Investigation of Propolis’ Effect on Thiobarbituric Acid Reactive Substances and Anti-Oxidant Enzyme Levels of Hippocampus in Diabetic Rats Induced by Streptozotocin

Authors

  • Burcu Köksal Inonu University, Faculty of Medicine, Department of Physiology, 44280 Malatya
  • Memet Hanifi Emre Inonu University, Faculty of Medicine, Department of Physiology, 44280 Malatya
  • Alaadin Polat Inonu University, Faculty of Medicine, Department of Physiology, 44280 Malatya

DOI:

https://doi.org/10.3889/oamjms.2015.031

Keywords:

Diabetes, propolis, anti-oxidative enzymes, streptozotocine, rats

Abstract

BACKGROUND: Propolis is an organic resinous viscous substance collected from flower bud and plant sprig by bees. Propolis has a potential treatment agent for oxidative damage caused by diabetes in hippocampus due to its flavonoid and phenolic content.

AIM: In this study effect of propolis on thiobarbituric acid reactive substances and anti-oxidative enzyme levels of hippocampus in diabetic rats induced by streptozotocin was investigated.

MATERIALS AND METHODS: The study involved measuring levels of SOD, CAT, GSH-Px and TBARs in hippocampus tissue of STZ-induced diabetic rats (Adult Male Sprague Dawley rats) after applying propolis for one month. The subjects of the study were composed of 51 rats randomly assigned to four groups (Control, STZ, P+STZ and STZ+P). For analysis of data, Kruskal Wallis Test was utilized.

RESULTS: The findings of the study showed that there were no significant difference in the levels of TBARS, SOD, CAT and GSH-Px of hippocampus across the groups.

CONCLUSION: Propolis application in four-week duration does not have effect on TBARS, SOD, CAT and GSH-Px levels of hippocampus of diabetic rats. These findings mean that more time for observing oxidative harms on hippocampus is needed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Reiband HK, Schmidt S, Ranjan A, Holst JJ, Madsbad S, Norgaard K. Dual-hormone treatment with insulin and glucagon in patients with type 1 diabetes mellitus, Diabetes-Metab Res., 2014. doi: 10.1002/dmrr.2632. DOI: https://doi.org/10.1002/dmrr.2632

Ayoub RS. Effect of exercise on spatial learning and memory in male diabetic rats. Int J Diabetes & Metabolism. 2009; 17: 93–98. DOI: https://doi.org/10.1159/000497679

King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care. 1998; 21(9): 1414-1431. DOI: https://doi.org/10.2337/diacare.21.9.1414

Tsui I, Drexler A, Stanton AL, Kageyama J, Ngo E, Straatsma BR. Pilot study using mobile health to coordinate the diabetic patient, diabetologist, and ophthalmologist. J Diabetes Sci Technol. 2014; 8(4):845-849. DOI: https://doi.org/10.1177/1932296814529637

Burney S, Irfan K, Saif MW, Masud F. Diabetes and pancreatic cancer. JOP. 2014; 15(4): 319-321.

Ryan JP, Fine DF, Rosano C. Type 2 Diabetes and Cognitive Impairment Contributions From Neuroimaging. J Geriatr Psychiatry and Neurol,. 2014; 27(1): 47-55. DOI: https://doi.org/10.1177/0891988713516543

Jakus V. The role of free radicals, oxidative stress and antioxidative systems in diabetic vascular disease. Bratisl Lek Listy. 2000; 101 (10): 541–551.

Sharma R, Buras E, Terashima T, Serrano F, Massaad CA, Hu L, Bitner B, Inoue T, Chan, L, Pautler RG. Hyperglycemia Induces Oxidative Stress and Impairs Axonal Transport Rates in Mice. PLoS ONE. 2010; 5 (10): 1–8. DOI: https://doi.org/10.1371/journal.pone.0013463

Memişoğulları R. The Role of Free Radıcals and the Effect of Antıoxidatives in Diabetes. Düzce Medicine Faculty Journal. 2005; 3: 30–39.

Altan N, Dinçel AS, Koca C. Dibetes mellitus and oxidative stress. Tr Biokim Derg. 2006; 31 (2): 51–56.

