HERSCHEL OBSERVATIONS OF MAJOR MERGER PAIRS AT z = 0: DUST MASS AND STAR FORMATION

, , , , , , , , , , , , , , , and

Published 2016 February 10 © 2016. The American Astronomical Society. All rights reserved.
, , Citation Chen Cao et al 2016 ApJS 222 16 DOI 10.3847/0067-0049/222/2/16

0067-0049/222/2/16

ABSTRACT

We present Herschel PACS and SPIRE far-infrared (FIR) and submillimeter imaging observations for a large K-band selected sample of 88 close major-merger pairs of galaxies (H-KPAIRs) in 6 photometric bands (70, 100, 160, 250, 350, and 500 μm). Among 132 spiral galaxies in the 44 spiral–spiral (S+S) pairs and 44 spiral–elliptical (S+E) pairs, 113 are detected in at least 1 Herschel band. The star formation rate (SFR) and dust mass (Mdust) are derived from the IR SED fitting. The mass of total gas (Mgas) is estimated by assuming a constant dust-to-gas mass ratio of 0.01. Star-forming spiral galaxies (SFGs) in S+S pairs show significant enhancements in both specific star formation rate (sSFR) and star formation efficiency (SFE), while having nearly the same gas mass compared to control galaxies. On the other hand, for SFGs in S+E pairs, there is no significant sSFR enhancement and the mean SFE enhancement is significantly lower than that of SFGs in S+S pairs. This suggests an important role for the disk–disk collision in the interaction-induced star formation. The Mgas of SFGs in S+E pairs is marginally lower than that of their counterparts in both S+S pairs and the control sample. Paired galaxies with and without interaction signs do not differ significantly in their mean sSFR and SFE. As found in previous works, this much larger sample confirms that the primary and secondary spirals in S+S pairs follow a Holmberg effect correlation on sSFR.

Export citation and abstract BibTeX RIS

1. INTRODUCTION

Galaxy interactions and mergers are important external mechanisms for triggering galactic evolution (Kormendy & Kennicutt 2004). Both observations and numerical simulations have shown that dynamical instabilities induced by galaxy interactions can cause cold gas inflow and massive star formation in the central region of disk galaxies (see, e.g., Bahcall et al. 1995; Dasyra et al. 2006; Hopkins et al. 2006). Merger-induced star formation was first predicted by Toomre & Toomre (1972) and confirmed by Larson & Tinsley (1978) in a study of optical colors of Arp galaxies. Many subsequent studies of the Hα emission and Far-infrared (FIR) emission in Arp galaxies and in paired galaxies provided further support of this theory (see Kennicutt 1996 for a review). On the other hand, Haynes & Herter (1988) found little or no enhanced FIR emission in a sample of optically selected pairs compared to a control sample of single galaxies. In a more influential paper, Bergvall et al. (2003) reported a multi-wavelength study in which they found no significant star formation rate (SFR) enhancement for a sample of morphologically selected merger candidates. Apparently, only some merging galaxies have significantly enhanced SFR, with ultra-luminous infrared galaxies (ULIRGs) as the extreme examples, and the others do not. Therefore, whether the mean SFR of a merger sample shows significant enhancement depends very much on how it is selected. Kennicutt et al. (1987) and Bushouse et al. (1988) found that merger candidates that show strong signs of tidal interactions have significantly stronger SFR enhancement than optically selected paired galaxies, the latter being only marginally enhanced (a factor of ∼2) compared to single galaxies. Telesco et al. (1988) found a strong tendency for pairs with the highest FIR color temperatures to have the smallest separation. Xu & Sulentic (1991) showed that the enhancement of the FIR emission of close spiral–spiral (S+S) pairs with separation less than the size of the primary and with signs of interaction is significantly stronger than that of wider pairs and pairs without interaction signs. Sulentic (1989) found that elliptical–elliptical (E+E) pairs are equally quiet in the FIR emission as single ellipticals. Very few E's in S+E pairs are FIR bright, possibly cross-fueled by their S companions (Domingue et al. 2003).

More recently, large digitized surveys (e.g., SDSS, 2MASS, 2df, etc.) enabled large and homogeneously selected pair samples. A clear anti-correlation between the specific SFR (sSFR = SFR/Mstar) and the pair separation has been well established (Barton et al. 2000; Lambas et al. 2003; Alonso et al. 2004; Nikolic et al. 2004; Ellison et al. 2008; Li et al. 2008; Scudder et al. 2012; Patton et al. 2013). In particular, close pairs with projected separation ${r}_{{\rm{proj}}}\leqslant 20\;{h}^{-1}\;\mathrm{kpc}$ have relatively strong sSFR enhancement of a factor of ≳2 (Ellison et al. 2008), while the sSFR enhancement of wider pairs is significantly weaker (Scudder et al. 2012; Patton et al. 2013). On the other hand, not all star-forming galaxies (SFGs) in close pairs have enhanced sSFRs. Xu et al. (2010) studied the sSFR enhancement in a sample of K-band-selected close major-merger pairs (primary-to-secondary mass ratio ${m}_{{\rm{pri}}}/{m}_{{\rm{2nd}}}\leqslant 2.5$) using Spitzer FIR observations and found that (1) on average, SFGs in S+E pairs do not show any sSFR enhancement compared to their counterparts in a mass-matched control sample; and (2) the sSFR enhancement in S+S major-merger pairs is mass dependent in the sense that significant sSFR enhancement is confined to massive SFGs while no enhancement is found in low-mass SFGs with nearly equal (low) mass companions. Using data obtained in Herschel (PEP/HerMES) and Spitzer surveys of the COSMOS field (Scoville et al. 2007), Xu et al. (2012a) studied the cosmic evolution of the sSFR enhancement in close major-merger pairs since z  =  1, and found that the sSFR enhancement in massive S+S pairs decreases with increasing redshift, while there is no significant sSFR enhancement in massive S+E pairs at any redshift. Other authors also found evidence for the lack of SFR enhancement in S+E pairs (Hwang et al. 2011; Moon & Yoon 2015) or low SFR activity in spiral galaxies with early-type close neighbors (Park & Choi 2005, 2009; Park et al. 2008). The literature results on the sSFR enhancement in close minor-merger pairs are controversial. Woods & Geller (2007) found that in close minor mergers, only secondary companions are sSFR enhanced, while there is no significant enhancement in primary companions. This is the opposite of the results of Lambas et al. (2003) that show stronger sSFR enhancement in the primaries. More recently, Scudder et al. (2012) found that both the primaries and the secondaries have significantly enhanced sSFRs in close minor-merger pairs. Lanz et al. (2013) studied SEDs for 31 interacting galaxies in 14 major and minor-merger systems, and found increases in SFR but not sSFR as the interaction sequences progress from non-interacting to strongly interacting.

In this paper, we present new FIR imaging observations in the six photometry bands (70, 100, 160, 250, 350, and 500 μm) of Herschel PACS (Poglitsch et al. 2010) and SPIRE (Griffin et al. 2010), for a large and complete sample of close major-merger pairs of SFGs (including both S+S and S+E pairs). The focus of this new study is on the dependence of the SFR enhancement on the dust mass, which is a good proxy of gas mass. Star formation activity in galaxies is fueled by cold gas, which dominates the gas mass, and all SFGs are gas-rich. Does the SFR enhancement depend on the gas content of a paired SFG? Both in simulations (Hopkins et al. 2009; Perret et al. 2014; Scudder et al. 2015) and in observations (Xu et al. 2012a) there have been indications that the SFR enhancement may decrease with increasing gas fraction. According to Hopkins et al. (2009) (see also Mihos & Hernquist 1996), this is because the gravitational torque imposed by the stellar disk on the gas disk is less effective when the gas fraction is high, therefore less disk gas can sink to the nuclear region to fuel the merger-induced starburst by losing angular momentum to stars. Maps of the dust emission in the six Herschel bands enabled us to accurately estimate the dust mass (and its distribution) for individual SFGs. All galaxies in our Herschel sample, a subset of the KPAIR sample of K-band selected major-merger pairs (Domingue et al. 2009; Xu et al. 2012b), have ${M}_{{\rm{star}}}\gt {10}^{10}\ {M}_{\odot }$ and normal metallicity. Therefore their gas mass is likely to be related to dust mass with a rather constant gas-to-dust ratio of ∼100 (Draine & Li 2007), and the sSFR versus Mgas relation for these paired SFGs can be explored using the Herschel observations. It is worth noting that it is difficult to directly measure the gas mass in individual galaxies in close major-merger pairs. The angular resolutions of single-dish HI 21 cm line observations are too coarse ($\mathrm{beam}\gtrsim {5}^{\prime }$) to resolve pairs into individual galaxies, while the interferometry observations using the VLA are very expensive in terms of the integration time.

The rest of the paper is arranged as follows. Section 2 describes the selection of the H-KPAIR sample, and the details of the Herschel observation and photometry are given in Section 3. Section 4 shows the images and catalogs of the H-KPAIR galaxies and describes the estimation of dust mass and SFRs using SED fittings, while we describe the selection, data reduction, and photometry on control sample galaxies in Section 5. Sections 6 and 7 show statistical comparison results on sSFRs, total gas masses, and star formation efficiencies (SFEs) in H-KPAIRs and the control sample. Discussions will be given in Section 8. We summarize our results and briefly introduce future plans in Section 9.

Throughout this paper, we adopt the Λ-cosmology with Ωm  =  0.3 and ${{\rm{\Omega }}}_{{\rm{\Lambda }}}=0.7$, and ${H}_{{\rm{0}}}=70\ (\mathrm{km}\;{{\rm{s}}}^{-1}\;{\mathrm{Mpc}}^{-1})$.

2. THE Herschel KPAIR (H-KPAIR) SAMPLE

The local galaxy pairs sample used in this work (hereafter Herschel KPAIR sample, or H-KPAIR) was constructed from the KPAIR, which is a complete and unbiased K-band selected sample of 170 close major-merger galaxy pairs (see details in Domingue et al. 2009; Xu et al. 2010). Pairs in the KPAIR with the following characteristics are excluded from H-KPAIR: (1) Elliptical+Elliptical (E+E) pairs; (2) pairs with only one measured redshift; (3) pairs with recession velocities <2000 km s−1. The resulting sample contains 88 galaxy pairs (176 paired galaxies), of which 44 are Spiral+Spiral (S+S) pairs and 44 are Spiral+Elliptical (S+E) pairs. The interaction morphology of these pairs was visually checked by three of us (C. C., C. K. X., and D. D). Accordingly, pairs are classified into three types: (1) INT (with signs of interacting, e.g., morphological distortions, tidal tails and bridges, plumes etc.), (2) MER (merging systems) and (3) JUS ("just" pairs without clear signs of interaction). All galaxies have $z\lt 0.1$, with a median of z  =  0.04.

