Skip to main content
Log in

Polarization dependence of the photocurrent due to an anisotropic electron-photon interaction in Pd-graphene-Pd devices

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We measured the polarization dependence of the photocurrent in symmetric Pd-graphene-Pd photodevices. The photocurrent is maximum when the polarization angle of the incident light is parallel to the edge of an electrode. On the other hand, when the polarization direction is parallel to the graphene channel, the photocurrent is minimum. This polarization dependence of the photocurrent is similar to what has been observed in an asymmetric Pd-graphene-Ti device and results from an anisotropic electron-photon interaction in graphene, which generates photocarriers with momenta predominantly in the direction perpendicular to the polarization direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  2. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  3. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photonics 4, 611 (2010).

    Article  ADS  Google Scholar 

  4. Ph. Avouris, Nano Lett. 10, 4285 (2010).

    Article  ADS  Google Scholar 

  5. D. Yoon, H. Cheong, J. S. Chio, and B. H. Park, J. Korean Phys. Soc. 60, 1278 (2012).

    Article  ADS  Google Scholar 

  6. F. Xia, T. Muller, R. Golizadeh-Mojarad, M. Freitag, Y. Lin, J. Tsang, V. Perebeinos, and Ph. Avouris, Nano Lett. 9, 1039 (2009).

    Article  ADS  Google Scholar 

  7. M. C. Lemme, F. H. L. Koppens, A. L. Falk, M. S. Rudner, H. Park, L. S. Levitov, and C. M. Marcus, Nano Lett. 11, 4134 (2011).

    Article  ADS  Google Scholar 

  8. J. C. E. Song, M. S. Rudner, C. M. Marcus, and L. S. Levitov, Nano Lett. 11, 4688 (2011).

    Article  ADS  Google Scholar 

  9. T. Mueller, F. Xia, and Ph. Avouris, Nat. Photonics 4, 297 (2011).

  10. N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, Science 334, 648 (2011).

    Article  ADS  Google Scholar 

  11. R. S. Singh, V. Nalla, W. Chen, W. Ji, and A. T. S. Wee, Appl. Phys. Lett. 100, 093116 (2012).

    Article  ADS  Google Scholar 

  12. P. R. Wallace, Phys. Rev. 71, 622 (1947).

    Article  ADS  MATH  Google Scholar 

  13. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).

    Article  ADS  Google Scholar 

  14. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, Phys. Rev. Lett. 101, 196405 (2008).

    Article  ADS  Google Scholar 

  15. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).

    Article  ADS  Google Scholar 

  16. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008).

    Article  ADS  Google Scholar 

  17. M. Kim, H. A. Yoon, S. Woo, D. Yoon, S. W. Lee, and H. Cheong, Appl. Phys. Lett. 101, 073103 (2012).

    Article  ADS  Google Scholar 

  18. A. Grüneis, R. Saito, Ge. G. Samsonidze, T. Kimura, M. A. Pimenta, A. Jorio, A. G. Souza Filho, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 67, 165402 (2003).

    Article  ADS  Google Scholar 

  19. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).

    Article  ADS  Google Scholar 

  20. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, Nano Lett. 6, 2667 (2006).

    Article  ADS  Google Scholar 

  21. D. Yoon, H. Moon, H. Cheong, J. S. Choi, A. C. Choi, and B. H. Park, J. Korean Phys. Soc. 55, 1299 (2009).

    Article  ADS  Google Scholar 

  22. S. M. Song, J. K. Park, O. J. Sul, and B. J. Cho, Nano Lett. 12, 3887 (2012).

    Article  ADS  Google Scholar 

  23. G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, Phys. Rev. Lett. 101, 026803 (2008).

    Article  ADS  Google Scholar 

  24. J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and A. Yacoby, Nat. Phys. 4, 144 (2008).

    Article  Google Scholar 

  25. Y. Zhang, V. W. Brar, C. Girit, A. Zettl, and M. F. Crommie, Nat. Phys. 5, 722 (2009).

    Article  Google Scholar 

  26. Z. H. Ni, L. A. Ponomarenko, R. R. Nair, R. Yang, S. Anissimova, I. V. Grigorieva, F. Schedin, P. Blake, Z. X. Shen, E. H. Hill, K. S. Novoselov, and A. K. Geim, Nano Lett. 10, 3868 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeonsik Cheong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M., Yoon, D., Choi, S.K. et al. Polarization dependence of the photocurrent due to an anisotropic electron-photon interaction in Pd-graphene-Pd devices. Journal of the Korean Physical Society 63, 1019–1022 (2013). https://doi.org/10.3938/jkps.63.1019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.1019

Keywords

Navigation