Genet S, Kale R, Baquer NZ. Alterations in antioxidative enzymes and oxidative damage in experimental diabetic rat tissues: effect of vanadate and fenugreek (Trigonella foenum graecum). Mol Cell Biochem. 2002; 2367 (1-2): 7-12.

Lou MF. Redox regulation in the lens. Prog Retin Eye Res. 2003; 22(5): 657-682. DOI: https://doi.org/10.1016/S1350-9462(03)00050-8

Ker YB, Peng CC, Chang WL, Chyau CC, Peng RY. Hepatoprotective bioactivity of the glycoprotein, antrodan, isolated from Antrodia cinnamomea mycelia. PLoS One. 2014;9(4):e93191. DOI: https://doi.org/10.1371/journal.pone.0093191

Li HT, Zhao ZH, Ding HY, Wang LX, Cao Y. Effect of craniotomy on oxidative stress and its effect on plasma L-carnitine levels. Can J Physiol Pharmacol. 2014;92(11):913-6. DOI: https://doi.org/10.1139/cjpp-2014-0149

Grillo CA, Piroli GG, Wood GE, Reznikov LR, McEwen BS, Reagan LP. Immunocytochemical analysis of synaptic proteins provides new insights into diabetes-mediated plasticity in the rat hippocampus. Neuroscience. 2005;136:477–486. DOI: https://doi.org/10.1016/j.neuroscience.2005.08.019

Mao XY, Cao DF, Li X, Yin JY, Wang ZB, Zhang Y, Mao CX, Zhou HH, Liu ZQ. Huperzine A ameliorates cognitive deficits in streptozotocin-induced diabetic rats. Int J Mol Sci. 2014;15(5):7667-83. DOI: https://doi.org/10.3390/ijms15057667

Maruyama H, Sumitou Y, Sakamoto T, Araki Y, Hara H. Antihypertensive effects of flavonoids isolated from brazilian green propolis in spontaneously hypertensive rats. Biol Pharm Bull. 2009;32(7):1244-50. DOI: https://doi.org/10.1248/bpb.32.1244

Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, Pérez-Alvarez JA. Functional properties of honey, propolis, and royal jelly. J Food Sci. 2008;73(9):R117-24. DOI: https://doi.org/10.1111/j.1750-3841.2008.00966.x

Seven İ, Aksu T, Seven PT. Propolis and its Usage in Animal Nutrition. YYÜ Veterinary Faculty Journal. 2007; 18 (2): 79–84.

Sartori DRS, Kawakami CL, Orsatti CL, Sforcin JM. Propolis Effect on Streptozotocin-Induced Diabetic Rats. J Venom Anim Toxins Incl Trop Dis. 2009; 15(1),93–102. DOI: https://doi.org/10.1590/S1678-91992009000100009

Burdock GA. Review of the biological properties and toxicity of bee propolis (propolis). Food Chem Toxicol. 1998; 36: 347–363. DOI: https://doi.org/10.1016/S0278-6915(97)00145-2

Omene C, Kalac M, Wu J, Marchi E, Frenkel K, O’Connor OA. Propolis and its Active Component, Caffeic Acid Phenethyl Ester (CAPE), Modulate Breast Cancer Therapeutic Targets via an Epigenetically Mediated Mechanism of Action. J Cancer Sci Ther. 2013; 5(10):334–342.

Fuliang HU, Hepburn HR, Xuan H, Chen M, Daya S, Radloff SE. Effects of propolis on blood glucose, blood lipid and free radicals in rats with diabetes mellitus. Pharmacol Res. 2005; 51:147–152. DOI: https://doi.org/10.1016/j.phrs.2004.06.011

Tekcan M. Oxidative stress-antioxidative systems and testicle. Andrology Bullettin. 2009; 37: 131-136.