3. Herschel OBSERVATIONS

3.1. PACS and SPIRE Images

Pairs in H-KPAIR were observed successfully using PACS and SPIRE photometers in the three PACS bands (70, 100, 160 μm) and three SPIRE bands (250, 350, 500 μm). The observations of 83 pairs were carried out within our own proposal (OT2_cxu_2). All but two of these pairs are smaller than 2', while the sizes of two large pairs (J1406+5043 and J2047+0019) are between 3' and 5'.

PACS observations were done in the scanmap mode with medium scan speed (20''/s). Each pair was observed with four concatenated PACS observations. The first two are for the 70 and 160 μm bands with orientation angles of +45° (nominal) and −45° (orthogonal), respectively, and the other two are for the 100 and 160 μm bands of the same cross-scan configuration. For small pairs (<2'), each scan map has six scans with separation of 30'' and scan length = 3. This yields nearly uniform coverage of a 3' × 3' region, leaving enough margins outside the pairs for background determination. The average 4σ sensitivity limits are 36, 42, and 56 mJy for the three PACS bands. For large pairs we used scan number = 10, separation = 36'', and scan length = 6', yielding a uniform coverage of a 6' × 6' region and the average 4σ sensitivity limits of 30, 36, and 48 mJy. Data reduction was carried out using the Herschel Interactive Processing Environment (HIPE; Ott 2010), with the mapmaking done using UNIMAP (Traficante et al. 2011). The mean beam size (FWHM) are 5farcs7, 6farcs8, and 12farcs0 for 70, 100, and 1600 μm images, respectively.

SPIRE observations of small pairs were done in the small-map mode, providing uniformly covered cross-scan maps of 4' × 4' in 3 SPIRE bands. For large pairs, the observations were done in the large-map mode with nominal scan speed (30''/s), both scan length and scan height equal to 6', and in the A and B directions. For both the small and large maps, each observation has 4 repeats, yielding confusion limited 4σ sensitivities of 29, 30, and 34 mJy in the 3 SPIRE bands, respectively. The SPIRE data were reduced using HIPE 10.0.0, which uses the de-striper for the mapmaking. Bad pixels (PSWF8, PSWE9, PSWB5, PSWD11) were masked. The mean beam FWHM are 18farcs2, 24farcs9, and 36farcs3 for 250, 350, and 500 μm images, respectively.

The remaining 5 pairs in H-KPAIR were observed by other OT and KPGT projects, and their Herschel data were taken from the archives. SPIRE images of two pairs (J1101+5720 and J1429+3534) were taken directly from HerMES data release v2. In Table 1 we present the pair and galaxy ID, R.A., and decl., redshift (z), Ks-band magnitude (from 2MASS), morphological types (spiral or elliptical), interaction morphological types (as described in Section 2), and Herschel proposal ID for 176 paired galaxies in the H-KPAIR sample. SDSS, PACS, and SPIRE images of all pairs are shown in Figure 1.

Figure 1.

Figure 1.

SDSS, Herschel PACS, and SPIRE three-color images of H-KPAIR galaxy pairs. All images are overlaid by the same two sets of contours of 70 μm (red) and 250 μm (white) images. (The complete figure set (22 images) is available.)

