processing (Academic Press, San Diego, 1998).

    MATH  Google Scholar 

  26. I. Daubechies, Commun. Pure Appl. Math. XLI, 909 (1988).

    Article  MathSciNet  Google Scholar 

  27. S. G. Mallat, IEEE Trans. Pattern Anal. Mach. Intell. 11, 674 (1989).

    Article  ADS  MATH  Google Scholar 

  28. A. Cohen and J. Kovacevic, Proc. IEEE 84, 514 (1996).

    Article  Google Scholar 

  29. F. Takens, in Dynamical Systems and Turbulence, edited by D. A. Rand and L.-S. Young (Springer-Verlag, Berlin, 1981).

  30. A. M. Albano, J. Muench, C. Schwartz, A. I. Mees and P. E. Rapp, Phys. Rev. A 38, 3017 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  31. H. S. A. M. Fraser, Phys. Rev. A 33, 1134 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. M. T. Rosenstein, J. J. Collins and C. J. de Lucca, Physica D 73, 82 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  33. M. B. Kennel, R. Brown and H. D. I. Abarbanel, Phys. Rev. A 45, 3403 (1992).

    Article  ADS  Google Scholar 

  34. W. S. Pritchard and D. W. Duke, Brain Cogn. 27, 353 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suparerk Janjarasjitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janjarasjitt, S., Loparo, K.A. Comparison of complexity measures using two complex system analysis methods applied to the epileptic ECoG. Journal of the Korean Physical Society 63, 1659–1665 (2013). https://doi.org/10.3938/jkps.63.1659

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.1659

Keywords

Navigation