Tong-un T, Wannanon P, Wattanathorn J, Phachonpai W. Cognitive-Enhancing and Antioxidative Activities of Quercetin Liposomes in Animal Model of Alzheimer’s Disease. J Biol Sci. 2010; 10: 84-91. DOI: https://doi.org/10.3844/ojbsci.2010.84.91

Vardı N, Uçar M, Iraz M, Öztürk F. Morphological Changes Of Rat Endocrine Pancreas in Experimental Diabetes. Turkiye Klinikleri J Med Sci. 2003; 23 (1): 27–32.

Gomathi D, Ravikumar G, Kalaiselvi M, Devaki K, Uma C. Efficacy of Evolvulus alsinoides (L.) L. on insulin and antioxidatives activity in pancreas of streptozotocin induced diabetic rats, Journal of Diabetes & Metabolic Disorders. 2013; 12:39. DOI: https://doi.org/10.1186/2251-6581-12-39

Khaki A, Bayatmakoo R, Nouri M, Khaki AA. Remedial Effect of Cinnamon Zeylanicum on serum anti-oxidatives levels in male diabetic Rat. Life Sci J. 2013;10(4) :103-107.

Alves de Lima RO, Bazo AP, Said RA, Sforcin JM, Bankova V, Darros BR, Salvadori DMF. Modifying Effect of Propolis on Dimethylhydrazine-Induced DNA Damage but Not Colonic Aberrant Crypt Foci in Rats. Environ Mol Mutagen. 2005; 45:8–16. DOI: https://doi.org/10.1002/em.20082

Yılmaz Z. Öğrenme ve Hafızanın Şekillendiği Beyin Bölgelerinde Alkolün Oluşturduğu Hasarlarda Propolisin Etkileri. Master Thesis, Inonu University, Institute of Health Sciences, 2006; Malatya, Turkey.

Kanbur M, Eraslan G, Silici S. Antioxidative effect of propolis against exposure to propetamphos in rats, Ecotoxicol Environ Saf. 2009; 72(3):909-915. DOI: https://doi.org/10.1016/j.ecoenv.2007.12.018

Huang M, Gao L, Yang L, Lin F, Lei H. Abnormalities in the brain of streptozotocin-induced type 1 diabetic rats revealed by diffusion tensor imaging. NeuroImage: Clinical. 2012; 1: 57–65. DOI: https://doi.org/10.1016/j.nicl.2012.09.004

Öntürk H, Özbek H. Carried out of experimental diabetes and the measurement of glycemic activity. General Medicine Journal. 2007; 17(4): 231–236.

Suzuki I. In H. Tanaka; H. Yajima; H. Fukuda; H. Sezaki; K. Koga; M. Hirose and T. Nakajima (Eds.). Pharmaceutical research and development. Tokyo: Hirokawa Publishing Co. 1990:pp. 227 – 241.

Gultekin F, Karakoyun I, Sutcu R, Savik E, Cesur G, Orhan H, Delibas N. Chlorpyrifos increases the levels of hippocampal NMDA receptor subunits NR2A and NR2B in juvenile and adult rats. Int J Neurosci. 2007;117(1):47-62. DOI: https://doi.org/10.1080/00207450500535719

Saïd L, Banni M, Kerkeni A, Saïd K, Messaoudi I. Influence of combined treatment with zinc and selenium on cadmium induced testicular pathophysiology in rat. Food Chem Toxicol. 2010;48(10):2759-65. DOI: https://doi.org/10.1016/j.fct.2010.07.003

Sawyer GW, Ehlert FJ, Hart JP. Determination of the rate of muscarinic M1 receptor plasma membrane delivery using a regulated secretion/aggregation system. J Pharmacol Toxicol Methods. 2006;53(3):219-33. DOI: https://doi.org/10.1016/j.vascn.2005.08.006

Sun Y, Oberley LW, Li YA. A simple method for clinical assay of superoxide dismutase. Clin Chem. 1988; 34: 497-500. DOI: https://doi.org/10.1093/clinchem/34.3.497

Aebi H, Catalase. In Bergmeyer HU (ed). Methods of Enzymatic Analysis. Academic Press, 1974: 673–677. DOI: https://doi.org/10.1016/B978-0-12-091302-2.50032-3

Paglia DE, Valentine WN. Studies on quantative and qualitative Characterization of Erythocyte Glutation Peroxidase. J Lab Clin Med. 1967; 70: 158-170.