Standard image High-resolution image

Table 1.  H-KPAIR Galaxy Sample

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Pair ID Galaxy ID R.A. decl. z Ks Type Int-type Herschel-ID s(p) δ(Vz)
(KPAIR) (2MASX) (J2000) (J2000) redshift (mag)       (kpc) (km s−1)
J0020+0049 J00202580+0049350 5.107446 0.826346 0.014864 10.98 S JUS OT2_cxu_2 11.44 402.0
  J00202748+0050009 5.114637 0.833554 0.016204 10.5 E JUS      
J0118−0013 J01183417−0013416 19.642259 −0.228261 0.045344 12.05 S JUS OT2_cxu_2 27.23 54.0
  J01183556−0013594 19.648352 −0.233075 0.045524 12.88 S JUS      
J0211−0039 J02110638−0039191 32.776675 −0.655108 0.017746 11.42 S JUS OT2_cxu_2 10.63 96.0
  J02110832−0039171 32.784577 −0.654777 0.018066 10.9 S JUS      
J0338+0109 J03381222+0110088 54.550919 1.16912 0.039201 12.42 S INT OT2_cxu_2 24.9 432.9
  J03381299+0109414 54.554136 1.161523 0.040644 12.77 E INT      
J0754+1648 J07543194+1648214 118.633109 16.805959 0.045869 12.03 S MER OT2_cxu_2 13.89 104.1
  J07543221+1648349 118.634232 16.809722 0.046216 11.55 S MER      
J0808+3854 J08083377+3854534 122.14073 38.914841 0.040173 12.37 S JUS OT2_cxu_2 18.71 23.7
  J08083563+3854522 122.148487 38.914504 0.040094 11.88 E JUS      
J0823+2120 J08233266+2120171 125.886114 21.338096 0.018076 12.15 S JUS OT2_cxu_2 15.44 0.3
  J08233421+2120515 125.892554 21.34764 0.018075 11.52 S JUS      
J0829+5531 J08291491+5531227 127.312147 55.522992 0.025059 11.73 S JUS OT2_cxu_2 27.75 55.2
  J08292083+5531081 127.336797 55.518931 0.025243 11.42 S JUS      
J0836+4722 J08364482+4722188 129.186777 47.371907 0.05256 12.28 S JUS OT2_cxu_2 15.8 0.0
  J08364588+4722100 129.191208 47.369469 0.05256 11.9 S JUS      
J0838+3054 J08381759+3054534 129.573312 30.914861 0.047559 12.65 S INT OT2_cxu_2 9.09 152.7
  J08381795+3055011 129.5748 30.916973 0.048068 11.94 S INT      
J0839+3613 J08385973+3613164 129.748888 36.221234 0.055618 12.04 E JUS OT2_cxu_2 26.58 231.6
  J08390125+3613042 129.755226 36.217846 0.054846 12.55 S JUS      
J0841+2642 J08414959+2642578 130.456662 26.716073 0.084834 12.27 S JUS OT2_cxu_2 30.64 300.0
  J08415054+2642475 130.460609 26.713209 0.085834 12.99 E JUS      
J0906+5144 J09060283+5144411 136.511812 51.744702 0.02912 11.68 E JUS OT2_cxu_2 24.29 3.3
  J09060498+5144071 136.520782 51.735305 0.029131 11.95 S JUS      
J0912+3547 J09123636+3547180 138.151523 35.788345 0.023532 11.53 E JUS OT2_cxu_2 14.24 6.0
  J09123676+3547462 138.153186 35.796182 0.023512 12.34 S JUS      
J0913+4742 J09134461+4742165 138.435884 47.704599 0.051226 11.91 E INT OT2_cxu_2 24.32 450.9
  J09134606+4742001 138.441955 47.700051 0.052729 12.1 S INT      
J0915+4419 J09155467+4419510 138.977827 44.33086 0.039568 12.23 S MER OT1_dsanders_1 9.69 2.4
  J09155552+4419580 138.981364 44.332785 0.039576 11.31 S MER      
J0926+0447 J09264111+0447247 141.671319 4.790211 0.089132 13.16 S MER OT2_cxu_2 8.13 483.6
  J09264137+0447260 141.672412 4.790559 0.090744 12.48 S MER      
J0937+0245 J09374413+0245394 144.433951 2.760819 0.024156 10.01 S INT OT2_cxu_2 25.64 197.7
  J09374506+0244504 144.437634 2.74737 0.023497 10.45 E INT      
J1010+5440 J10100079+5440198 152.503332 54.672181 0.046004 12.2 S MER OT2_cxu_2 13.92 83.7
  J10100212+5440279 152.508859 54.674434 0.046283 12.34 S MER      
J1015+0657 J10155257+0657330 153.969058 6.959172 0.029931 12.28 S JUS OT2_cxu_2 13.02 244.5
  J10155338+0657495 153.972451 6.963758 0.029116 11.3 E JUS      
J1020+4831 J10205188+4831096 155.216286 48.519406 0.052968 13.26 S INT OT2_cxu_2 25.94 45.0
  J10205369+4831246 155.223658 48.523383 0.053118 12.27 E INT      
J1022+3446 J10225647+3446564 155.73532 34.78235 0.05537 13.18 S INT OT2_cxu_2 11.56 301.5
  J10225655+3446468 155.735626 34.779681 0.056375 12.39 S INT      
J1023+4220 J10233658+4220477 155.902453 42.346583 0.045621 12.36 S INT OT2_cxu_2 15.98 53.1
  J10233684+4221037 155.903524 42.351041 0.045444 13.01 S INT      
J1027+0114 J10272950+0114490 156.872904 1.246742 0.023592 11.79 S INT OT2_cxu_2 14.21 64.8
  J10272970+0115170 156.873782 1.254605 0.023376 10.9 E INT      
J1032+5306 J10325316+5306536 158.22153 53.114916 0.06403 12.62 S INT OT2_cxu_2 8.32 44.7
  J10325321+5306477 158.221747 53.113263 0.063881 12.15 E INT      
J1033+4404 J10332972+4404342 158.373843 44.076176 0.052303 11.91 S JUS OT2_cxu_2 27.42 64.2
  J10333162+4404212 158.381778 44.072572 0.052089 12.37 S JUS      
J1036+5447 J10364274+5447356 159.178124 54.79323 0.045841 12.47 S INT OT2_cxu_2 16.9 17.1
  J10364400+5447489 159.183338 54.796929 0.045784 11.63 E INT      
J1039+3904 J10392338+3904501 159.847442 39.080611 0.043464 12.49 S JUS OT2_cxu_2 20.35 43.2
  J10392515+3904573 159.854824 39.082589 0.04332 12.29 E JUS      
J1043+0645 J10435053+0645466 160.960666 6.76296 0.028694 11.96 S INT OT2_cxu_2 23.23 173.7
  J10435268+0645256 160.969501 6.75702 0.028115 12.2 S INT      
J1045+3910 J10452478+3910298 161.353285 39.174955 0.026834 11.63 S JUS OT2_cxu_2 22.72 340.5
  J10452496+3909499 161.354008 39.163873 0.025699 11.41 E JUS      
J1051+5101 J10514368+5101195 162.93181 51.022155 0.025027 10.27 E JUS OT2_cxu_2 6.99 366.0
  J10514450+5101303 162.935331 51.025075 0.023807 10.97 S JUS      
J1059+0857 J10595869+0857215 164.994547 8.955983 0.063163 12.01 E JUS OT2_cxu_2 21.62 140.1
  J10595915+0857357 164.996465 8.95992 0.062696 12.95 S JUS      
J1101+5720 J11014357+5720058 165.431565 57.334969 0.046903 12.46 E JUS KPGT_soliver_1 28.03 276.0
  J11014364+5720336 165.431837 57.342686 0.047823 13.17 S JUS      
J1106+4751 J11064944+4751119 166.706021 47.853312 0.064324 12.66 S INT OT2_cxu_2 17.92 334.8
  J11065068+4751090 166.711183 47.85252 0.06544 12.44 S INT      
J1120+0028 J11204657+0028142 170.194061 0.470612 0.025534 11.78 S JUS OT2_cxu_2 12.33 25.2
  J11204801+0028068 170.200062 0.468579 0.025618 11.0 S JUS      
J1125+0226 J11251704+0227007 171.321025 2.450198 0.050379 12.75 S INT OT2_cxu_2 12.99 84.0
  J11251716+0226488 171.321518 2.446913 0.050659 12.14 S INT      
J1127+3604 J11273289+3604168 171.887066 36.071335 0.035053 11.67 S JUS OT2_cxu_2 27.43 25.2
  J11273467+3603470 171.894471 36.063083 0.035137 10.82 S JUS      
J1137+4728 J11375476+4727588 174.478176 47.466349 0.034334 11.28 E JUS OT2_cxu_2 26.63 137.7
  J11375801+4728143 174.491711 47.470652 0.033875 11.86 S JUS      
J1144+3332 J11440335+3332062 176.013986 33.535072 0.031799 11.74 E INT OT2_cxu_2 20.48 100.5
  J11440433+3332339 176.018049 33.54277 0.031464 12.66 S INT      
J1148+3547 J11484370+3547002 177.182095 35.783414 0.064099 12.81 S INT OT2_cxu_2 29.11 144.0
  J11484525+3547092 177.188549 35.785896 0.063619 11.94 S INT      
J1150+3746 J11501333+3746107 177.555564 37.769659 0.055042 12.7 S INT OT2_cxu_2 25.36 149.4
  J11501399+3746306 177.558293 37.775167 0.05554 12.44 S INT      
J1150+1444 J11505764+1444200 177.740186 14.738912 0.057202 12.69 S INT OT2_cxu_2 17.17 300.0
  J11505844+1444124 177.743517 14.736805 0.056202 11.73 E INT      
J1154+4932 J11542299+4932509 178.595801 49.547493 0.070154 13.0 S INT OT2_cxu_2 8.23 308.4
  J11542307+4932456 178.596149 49.546019 0.071182 12.02 E INT      
J1202+5342 J12020424+5342317 180.517927 53.708769 0.064651 12.97 S INT OT2_cxu_2 27.14 210.3
  J12020537+5342487 180.522233 53.713478 0.06395 12.43 E INT      
J1205+0135 J12054066+0135365 181.419422 1.59349 0.022002 12.1 S JUS OT2_cxu_2 30.83 332.4
  J12054073+0134302 181.419711 1.575058 0.020894 11.21 E JUS      
J1211+4039 J12115507+4039182 182.97949 40.655067 0.022854 11.82 S INT OT2_cxu_2 7.73 195.3
  J12115648+4039184 182.98535 40.655124 0.023505 11.98 S INT      
J1219+1201 J12191719+1200582 184.821646 12.01619 0.027303 11.83 E INT OT2_cxu_2 13.18 160.8
  J12191866+1201054 184.827781 12.018189 0.026767 12.8 S INT      
J1243+4405 J12433887+4405399 190.911978 44.094436 0.041791 12.09 S JUS OT2_cxu_2 22.6 249.9
  J12433936+4406046 190.914009 44.101295 0.040958 11.94 E JUS      
J1252+4645 J12525011+4645272 193.208797 46.757577 0.061331 12.42 S JUS OT2_cxu_2 27.67 104.7
  J12525212+4645294 193.21717 46.758185 0.060982 12.2 E JUS      
J1301+4803 J13011662+4803366 195.319279 48.06018 0.030278 12.2 S INT OT2_cxu_2 11.84 129.6
  J13011835+4803304 195.326491 48.058471 0.029846 12.67 S INT      
J1308+0422 J13082737+0422125 197.114112 4.370179 0.025476 13.39 S JUS OT2_cxu_2 18.52 66.0
  J13082964+0422045 197.123418 4.367971 0.025696 12.44 S JUS      
J1313+3910 J13131429+3910360 198.309546 39.176686 0.071586 12.24 E INT OT2_cxu_2 8.29 0.0
  J13131470+3910382 198.311265 39.177305 0.071586 13.1 S INT      
J1315+4424 J13151386+4424264 198.807791 44.407356 0.03586 12.01 S INT OT1_rmushotz_1 27.84 35.1
  J13151726+4424255 198.821937 44.407105 0.035743 11.23 S INT      
J1315+6207 J13153076+6207447 198.878026 62.129135 0.030566 11.99 S INT OT1_dsanders_1 22.39 6.0
  J13153506+6207287 198.896085 62.124613 0.030586 11.54 S INT      
J1332−0301 J13325525−0301347 203.230301 −3.026349 0.049306 12.95 S INT OT2_cxu_2 21.45 297.0
  J13325655−0301395 203.235759 −3.027679 0.048316 12.19 S INT      
J1346−0325 J13462001−0325407 206.583483 −3.428114 0.024781 11.19 S JUS OT2_cxu_2 25.03 222.0
  J13462215−0325057 206.592397 −3.418283 0.025521 11.66 E JUS      
J1400−0254 J14003661−0254327 210.152556 −2.909102 0.025579 11.49 S INT OT2_cxu_2 12.23 391.5
  J14003796−0254227 210.15818 −2.906313 0.026884 11.73 S INT      
J1400+4251 J14005783+4251203 210.240969 42.85566 0.032741 11.87 S INT OT2_cxu_2 27.27 234.3
  J14005879+4250427 210.244986 42.845198 0.033522 12.18 S INT      
J1405+6542 J14055079+6542598 211.461632 65.716632 0.03063 12.8 S JUS OT2_cxu_2 23.27 39.6
  J14055334+6542277 211.472286 65.707721 0.030762 12.0 E JUS      
J1406+5043 J14062157+5043303 211.589913 50.725106 0.006456 9.7 S JUS OT2_cxu_2 25.21 240.6
  J14064127+5043239 211.671969 50.723327 0.007258 9.56 E JUS      
J1407−0234 J14070703−0234513 211.779296 −2.580923 0.058555 12.44 S INT OT2_cxu_2 14.43 300.0
  J14070720−0234402 211.780016 −2.577849 0.057555 12.96 E INT      
J1423+3400 J14234238+3400324 215.926602 34.009016 0.013553 11.48 S JUS OT2_cxu_2 16.14 294.0
  J14234632+3401012 215.943004 34.017002 0.012573 11.04 S JUS      
J1424−0304 J14245831−0303597 216.242996 −3.066606 0.052517 12.37 S JUS OT2_cxu_2 13.91 300.0
  J14245913−0304012 216.246381 −3.067027 0.053517 11.9 S JUS      
J1425+0313 J14250552+0313590 216.272925 3.233119 0.037083 11.98 E INT OT2_cxu_2 22.37 114.0
  J14250739+0313560 216.280712 3.232055 0.037463 12.97 S INT      
J1429+3534 J14294766+3534275 217.448585 35.574313 0.028996 10.93 S JUS KPGT_soliver_1 22.07 180.3
  J14295031+3534122 217.459663 35.570065 0.029597 11.9 S JUS      
J1433+4004 J14334683+4004512 218.445139 40.080911 0.026047 10.78 S INT OT2_cxu_2 28.01 114.0
  J14334840+4005392 218.451475 40.094155 0.026427 11.17 S INT      
J1444+1207 J14442055+1207429 221.085649 12.128593 0.030445 11.51 S MER OT2_cxu_2 8.26 299.4
  J14442079+1207552 221.086655 12.132 0.031443 10.72 S MER      
J1500+4317 J15002374+4316559 225.098935 43.282197 0.031088 11.34 E JUS OT2_cxu_2 14.58 147.0
  J15002500+4317131 225.10417 43.286997 0.031578 11.73 S JUS      
J1505+3427 J15053137+3427534 226.380709 34.464851 0.074528 12.98 S INT OT2_cxu_2 9.55 300.0
  J15053183+3427526 226.38266 34.464635 0.073528 12.36 E INT      
J1506+0346 J15064391+0346364 226.682879 3.776844 0.036278 11.48 S JUS OT2_cxu_2 25.24 315.0
  J15064579+0346214 226.690883 3.772574 0.035228 11.6 S JUS      
J1510+5810 J15101587+5810425 227.566059 58.178518 0.030343 11.77 S JUS OT2_cxu_2 10.54 402.0
  J15101776+5810375 227.574164 58.176979 0.031683 12.35 S JUS      
J1514+0403 J15144544+0403587 228.689368 4.06633 0.0386 11.89 S INT OT2_cxu_2 18.81 186.0
  J15144697+0403576 228.695709 4.066007 0.03922 12.06 S INT      
J1523+3748 J15233768+3749030 230.907038 37.817522 0.023365 12.55 S INT OT2_cxu_2 20.09 78.3
  J15233899+3748254 230.912489 37.807073 0.023626 12.43 E INT      
J1526+5915 J15264774+5915464 231.698953 59.262907 0.044712 12.45 S INT OT2_cxu_2 8.77 224.1
  J15264892+5915478 231.703856 59.263304 0.045459 12.13 E INT      
J1528+4255 J15281276+4255474 232.053241 42.929924 0.018839 10.02 S INT OT2_cxu_2 26.53 243.0
  J15281667+4256384 232.069607 42.944107 0.018029 10.59 S INT      
J1552+4620 J15523258+4620180 238.135769 46.338356 0.059385 12.07 E INT OT2_cxu_2 19.46 489.0
  J15523393+4620237 238.141398 46.339933 0.061015 12.75 S INT      
J1556+4757 J15562191+4757172 239.091225 47.954829 0.019103 12.1 S JUS OT2_cxu_2 22.96 240.0
  J15562738+4757302 239.114264 47.958429 0.019903 12.16 E JUS      
J1558+3227 J15583749+3227379 239.656243 32.460535 0.049368 13.16 S INT OT2_cxu_2 10.8 261.0
  J15583784+3227471 239.657667 32.463088 0.048498 12.29 S INT      
J1602+4111 J16024254+4111499 240.677392 41.197267 0.033536 11.69 S JUS OT2_cxu_2 18.66 69.0
  J16024475+4111589 240.686475 41.199706 0.033306 12.5 S JUS      
J1608+2529 J16080559+2529091 242.023328 25.485866 0.041547 11.94 S MER OT2_cxu_2 10.96 224.1
  J16080648+2529066 242.02704 25.485182 0.042294 11.32 S MER      
J1608+2328 J16082261+2328459 242.094219 23.479425 0.04092 13.17 S JUS OT2_cxu_2 22.25 31.8
  J16082354+2328240 242.098125 23.473347 0.040814 12.44 S JUS      
J1614+3711 J16145418+3711064 243.72577 37.185123 0.058169 12.13 S INT OT2_cxu_2 9.13 0.0
  J16145421+3711136 243.725893 37.187131 0.058169 12.04 E INT      
J1628+4109 J16282497+4110064 247.104069 41.168463 0.033017 11.47 S JUS OT2_cxu_2 27.9 370.8
  J16282756+4109395 247.114849 41.161 0.031781 11.52 S JUS      
J1635+2630 J16354293+2630494 248.928908 26.513727 0.070061 12.29 S INT OT2_cxu_2 14.99 378.0
  J16354366+2630505 248.931925 26.514045 0.071321 12.22 E INT      
J1637+4650 J16372583+4650161 249.357631 46.837824 0.057817 11.8 S JUS OT2_cxu_2 25.82 299.7
  J16372754+4650054 249.364787 46.834858 0.056818 12.44 S JUS      
J1702+1859 J17020320+1900006 255.513366 19.000181 0.057322 12.39 E INT OT2_cxu_2 17.14 462.6
  J17020378+1859495 255.515763 18.997088 0.05578 13.18 S INT      
J1704+3448 J17045089+3448530 256.212001 34.814721 0.057213 13.06 S INT OT2_cxu_2 11.74 270.0
  J17045097+3449020 256.212288 34.817342 0.056313 12.4 S INT      
J2047+0019 J20471908+0019150 311.829434 0.320801 0.012971 9.08 S JUS OT2_cxu_2 28.98 414.0
  J20472428+0018030 311.851263 0.300826 0.011591 9.74 E JUS      