Uchiyama M, Mihara M. Determination of MDA precursor in Tissue by TBA Test. Anal Biochem. 1978; 36: 271–278. DOI: https://doi.org/10.1016/0003-2697(78)90342-1

Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein Measurement with Pholin Phenol Reagent. J Biol Chem. 1951; 193: 265-275. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

Hinkle DE, Wiersma W, Jurs SG. Applied statistics for the behavioral sciences (5th ed.). Boston, MA: Houghton Mifflin Company, 2003.

Grünblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S. Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem. 2007;101(3):757-70. DOI: https://doi.org/10.1111/j.1471-4159.2006.04368.x

VanderJagt DJ, Harrison JM, Ratliff DM, Hunsaker LA, Vander Jagt DL. Oxidative stress indices in IDDM subjects with and without long-term diabetic complications. Clin Biochem. 2001;34(4):265-70 DOI: https://doi.org/10.1016/S0009-9120(01)00204-1

Wrighten SA, Piroli GG, Grillo CA, Reagan LP. A look inside the diabetic brain: Contributors to diabetes-induced brain aging. Biochim Biophys Acta. 2009;1792(5):444-53. DOI: https://doi.org/10.1016/j.bbadis.2008.10.013

Kamal A, Biessels GJ, Urban IJ, Gispen WH. Hippocampal synaptic plasticity in streptozotocin-diabetic rats: impairment of long-term potentiation and facilitation of long-term depression. Neuroscience. 1999;90(3):737-45. DOI: https://doi.org/10.1016/S0306-4522(98)00485-0

Reagan LP, McEwen BS. Diabetes, but not stress, reduces neuronal nitric oxide synthase expression in rat hippocampus: implications for hippocampal synaptic plasticity. Lippincott Williams & Wilkins. 2002; 13 (14): 1801–1804. DOI: https://doi.org/10.1097/00001756-200210070-00022

Popoviç M, Biessels GJ, Isaacson RL, Gispen WH. Learning and memory in streptozotocin-induced diabetic rats in a novel spatial/object discrimination task. Behav Brain Res. 2001; 122: 201–207. DOI: https://doi.org/10.1016/S0166-4328(01)00186-3

Gardoni F, Kamal A, Bellone C, Biessels GJ, Ramakers GMJ, Cattabeni F, Gispen WH, Luca M. Effects of streptozotocine in diabetes on the hippocampal NMDA. J Neurochem. 2002; 80: 438–447. DOI: https://doi.org/10.1046/j.0022-3042.2001.00713.x

Atlı T, Keven K, Avcı A, Kutlay S, Türkçapar N, Varlı M, Aras S, Ertug E, ve Canbolat O. Oxidative stress and antioxidative status in elderly diabetes mellitus and glucose intolerance patients. Arch Gerontol Geriatr. 2004; 39: 269–275. DOI: https://doi.org/10.1016/j.archger.2004.04.065

Sözmen B, Delen Y, Girgin FK, Sözmen EY. Catalase and Paraoxonase in Hypertensive Type 2 Diabetes Mellitus: Correlation with Glycemic Control. CLB. 1999; 32(6): 423–427. DOI: https://doi.org/10.1016/S0009-9120(99)00034-X

Bono A, Caimi G, Catania A, Sarno A, Pandolfo L. Red Cell Peroxide Metabolism in Diabetes Mellitus. Horm Metab Res. 1987; 19(6): 264–266. DOI: https://doi.org/10.1055/s-2007-1011794

Published

2015-03-09

How to Cite

1.
Köksal B, Emre MH, Polat A. Investigation of Propolis’ Effect on Thiobarbituric Acid Reactive Substances and Anti-Oxidant Enzyme Levels of Hippocampus in Diabetic Rats Induced by Streptozotocin. Open Access Maced J Med Sci [Internet]. 2015 Mar. 9 [cited 2024 Apr. 19];3(1):52-6. Available from: https://oamjms.eu/index.php/mjms/article/view/oamjms.2015.031

Issue

Section

A - Basic Science