Note. Descriptions of columns: (1) Pair ID. The designations are "KPAIR J0020+0049," etc. (2) Galaxy ID, taken from 2MASS. (3) R.A. (deg, J2000). (4) decl. (deg, J2000). (5) redshift z taken from SDSS or other telescopes. (6) ${K}_{\mathrm{rms}}$ (${K}_{{\rm{20}}}$) magnitude taken from 2MASS. (7) Morphological type (S: Spirals, E: Ellipticals). (8) Interacting morphological type (INT: with interaction signs; MER: mergers; JUS: without interacting signs, "just" pairs). (9) Herschel proposal ID. (10) Projected separation (s(p)) between two galaxies in pairs, in kpc. (11) The difference in radial velocity (δ(Vz)) between two galaxies in pairs, in km s−1.

A machine-readable versions of the table is available.

Download table as:  DataTypeset images: 1 2 3

3.2. PACS and SPIRE Photometry

We made extended-source photometry on individual galaxies in each pair to get their integrated FIR-submillimeter fluxes. The following two methods were used.

  • 1.  
    Aperture photometry: for pairs with large separation compared with the beam size of a given band, elliptical/circular apertures were selected and aperture photometry was performed. The photometric error is the quadratic sum of the background subtraction error and the rms error as calculated in Dale et al. (2012). For PACS data, photometry in aperture matching annuli were used to determine the values for sky background subtraction. For SPIRE data, the sky background was estimated using the mean of photometric measurements on eight elliptical/circular regions (of the same size as the photometric aperture) surrounding the pair. Aperture corrections were applied according to measurements on the point-spread function (PSF) images.
  • 2.  
    IMFIT model-fitting photometry: for blended pairs with small separation, IMFIT (Erwin 2015) was used to do the two-component simultaneous model fitting to get the deblended flux for each galaxy. The PACS photometry simultaneously fits a combination of sky level, Gaussians, and exponential disks for both galaxy components. Initial parameters include the peak intensity, coordinates and appropriate scale. The IMFIT uses χ2 minimization and the residual images were examined and adjusted manually. Subsequent initial parameter adjustments were performed to minimize the residual images. The relative flux of each galaxy is fairly robust to the parameter adjustments. Total aperture flux of the pair with division based on relative fits was therefore the chosen photometric method. Errors are based on the area-dependent background error estimation for this large aperture, with a conservative approach based on half the area of the flux assigned to each galaxy. The pair J0926+0447 is too blended for the fits to converge to a useful residual and the relative flux could not be determined. The reported errors for this pair are large, but constrained by the total flux. The SPIRE photometry uses two types of models in IMFIT: (1) PSF model for point-like galaxies; (2) two-dimensional (2D) Gaussian for extended galaxies. Both models also include an uniform background. The photometric errors were estimated using the rms error measured on the residual images: errorrms = rms (residual,per pixel) $\times N/\sqrt{n}$ (N: number of pixels in the aperture; n: number of beams in the aperture).

Color corrections were made for 3 SPIRE bands with multiplicative correcting factors of 0.95385, 0.95632, 0.97215 for 250, 350, 500 μm fluxes, respectively. No calibration errors are included in the PACS and SPIRE photometric errors. Upper limits of 4σ were given for non-detections in both the aperture and model-fitting photometry methods.

4. DUST MASS, LIR, AND STELLAR MASS

The dust mass Mdust and integrated infrared luminosity LIR (8–1000 μm) of individual galaxies are estimated via FIR-submillimeter spectral energy distribution (SED) fitting using the dust emission model of Draine & Li (2007; hereafter DL07). The DL07 model includes emissions from polycyclic aromatic hydrocarbon (PAH) molecules and graphite and silicate grains, covering the entire IR wavelength range from the mid-infrared (MIR) through the submillimeter. It is consistent with observations of a variety of infrared continuum and PAH features in local galaxies (e.g., Draine et al. 2007; see also Dale et al. 2012 for more detailed descriptions). In the SED fittings, the Milky way extinction curve (MW3.1) is assumed and the maximum interstellar radiation field intensity is fixed at $\mathrm{Umax}={10}^{6}$. The best-fit values of parameters Mdust, gamma, qPAH (between 0.5 and 4.5 with the step of 0.1), and Umin (among values of 0.10, 0.15, 0.20, 0.30, 0.40, 0.50, 0.70, 0.80, 1.00, 1.20, 1.50, 2.00, 2.50, 3.00, 4.00, 5.00, 7.00, 8.00, 12.0, 15.0, 20.0, and 25.0) are then found via a simple χ2 minimization. The errors of Mdust include two terms: (1) error associated with model fitting, estimated using Bayesian analysis (da Cunha et al. 2008); and (2) error caused by observational uncertainties, estimated using a Monte-Carlo method: it equals to the standard deviation of the values of Mdust resulting from fittings of 300 simulated IR-submillimeter SEDs. In each SED, the flux in a given Herschel band is generated randomly, assuming a Gaussian probability distribution with the mean equal to the observed flux and the σ equal to the photometric error. The mean errors of Mdust for spirals in H-KPAIRs are estimated to be: 0.086 ± 0.020 dex (log10(M)), 0.101 ± 0.044 dex, and 0.213 ± 0.191 dex for those with all 6-band Herschel detections, 5-band Herschel detections, and 4-band Herschel detections, respectively.

We carried out a test to check whether the lack of MIR broadband fluxes in the SED fittings introduces any bias, using ∼25 H-KPAIR spirals observed by Spitzer (Xu et al. 2010). As shown in Figure 2, the Mdust obtained using SED fittings with and without MIR fluxes (IRAC 8 and MIPS 24 μm) agrees very well with each other. The scatter is quite small and much lower than other uncertainties. We also found good agreement between LIR and LTIR (estimated from 24, 70, 160 μm luminosities; Dale et al. 2005). Thus, both the Mdust and LIR estimated using the DL07model SED fittings from FIR-submillimeter bands are reliable even though the MIR data points are missing. On the other hand, in trials that used the two-graybody model (2GB; Dunne & Eales 2001) in the SED fittings of H-KPAIR galaxies, we found that the resulting Mdust and LIR are both systematically lower than those obtained using the DL07model (Figure 3). This is mainly due to the fact that the 2 GB model does not include the MIR emission at $\lambda \lt 20\;\mu {\rm{m}}$; therefore it underestimates Mdust and ${L}_{{\rm{IR}}}$ (Dale et al. 2012).

Figure 2.

Figure 2. Comparison of dust masses using the DL07SED fitting with and without MIR fluxes for H-KPAIR galaxies with Spitzer observations by Xu et al. (2010). Spirals are shown as black dots and ellipticals are shown as open squares. Residuals are shown in the bottom panel.

Standard image High-resolution image
Figure 3.

Figure 3. Examples of DL07 (left panels) and 2 GB (right panels) SED fittings for 3 spirals in H-KPAIR.

Standard image High-resolution image

It should be noted that there might be a systematic underestimation (up to 20%) of the LIR for galaxies with very warm MIR-to-FIR colors (f(25 μm)/f(60 μm) > 0.2). These sources are generally associated with bright active galactic nuclei (AGNs; Surace et al. 1998). As discussed in Section 8.1, very few galaxies in our samples may be associated with bright AGNs. Therefore our results shall not be affected significantly by this possible bias. Indeed, Figure 4 shows the dependence of LIR estimations using DL07 SED fittings without or with MIR (Spitzer IRAC and MIPS 24 μm) data points on Spitzer MIR-to-FIR colors: f(24 μm)/f(70 μm), for 30 spirals in H-KPAIRs that were also included in Xu et al. (2010). There is only one spiral in pairs (J20471908+0019150) with warm MIR-to-FIR color (f(24 μm)/f(70 μm) > 0.2), and there are no obvious underestimations of LIR without the use of MIR points.

Figure 4.

Figure 4. Differences between LIR using the DL07SED fitting without and with MIR fluxes vs. MIR-to-FIR color: f(24 μm)/f(70 μm), for H-KPAIR spiral galaxies with Spitzer observations by Xu et al. (2010).

Standard image High-resolution image

For H-KPAIR and control sample galaxies (see Section 5) with a number of Herschel band of detections less than four, we used an empirical relation between Mdust and ${L}_{250\mu {\rm{m}}}$ (the monochromatic luminosity $\nu {L}_{\nu }$ at 250 $\mu {\rm{m}}$) to estimate the dust mass (or its upper limit) from the 250 μm flux (or the upper limit). The adopted relation is $\mathrm{log}({M}_{{\rm{dust}}}/{M}_{\odot })=-0.13\ +0.83\;\times \;\mathrm{log}({L}_{250\mu {\rm{m}}}/{L}_{\odot })$. The LIR (or its upper-limit) of these galaxies was estimated from the the 100 μm flux (or the upper-limit) according to another empirical relation: $\mathrm{log}({L}_{{\rm{IR}}}/{L}_{\odot })\ =0.84+0.95\;\times \;\mathrm{log}({L}_{100\mu {\rm{m}}}/{L}_{\odot })$. Both relations were derived using H-KPAIR spirals with all 6-band or 5-band detections. Comparing results obtained from SED fittings to those calculated using these relations, the rms errors of the two empirical relations are 0.27 dex (for Mdust) and 0.11 dex (for LIR), respectively.

In Tables 2 and 3 we listed the Herschel fluxes, stellar mass Mstar, the SFR, and total gas masses Mgas (${M}_{{\rm{gas}}}=100\times {M}_{{\rm{dust}}}$) of paired spiral and elliptical galaxies, respectively. The SFR is derived from LIR using the formula of Kennicutt (1998), with an additional correction factor of ${10}^{-0.20}$ for the conversion from the Salpeter IMF to the Kroupa IMF (Calzetti 2013). It is worth noting that this formalism misses the contribution from unobscured UV radiation, which is on the order of 20% for KPAIR galaxies (Yuan et al. 2012). It is also contaminated by the dust emission powered by the radiation of old stars (Buat & Xu 1996). However, since the same formalism is applied to both H-KPAIR galaxies and control galaxies, these possible biases shall not affect the results on the star formation enhancement of paired galaxies. Mstar is estimated using 2MASS Ks band luminosity: Mstar/LK = 1.32 ${M}_{\odot }$/L (Xu et al. 2004; Domingue et al. 2009), with an additional correction factor of ${10}^{-0.39}$ (Xu et al. 2012b) in order to match those given in SDSS value-added catalogs (Kauffmann et al. 2003; with Kroupa IMF).

Table 2.  Herschel 6-Band Fluxes and Physical Parameters of H-KPAIR Spirals

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Galaxy ID F70 μm F100 μm F160 μm P-PACS F250 μm F350 μm F500 μm P-SPIRE log Mstar SFR log Mgas
(2MASX) (mJy) (mJy) (mJy)   (mJy) (mJy) (mJy)   (M) (M yr−1) (M)
J00202580+0049350 738.90 ± 14.03 1067.90 ± 15.14 1288.50 ± 40.76 AAA 571.35 ± 46.82 242.06 ± 17.53 90.04 ± 11.28 APP 10.49 1.39 9.28
J01183417–0013416 3507.90 ± 20.73 3874.90 ± 22.54 2555.50 ± 33.61 MMM 1246.09 ± 163.57 517.78 ± 28.79 150.56 ± 28.41 PPP 10.98 55.91 10.26
J01183556–0013594 459.70 ± 20.73 814.30 ± 22.54 997.10 ± 33.61 MMM 373.62 ± 46.31 162.56 ± 14.32 <86.01 PPP 10.65 5.92 9.92
J02110638–0039191 1126.50 ± 15.75 1822.70 ± 17.70 1839.40 ± 51.51 AAA 989.35 ± 83.06 401.95 ± 20.05 135.12 ± 11.49 APP 10.45 2.95 9.61
J02110832–0039171 <37.65 <42.34 <60.49 AAA 52.50 ± 9.65 <25.81 <35.17 APP 10.68 <0.09 8.67
J03381222+0110088 368.04 ± 9.08 607.68 ± 9.90 801.85 ± 16.88 AAA 513.69 ± 47.72 200.00 ± 31.08 <92.45 APP 10.70 5.02 10.13
J07543194+1648214 1365.84 ± 10.40 1934.76 ± 11.60 2078.56 ± 29.24 MMM 1024.48 ± 50.21 361.63 ± 19.41 101.26 ± 21.93 PPP 10.96 18.00 10.22
J07543221+1648349 769.56 ± 10.40 1485.14 ± 11.60 1434.74 ± 29.24 MMM 790.32 ± 63.32 422.92 ± 16.90 167.38 ± 21.69 PPP 11.15 12.02 10.42
J08083377+3854534 121.91 ± 5.59 223.42 ± 6.56 167.75 ± 12.23 AAA 127.53 ± 15.64 63.36 ± 14.90 <51.08 PPP 10.71 1.35 9.36
J08233266+2120171 732.66 ± 7.06 1037.70 ± 11.49 928.07 ± 14.95 AAA 538.00 ± 42.87 193.89 ± 10.74 76.23 ± 12.43 AGP 10.08 1.71 9.26
J08233421+2120515 933.60 ± 8.62 1229.60 ± 16.68 1115.50 ± 21.58 AAA 643.17 ± 43.90 223.94 ± 22.02 83.05 ± 13.54 AGP 10.34 2.27 9.33
J08291491+5531227 344.84 ± 19.45 674.10 ± 17.78 957.97 ± 26.71 AAA 614.63 ± 45.86 295.64 ± 26.82 160.67 ± 9.75 AAG 10.56 1.93 10.06
J08292083+5531081 368.50 ± 12.42 697.51 ± 14.41 927.75 ± 19.50 AAA 691.67 ± 45.51 363.71 ± 28.46 120.42 ± 11.07 AAG 10.69 2.05 10.00
J08364482+4722188 43.04 ± 8.44 55.95 ± 8.26 69.16 ± 14.98 AAA <65.06 <29.21 <37.30 PPP 10.98 0.82 <9.49
J08364588+4722100 <33.75 <33.05 <59.90 AAA <35.67 <31.45 <30.70 PPP 11.13 <0.49 <9.27
J08381759+3054534 232.06 ± 5.87 365.96 ± 5.92 581.73 ± 12.75 MMM 137.05 ± 11.63 69.74 ± 10.84 <36.50 GPP 10.74 2.90 9.61
J08381795+3055011 91.52 ± 5.87 144.27 ± 5.92 <59.49 MMM 161.38 ± 11.29 77.64 ± 11.02 38.19 ± 8.99 GPP 11.03 1.31 8.28
J08390125+3613042 62.86 ± 8.09 104.81 ± 4.79 221.31 ± 14.71 AAA 161.63 ± 12.42 74.07 ± 12.79 33.46 ± 7.98 PPP 10.91 1.91 10.13
J08414959+2642578 25.88 ± 5.11 70.29 ± 8.46 106.84 ± 15.80 AAA 56.00 ± 8.24 <25.91 <33.25 PPP 11.41 1.44 9.69
J09060498+5144071 155.62 ± 8.21 270.74 ± 8.46 492.79 ± 20.23 AAA 338.81 ± 24.19 157.22 ± 16.16 69.62 ± 10.39 AAP 10.60 1.26 9.84
J09123676+3547462 <14.80 <13.55 <16.17 AAA <28.35 <20.63 <41.44 PPP 10.24 <0.04 <8.57
J09134606+4742001 208.14 ± 10.16 406.01 ± 8.89 589.73 ± 21.83 AAA 308.54 ± 11.21 148.80 ± 8.83 62.91 ± 8.28 GGP 11.05 4.27 10.13
J09155467+4419510 2426.67 ± 14.10 2992.48 ± 12.48 2994.09 ± 28.97 MMM 1085.36 ± 92.00 342.20 ± 31.64 248.93 ± 27.21 PPP 10.74 26.18 10.19
J09155552+4419580 4541.43 ± 14.10 5820.14 ± 12.48 5134.21 ± 28.97 MMM 2254.33 ± 100.27 1026.76 ± 31.55 218.35 ± 26.69 PPP 11.11 43.22 10.41
J09264111+0447247 16.36 ± 16.36 19.36 ± 19.36 19.80 ± 19.80 CCC 37.60 ± 8.04 <36.87 <36.94 PPP 11.10 1.05 10.37
J09264137+0447260 16.36 ± 16.36 19.36 ± 19.36 19.80 ± 19.80 CCC <35.49 <36.21 <36.72 PPP 11.38 0.91 <9.70
J09374413+0245394 2601.60 ± 38.65 4557.40 ± 45.05 6157.90 ± 78.87 AAA 3101.00 ± 124.44 1347.92 ± 77.60 505.41 ± 50.50 AAA 11.16 9.83 10.37
J10100079+5440198 427.64 ± 8.06 969.53 ± 7.00 1404.19 ± 26.20 MMM 735.36 ± 57.31 356.73 ± 22.99 123.55 ± 13.80 PPP 10.89 6.40 10.35
J10100212+5440279 168.22 ± 8.06 312.57 ± 7.00 430.61 ± 26.20 MMM 366.34 ± 40.03 128.19 ± 14.54 <57.69 PPP 10.84 3.30 10.08
J10155257+0657330 <15.62 64.94 ± 5.58 85.74 ± 7.00 AAA 95.76 ± 12.28 <51.46 <45.76 PPP 10.45 0.28 9.16
J10205188+4831096 138.95 ± 5.57 298.69 ± 9.27 290.63 ± 16.50 AAA 167.91 ± 13.07 70.55 ± 8.64 <34.74 PPP 10.59 2.10 9.67
J10225647+3446564 244.08 ± 6.22 332.40 ± 7.06 352.31 ± 18.98 AAA 176.55 ± 10.60 85.87 ± 8.87 42.32 ± 8.71 PPP 10.66 5.65 9.88
J10225655+3446468 <13.71 <15.56 <19.50 AAA <42.02 <28.51 <36.47 PPP 10.99 <0.27 <9.37
J10233658+4220477 718.84 ± 8.05 1085.12 ± 8.56 1265.47 ± 21.92 MMM 558.50 ± 21.07 239.08 ± 11.65 83.17 ± 9.48 PPP 10.81 9.52 10.05
J10233684+4221037 268.06 ± 8.05 346.87 ± 8.56 290.12 ± 21.92 MMM 195.67 ± 17.87 71.96 ± 12.90 <36.43 PPP 10.55 3.84 9.59
J10272950+0114490 746.29 ± 11.60 1175.20 ± 11.27 1262.90 ± 35.01 AAA 586.38 ± 47.10 251.36 ± 15.89 70.93 ± 9.21 PPP 10.42 1.91 9.44
J10325316+5306536 <17.50 47.03 ± 6.53 85.32 ± 18.46 AAA <39.18 <36.44 <32.48 PPP 11.02 1.03 <9.46
J10332972+4404342 679.80 ± 7.60 1143.78 ± 13.46 1000.27 ± 23.74 AMM 561.42 ± 20.29 310.54 ± 13.69 113.35 ± 10.87 GPP 11.12 14.35 10.39
J10333162+4404212 211.61 ± 8.35 443.82 ± 13.46 779.93 ± 23.74 AMM 296.30 ± 31.67 119.29 ± 17.97 41.60 ± 9.00 GPP 10.93 4.17 9.99
J10364274+5447356 <15.18 <14.42 <15.42 AAA <50.46 <41.84 <40.66 PPP 10.78 <0.17 <9.29
J10392338+3904501 <14.47 <16.22 54.88 ± 10.71 AAA 57.84 ± 10.40 23.99 ± 3.76 <32.84 PPP 10.72 <0.16 9.29
J10435053+0645466 908.74 ± 6.93 1426.00 ± 9.42 1527.20 ± 30.11 AAA 739.62 ± 55.76 268.30 ± 26.47 126.27 ± 13.54 APP 10.53 4.46 9.78
J10435268+0645256 70.02 ± 5.10 128.94 ± 5.83 345.66 ± 17.53 AAA 245.67 ± 22.10 116.31 ± 15.33 <76.56 APP 10.42 0.56 9.80
J10452478+3910298 112.42 ± 12.10 122.56 ± 7.02 244.20 ± 16.00 AAA 189.69 ± 18.59 81.94 ± 10.03 <40.28 APP 10.63 0.67 9.63
J10514450+5101303 <55.53 <53.29 <62.73 AAA <35.27 <35.19 <32.71 PPP 10.80 <0.16 <8.66
J10595915+0857357 <14.47 <14.63 <20.26 AAA <43.21 <28.80 <40.62 PPP 10.86 <0.32 <9.47
J11014364+5720336 <9.04 <178.93 <24.27 AAA <58.01 <52.54 <64.05 PPP 10.54 <2.01 <9.37
J11064944+4751119 <11.86 <12.65 <13.89 AAA <85.33 <48.39 <43.96 PPP 11.00 <0.30 <9.74
J11065068+4751090 259.74 ± 8.73 456.00 ± 9.30 519.09 ± 21.25 AAA 352.17 ± 24.81 134.43 ± 8.95 47.63 ± 10.59 PPP 11.11 8.47 10.22
J11204657+0028142 318.52 ± 38.33 275.79 ± 36.70 220.16 ± 12.98 AAA 87.88 ± 8.61 44.90 ± 8.95 <44.09 GPP 10.49 1.12 8.55
J11204801+0028068 <49.52 <47.52 <46.04 AAA 67.86 ± 9.51 <40.36 <46.21 GPP 10.80 <0.14 8.90
J11251704+0227007 <13.50 <17.16 <19.39 AAA 40.95 ± 10.25 <43.79 <51.00 PPP 10.72 <0.23 9.26
J11251716+0226488 51.04 ± 5.94 138.38 ± 9.60 219.03 ± 22.83 AAA 164.52 ± 12.36 87.73 ± 14.98 <45.87 PPP 10.97 1.13 9.96
J11273289+3604168 70.87 ± 5.20 154.65 ± 9.90 275.72 ± 13.37 AAA 185.12 ± 17.20 70.08 ± 9.25 46.05 ± 9.85 AGG 10.84 0.78 9.62
J11273467+3603470 624.34 ± 12.74 1417.00 ± 12.21 1887.00 ± 24.35 AAA 1180.76 ± 79.62 482.73 ± 14.53 158.63 ± 10.97 AGG 11.19 4.98 10.24
J11375801+4728143 <17.95 <19.32 <22.62 AAA <76.98 <38.08 <51.27 PPP 10.75 <0.12 <9.20
J11440433+3332339 156.58 ± 6.84 334.38 ± 6.35 386.61 ± 11.86 AAA 277.05 ± 9.74 101.84 ± 20.70 <51.09 PPP 10.35 1.11 9.58
J11484370+3547002 245.71 ± 12.07 562.98 ± 11.80 928.88 ± 22.28 MMM 514.88 ± 37.78 216.07 ± 11.40 78.64 ± 10.56 PPP 10.94 7.84 10.44
J11484525+3547092 267.61 ± 12.07 598.32 ± 11.80 459.22 ± 22.28 MMM 402.27 ± 54.30 189.07 ± 11.91 53.54 ± 8.82 PPP 11.27 7.14 10.25
J11501333+3746107 <15.49 41.94 ± 3.82 124.04 ± 13.85 AAM 47.70 ± 7.24 <33.95 <33.85 PPP 10.84 0.66 9.40
J11501399+3746306 148.80 ± 5.95 320.16 ± 6.54 309.70 ± 13.85 AAM 248.53 ± 9.61 113.71 ± 7.55 44.04 ± 10.79 PPP 10.95 3.44 10.05
J11505764+1444200 <14.87 <14.06 <17.12 AAA <25.48 <27.27 <26.19 PPP 10.87 <0.25 <9.19
J11542299+4932509 <14.52 <15.08 <16.62 AAA 35.45 ± 8.80 <32.56 <38.89 PPP 10.95 <0.42 9.49
J12020424+5342317 41.22 ± 5.33 71.54 ± 4.85 119.44 ± 10.72 AAA 97.15 ± 8.57 47.16 ± 6.46 <39.11 PPP 10.88 1.78 10.03
J12054066+0135365 <34.41 <42.56 <32.47 AAA <43.02 <36.57 <39.41 AAA 10.21 <0.09 <8.61
J12115507+4039182 467.63 ± 21.33 690.98 ± 20.83 851.82 ± 43.60 MMM 264.79 ± 20.04 123.73 ± 15.98 <67.02 PPP 10.40 1.08 9.14
J12115648+4039184 2413.87 ± 21.33 2090.60 ± 20.83 1031.37 ± 43.60 MMM 467.84 ± 17.31 155.57 ± 10.70 90.97 ± 11.70 PPP 10.36 7.14 9.12
J12191866+1201054 164.66 ± 7.39 237.80 ± 7.52 392.89 ± 26.58 AAA 189.20 ± 11.91 82.43 ± 14.21 35.33 ± 8.12 PPP 10.12 0.83 9.34
J12433887+4405399 93.44 ± 6.88 190.87 ± 7.06 291.07 ± 16.53 AAA 189.84 ± 11.52 82.28 ± 12.26 <29.52 PPP 10.84 1.17 9.64
J12525011+4645272 51.06 ± 5.86 106.38 ± 5.43 124.40 ± 4.74 AAA 122.60 ± 9.68 58.86 ± 10.75 <44.78 PPP 11.05 1.84 10.07
J13011662+4803366 922.45 ± 11.95 1206.16 ± 12.70 1144.11 ± 30.74 MMM 504.63 ± 36.55 198.88 ± 11.70 74.39 ± 10.65 PPP 10.51 5.62 9.62
J13011835+4803304 675.05 ± 11.95 975.24 ± 12.70 845.78 ± 30.74 MMM 366.05 ± 31.51 162.10 ± 11.22 47.29 ± 11.94 PPP 10.31 2.94 9.43
J13082737+0422125 54.10 ± 7.99 124.30 ± 6.83 179.01 ± 14.30 AAA 139.97 ± 14.04 75.34 ± 7.13 33.20 ± 5.76 GPP 9.84 0.28 9.35
J13082964+0422045 74.68 ± 7.92 149.92 ± 8.14 222.27 ± 12.76 AAA 171.76 ± 10.19 93.85 ± 14.69 35.38 ± 6.46 GPP 10.22 0.38 9.43
J13131470+3910382 <23.14 <24.15 <67.02 AAA <33.20 <36.51 <31.20 PPP 10.92 <0.68 <9.48
J13151386+4424264 256.70 ± 11.79 483.17 ± 6.95 569.02 ± 13.79 AAA 411.36 ± 35.87 164.61 ± 16.70 <80.63 APP 10.73 2.35 9.88
J13151726+4424255 1105.10 ± 9.30 1094.20 ± 8.30 669.71 ± 20.69 AAA 340.75 ± 31.14 138.57 ± 11.12 <61.67 APP 11.04 8.29 9.41
J13153076+6207447 1894.62 ± 24.13 2488.20 ± 21.36 2602.03 ± 63.41 MMM 923.01 ± 78.71 320.41 ± 44.00 116.71 ± 26.82 APP 10.62 7.59 9.80
J13153506+6207287 9522.37 ± 24.13 8581.77 ± 21.36 5586.27 ± 63.41 MMM 1615.77 ± 135.74 539.46 ± 41.27 167.12 ± 24.28 APP 10.80 55.30 9.81
J13325525–0301347 423.10 ± 11.84 542.11 ± 12.36 416.85 ± 20.37 MMM 300.33 ± 12.92 93.49 ± 10.37 <33.69 PPP 10.62 7.08 9.67
J13325655–0301395 276.81 ± 11.84 476.79 ± 12.36 612.95 ± 20.37 MMM 281.72 ± 19.14 148.02 ± 12.66 49.38 ± 9.48 PPP 10.91 4.37 9.91
J13462001–0325407 34.85 ± 4.92 202.52 ± 10.65 309.66 ± 25.46 AAA 223.82 ± 18.24 107.98 ± 12.36 42.40 ± 7.74 AAP 10.69 0.28 9.45
J14003661–0254327 <41.24 25.07 ± 4.92 <51.99 AAA <32.23 <24.77 <42.83 PPP 10.60 0.08 <8.63
J14003796–0254227 <13.46 <16.89 <15.99 AAA <48.94 <29.11 <30.13 PPP 10.55 <0.06 <8.82
J14005783+4251203 1101.70 ± 9.93 1573.70 ± 11.16 1726.93 ± 39.41 AAM 893.18 ± 69.75 352.67 ± 29.30 129.50 ± 12.79 APP 10.71 8.10 10.01
J14005879+4250427 1407.30 ± 10.47 1788.80 ± 12.41 1798.37 ± 39.41 AAM 849.70 ± 62.63 303.06 ± 19.83 99.48 ± 14.24 APP 10.60 9.88 9.86
J14055079+6542598 81.29 ± 6.76 161.01 ± 6.26 221.49 ± 10.95 AAA 182.80 ± 17.26 103.07 ± 10.63 55.79 ± 9.48 APP 10.30 0.73 9.80
J14062157+5043303 4848.30 ± 25.34 8820.20 ± 24.14 10480.00 ± 58.91 AAA 4350.49 ± 166.18 1990.01 ± 76.04 695.15 ± 63.28 AAA 10.14 0.92 9.32
J14070703–0234513 44.43 ± 5.16 165.84 ± 9.56 220.38 ± 10.74 AAA 164.48 ± 15.13 86.58 ± 8.92 36.21 ± 8.79 PPP 10.98 1.49 10.01
J14234238+3400324 954.06 ± 8.13 1465.10 ± 12.39 1596.00 ± 22.30 AAA 789.00 ± 58.13 360.55 ± 28.53 124.10 ± 13.66 AAP 10.06 0.97 9.23
J14234632+3401012 237.13 ± 8.52 499.65 ± 11.25 698.09 ± 17.35 AAA 446.27 ± 42.09 224.34 ± 22.98 76.06 ± 11.45 AAP 10.16 0.26 9.08
J14245831–0303597 253.64 ± 7.85 591.09 ± 11.13 857.00 ± 22.18 AAA 325.65 ± 16.98 115.16 ± 15.83 <53.15 GPP 10.91 4.07 9.96
J14245913–0304012 <40.60 <43.69 <27.89 AAA 222.15 ± 16.49 129.20 ± 15.86 61.39 ± 13.81 GPP 11.12 <0.62 9.92
J14250739+0313560 <15.68 <13.71 <13.43 AAA <39.41 <33.13 <33.58 PPP 10.36 <0.10 <9.01
J14294766+3534275 18.04 ± 3.67 <175.35 49.51 ± 12.07 AAA 66.45 ± 10.80 <65.79 <46.34 APP 10.97 <0.68 9.02
J14295031+3534122 180.58 ± 5.65 283.04 ± 15.59 254.06 ± 9.01 AAA 177.90 ± 16.70 61.32 ± 9.05 <49.03 APP 10.60 1.06 9.24
J14334683+4004512 886.49 ± 12.00 1345.40 ± 14.96 1763.50 ± 37.31 AAM 892.53 ± 74.85 446.44 ± 41.59 206.70 ± 10.84 AAG 10.94 4.38 10.11
J14334840+4005392 1459.00 ± 12.23 2146.80 ± 10.61 2496.30 ± 37.31 AAM 1102.57 ± 85.57 462.39 ± 36.70 136.34 ± 8.90 AAG 10.79 5.30 9.81
J14442055+1207429 258.73 ± 11.30 392.32 ± 12.00 565.22 ± 29.96 MMM 180.05 ± 20.87 164.41 ± 12.67 68.79 ± 11.10 GGP 10.76 1.15 9.21
J14442079+1207552 574.60 ± 11.30 1234.18 ± 12.00 1598.18 ± 29.96 MMM 895.89 ± 22.73 287.70 ± 10.92 117.72 ± 10.60 GGP 11.11 3.48 10.05
J15002500+4317131 27.94 ± 5.11 <18.18 16.77 AAA <45.82 <52.13 <48.99 PPP 10.73 <0.10 <8.96
J15053137+3427534 <13.13 <14.13 <12.73 AAA <35.21 <36.48 <34.79 PPP 11.00 <0.44 <9.53
J15064391+0346364 33.08 ± 7.23 32.59 ± 7.23 <85.47 AAA <45.73 <42.30 <35.47 GGP 10.93 0.21 <9.04
J15064579+0346214 232.45 ± 9.24 477.59 ± 13.24 780.68 ± 66.13 AAA 441.27 ± 36.88 202.46 ± 10.04 88.87 ± 10.08 GGP 10.86 2.22 9.97
J15101587+5810425 41.02 ± 10.00 <18.51 <24.37 MMM <66.01 <39.97 <37.62 PPP 10.70 <0.09 <9.07
J15101776+5810375 304.72 ± 10.00 697.73 ± 9.03 806.48 ± 65.40 MMM 427.43 ± 21.74 176.68 ± 7.71 62.51 ± 10.13 PPP 10.50 2.04 9.68
J15144544+0403587 <26.81 39.84 ± 7.79 <69.46 AAA 64.47 ± 12.30 29.82 ± 7.12 <35.19 PPP 10.83 0.29 9.21
J15144697+0403576 <17.54 <18.90 <48.40 AAA <33.51 <30.61 <35.12 PPP 10.77 <0.15 <8.99
J15233768+3749030 130.26 ± 6.35 164.97 ± 5.60 154.33 ± 17.71 AAA 119.51 ± 12.49 47.45 ± 8.17 <53.55 APP 10.14 0.47 8.95
J15264774+5915464 <14.01 <12.35 <15.42 AAA <28.48 <23.89 <29.13 PPP 10.77 <0.14 <9.06
J15281276+4255474 1502.20 ± 17.05 3183.20 ± 20.78 3633.40 ± 41.97 AAA 1966.20 ± 114.11 807.69 ± 54.68 294.20 ± 29.05 AAA 10.96 2.93 9.91
J15281667+4256384 84.09 ± 6.07 147.59 ± 5.43 192.57 ± 21.48 AAA 72.08 ± 10.49 <58.76 <49.29 AAA 10.70 0.14 8.46
J15523393+4620237 110.88 ± 6.21 261.34 ± 7.68 385.20 ± 20.21 AAA 267.30 ± 14.16 116.31 ± 8.99 38.57 ± 7.70 PPP 10.92 3.53 10.16
J15562191+4757172 522.75 ± 7.89 721.78 ± 7.39 761.40 ± 17.63 AAA 466.39 ± 34.08 198.57 ± 19.07 66.37 ± 7.78 AAP 10.15 1.50 9.37
J15583749+3227379 <8.29 <8.79 <10.26 AAA 78.57 ± 18.18 32.05 ± 7.55 <25.68 PPP 10.56 <0.12 9.50
J15583784+3227471 349.87 ± 6.76 627.04 ± 7.22 702.98 ± 12.78 AAA 361.72 ± 20.96 151.29 ± 5.88 41.59 ± 7.21 PPP 10.89 4.81 9.89
J16024254+4111499 1442.55 ± 14.88 2267.31 ± 12.52 2364.66 ± 28.23 MMM 1056.54 ± 27.49 470.49 ± 34.98 184.42 ± 11.57 GPP 10.81 10.66 10.13
J16024475+4111589 413.45 ± 14.88 691.29 ± 12.52 910.24 ± 28.23 MMM 380.22 ± 16.91 182.97 ± 18.21 67.52 ± 9.14 GPP 10.48 2.84 9.71
J16080559+2529091 <92.56 214.78 ± 9.41 558.62 ± 20.08 MMM 181.27 ± 14.99 <67.98 <58.70 PPP 10.90 1.78 9.67
J16080648+2529066 131.04 ± 14.51 240.68 ± 9.41 122.49 ± 20.08 MMM 342.93 ± 19.66 198.37 ± 18.06 <56.18 PPP 11.16 2.14 10.08
J16082261+2328459 138.82 ± 9.96 267.16 ± 8.47 669.17 ± 33.34 AAM 326.25 ± 13.67 99.03 ± 12.32 57.11 ± 8.58 GPP 10.38 1.82 9.93
J16082354+2328240 951.20 ± 6.74 1278.60 ± 16.78 1109.63 ± 33.34 AAM 488.88 ± 18.52 263.92 ± 11.27 72.67 ± 7.70 GPP 10.67 10.37 9.95
J16145418+3711064 <22.82 24.92 ± 4.90 <22.74 AAA <30.49 <46.44 <47.06 PPP 11.12 0.46 <9.29
J16282497+4110064 <51.50 <52.55 <45.85 AAA <38.44 <40.42 <37.49 APP 10.89 <0.29 <8.93
J16282756+4109395 18.13 ± 3.50 57.43 ± 5.41 40.50 ± 9.25 AAA <38.44 <31.81 <37.19 APP 10.83 0.30 <8.90
J16354293+2630494 25.36 ± 5.11 33.53 ± 5.36 59.02 ± 12.87 AAA <38.60 <41.14 <36.54 PPP 11.23 0.90 <9.52
J16372583+4650161 41.58 ± 6.93 107.55 ± 6.02 308.13 ± 24.89 AAM 140.86 ± 9.72 106.33 ± 18.11 53.50 ± 9.39 GPP 11.26 1.64 10.20
J16372754+4650054 69.34 ± 7.52 179.90 ± 8.12 205.43 ± 24.89 AAM 267.81 ± 7.56 <109.99 <59.72 GPP 10.98 2.09 10.19
J17020378+1859495 <20.26 <18.22 <23.73 AAA <28.63 <37.35 <31.44 PPP 10.67 <0.31 <9.23
J17045089+3448530 303.07 ± 8.38 479.89 ± 9.62 156.54 ± 30.62 MMM 300.39 ± 34.50 <117.59 <66.97 PPP 10.74 7.42 9.88
J17045097+3449020 1310.33 ± 8.38 1628.11 ± 9.62 1808.06 ± 30.62 MMM 654.28 ± 36.22 298.36 ± 29.33 88.79 ± 16.17 PPP 10.99 24.71 10.21
J20471908+0019150 1002.60 ± 63.17 1419.10 ± 54.45 3087.20 ± 74.43 AAA 2383.84 ± 105.02 1214.49 ± 76.78 481.05 ± 32.56 AAA 11.09 1.83 10.18

Note. Descriptions of columns: (1) Galaxy ID, taken from 2MASS. (2) Herschel PACS 70 μm flux (mJy). (3) Herschel PACS 100 μm flux (mJy). (4) Herschel PACS 160 μm flux (mJy). (5) Herschel PACS photometric methods, "A": aperture, "M": model fitting, "C": compact. (6) Herschel SPIRE 250 μm flux (mJy). (7) Herschel SPIRE 350 μm flux (mJy). (8) Herschel SPIRE 500 μm flux (mJy). (9) Herschel SPIRE photometric methods, "A": aperture, "P": PSF fitting, "G": Gaussian fitting. (10) Stellar mass (log(M)). (11) Star formation rate (M yr−1). (12) Total gas mass (log(M)).

A machine-readable versions of the table is available.

Download table as:  DataTypeset images: 1 2 3

Table 3.  Herschel 6-band Fluxes and Physical Parameters of H-KPAIR Ellipticals

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Galaxy ID F70 μm F100 μm F160 μm P-PACS F250 μm F350 μm F500 μm P-SPIRE log Mstar SFR log Mgas
(2MASX) (mJy) (mJy) (mJy)   (mJy) (mJy) (mJy)   (M) (M yr−1) (M)
J00202748+0050009 <25.37 32.41 ± 7.31 91.59 ± 12.06 AAA 55.55 ± 10.24 <48.28 <46.92 APP 10.75 0.06 8.62
J03381299+0109414 326.73 ± 12.60 647.89 ± 9.68 837.69 ± 22.90 AAA <32.20 <67.56 <62.95 APP 10.55 4.85 <9.03
J08083563+3854522 <18.58 <16.62 <18.30 AAA <29.87 <37.62 <51.16 PPP 10.89 <0.15 <8.99
J08385973+3613164 <59.26 31.69 ± 5.30 <29.82 AAA <41.85 <47.14 <37.81 PPP 11.12 0.53 <9.37
J08415054+2642475 <12.21 <14.45 <12.85 AAA <34.25 <20.46 <29.21 PPP 11.13 <0.62 <9.64
J09060283+5144411 <20.84 <21.48 <21.92 AAA <33.19 <24.55 <51.83 AAP 10.70 <0.10 <8.80
J09123636+3547180 <20.22 <18.51 <21.32 AAA <31.78 <45.99 <44.77 PPP 10.56 <0.06 <8.61
J09134461+4742165 <10.53 17.28 ± 3.35 <25.01 AAA 64.80 ± 11.55 44.85 ± 8.38 <32.64 GGP 11.10 0.25 9.46
J09374506+0244504 <49.45 <57.59 <65.53 AAA 129.50 ± 15.27 107.02 ± 16.36 80.00 ± 15.11 AAA 10.96 <0.15 9.09
J10155338+0657495 25.62 ± 4.03 33.36 ± 4.06 26.67 ± 5.34 AAA <61.30 <50.34 <57.53 PPP 10.81 0.14 <8.98
J10205369+4831246 <18.30 20.07 ± 3.82 48.91 ± 6.01 AAA 46.45 ± 10.62 <33.10 <36.51 PPP 10.99 0.31 9.37
J10272970+0115170 <46.39 <45.08 <58.29 AAA <76.12 <42.78 <49.04 PPP 10.76 <0.12 <8.88
J10325321+5306477 <17.50 <16.11 <20.65 AAA 50.93 ± 10.39 <35.66 <36.89 PPP 11.20 <0.37 9.55
J10364400+5447489 <15.18 27.10 ± 4.76 57.72 ± 11.39 AAA <30.85 <23.60 <41.35 PPP 11.12 0.31 <9.11
J10392515+3904573 <14.47 <16.22 <21.51 AAA <38.05 <21.70 <33.19 PPP 10.79 <0.16 <9.13
J10452496+3909499 <28.51 <38.90 <34.46 AAA <35.64 <36.29 <31.78 APP 10.68 <0.13 <8.71
J10514368+5101195 47.68 ± 6.11 99.25 ± 6.01 138.40 ± 17.17 AAA 55.87 ± 10.04 <33.47 <29.42 PPP 11.12 0.18 8.71
J10595869+0857215 <14.47 <14.63 <20.26 AAA <47.95 <27.39 <44.41 PPP 11.23 <0.32 <9.50
J11014357+5720058 <9.04 <178.93 <24.27 AAA <55.69 <66.14 <85.02 PPP 10.80 <1.93 <9.34
J11375476+4727588 <24.93 <26.84 <72.58 AAA <37.68 <30.10 <45.17 PPP 10.99 <0.17 <8.95
J11440335+3332062 89.03 ± 6.78 192.15 ± 7.59 193.80 ± 8.79 AAA 105.13 ± 11.00 <62.13 <34.15 PPP 10.73 0.48 9.04
J11505844+1444124 <20.46 <19.35 <22.64 AAA <25.34 <28.65 <33.72 PPP 11.24 <0.32 <9.18
J11542307+4932456 <14.52 <15.08 <16.62 AAA <33.47 <33.82 <32.59 PPP 11.35 <0.43 <9.48
J12020537+5342487 <14.04 <12.79 <13.48 AAA <34.01 <33.20 <43.16 PPP 11.09 <0.30 <9.40
J12054073+0134302 <16.63 <20.56 <17.76 AAA <43.02 <36.57 <39.41 AAA 10.52 <0.04 <8.57
J12191719+1200582 <24.65 <25.10 <33.60 AAA <35.82 <39.65 <28.11 PPP 10.53 <0.09 <8.73
J12433936+4406046 <14.76 <15.11 <16.20 AAA <46.90 <38.94 <27.56 PPP 10.88 <0.14 <9.16
J12525212+4645294 47.54 ± 4.72 59.27 ± 5.71 80.75 ± 8.80 AAA 47.91 ± 10.15 <29.37 <50.12 PPP 11.14 1.47 9.47
J13131429+3910360 <23.14 <24.15 <67.02 AAA <24.10 <33.87 <28.42 PPP 11.26 <0.68 <9.36
J13462215–0325057 30.10 ± 4.24 54.45 ± 5.69 65.60 ± 7.45 AAA <37.54 <27.94 <27.52 AAP 10.53 0.16 <8.68
J14055334+6542277 26.07 ± 4.78 <20.03 <31.41 AAA <46.59 <26.44 <37.84 APP 10.62 <0.10 <8.96
J14064127+5043239 <204.35 <138.04 <124.38 AAA <45.17 <51.68 <70.05 AAA 10.30 <0.04 <7.85
J14070720–0234402 <22.89 <24.17 <20.88 AAA <53.97 <36.13 <35.11 PPP 10.76 <0.41 <9.46
J14250552+0313590 59.56 ± 6.02 101.37 ± 7.03 97.44 ± 14.59 AAA 61.35 ± 9.52 37.92 ± 7.03 <35.97 PPP 10.75 0.58 9.14
J15002374+4316559 37.39 ± 7.52 19.76 ± 3.59 <23.67 AAA <32.89 <36.62 <45.18 PPP 10.88 0.10 <8.82
J15053183+3427526 <13.13 <14.13 <12.73 AAA <34.70 <33.02 <31.14 PPP 11.24 <0.43 <9.52
J15233899+3748254 <20.50 <18.09 <24.72 AAA 38.32 ± 9.46 <36.84 <38.41 APP 10.19 <0.05 8.67
J15264892+5915478 <14.01 <12.35 <15.42 AAA <25.85 <25.94 <28.87 PPP 10.91 <0.14 <9.04
J15523258+4620180 <15.23 <14.07 <17.84 AAA <35.36 <40.27 <32.18 PPP 11.17 <0.28 <9.36
J15562738+4757302 <16.61 <15.53 <16.63 AAA <40.91 <47.06 <39.00 AAP 10.17 <0.03 <8.58
J16145421+3711136 <22.82 <19.59 <22.74 AAA <31.27 <43.27 <50.60 PPP 11.16 <0.36 <9.30
J16354366+2630505 <14.64 <15.37 <16.04 AAA <40.94 <40.90 <41.63 PPP 11.27 <0.44 <9.55
J17020320+1900006 <20.26 <18.22 55.42 ± 13.02 AAA <28.45 <38.78 <31.68 PPP 11.00 <0.33 <9.25
J20472428+0018030 <61.19 <54.39 <61.46 AAA <48.59 <51.33 <52.71 AAA 10.74 <0.05 <8.30

Note. Descriptions of Columns: (1) Galaxy ID, taken from 2MASS. (2) Herschel PACS 70 μm flux (mJy). (3) Herschel PACS 100 μm flux (mJy). (4) Herschel PACS 160 μm flux (mJy). (5) Herschel PACS photometric methods, "A": aperture, "M": model fitting, "C": compact. (6) Herschel SPIRE 250 μm flux (mJy). (7) Herschel SPIRE 350 μm flux (mJy). (8) Herschel SPIRE 500 μm flux (mJy). (9) Herschel SPIRE photometric methods, "A": aperture, "P": PSF fitting, "G": Gaussian fitting. (10) Stellar mass (log(M)). (11) Star formation rate (M yr−1). (12) Total gas mass (log(M)).

A machine-readable versions of the table is available.

Download table as:  DataTypeset image

Chang et al. (2015) recently published stellar masses and SFRs for 1 M galaxies from SDSS+WISE, estimated based on 0.4 to 22 μm SEDs using the MAGPHYS (da Cunha et al. 2008) energy balance SED fitting technique. Chang et al.'s work also includes 85 spirals in pairs and all 132 spirals in controls in our samples. Comparisons of stellar masses and SFRs estimated in our work and in Chang et al. (2015) are shown in Figures 5 and 6, respectively.

Figure 5.

Figure 5. Comparison of stellar masses estimated in our work and in Chang et al. (2015). Star-forming spirals in S+S pairs are shown as black dots, those in S+E pairs are shown as open squares, and SFGs in the control sample are shown as crosses.

Standard image High-resolution image
Figure 6.

Figure 6. Comparison of SFRs estimated in our work and in Chang et al. (2015). Star-forming spirals in S+S pairs are shown as black dots, those in S+E pairs are shown as open squares, and SFGs in the control sample are shown as crosses.

Standard image High-resolution image

From the comparisons, for most of the spirals with higher stellar masses, we found that using 2MASS Ks band luminosities (our work) and SED model fitting (Chang et al. 2015) will result in very similar Mstar values. While this only applies for spirals with the lowest stellar masses, Chang et al. (2015) estimated lower Mstar (∼0.3 dex) than ours. For comparison, for SFRs Chang et al.'s (2015) values are systematically lower than ours, especially for spirals in the control sample. This may be caused by: (1) in our work, larger beams of Herschel FIR-to-submillimeter bands resulting in more background contaminations; (2) in Chang et al. (2015), underestimation of dust obscurations for optical-to-MIR bands in MAGPHYS SED fittings; (3) the fact that the sizes of our local paired and control galaxies are generally much larger than the PSFs of SDSS and WISE, therefore, using MODELFLUX for SDSS 5-bands and PSF model flux for WISE 4-bands (although applied a correction using Re) may still cause some flux loss in Chang et al. (2015), especially for the estimations of SFRs using WISE bands.

5. CONTROL SAMPLE

The control sample was selected among 2MASS galaxies of redshift z < 0.1 (from SDSS), found in four Level-5 HerMES fields: Bootes HerMES, EGS HerMES, ELAIS N1 HerMES, and Lockman SWIRE. Details of the Herschel PACS and SPIRE observations in these fields can be found in Oliver et al. (2012). The morphologies of these galaxies (S or E) were obtained from visual classifications by Galaxy Zoo (data release v1, Lintott et al. 2011). For those galaxies labeled  "UNCERTAIN" in the Galaxy Zoo catalog, two of us (C. C. and C. K. X) visually re-classified them into S or E categories using SDSS optical images. For those galaxies with controversial classifications between us, we used an automatic classification algorithm described in Xu et al. (2010) (ur color and R50/R90 ratio) as the third party. Then, close pairs (have companions with projected distance <70 kpc and dMstar <0.4 dex), peculiars (visually selected by C. C. and C. K. X.), and objects at the edge of PACS or SPIRE images (with low coverage) were rejected from the sample. The resulting parent control sample was then 1-to-1 matched with H-KPAIRs. The matched control galaxies have: (1) the same morphology (S or E); (2) similar stellar mass: $\delta {M}_{{\rm{star}}}\lt 0.1$ dex except for the match of J13082737+0422125, which is $\delta {M}_{{\rm{star}}}=0.15;$ (3) with the closest z to that of the corresponding H-KPAIR galaxy.

The Herschel PACS images at 100 and 160 μm (the 70 μm band was not included in the HerMES survey) and SPIRE images at 250, 350, 500 μm were taken from the HerMES data release (v2) for the 176 control sample galaxies. PACS and SPIRE aperture photometries were made using IDL/phot and circular apertures. Fixed circular aperture sizes were used for most galaxies, with aperture radii of 12'', 18'' for PACS 100 and 160 μm, and 24'', 33farcs33, and 48'' for SPIRE 250, 350, and 500 μm, respectively. Larger apertures were used for a few extended galaxies. The background and error estimates are similar to those in the aperture photometry of H-KPAIR galaxies (Section 3). The total dust masses, SFRs and stellar masses of control sample galaxies were calculated using the same method as for the H-KPAIR galaxies (Section 4). In Table 4 we list the galaxy ID (name), R.A. and decl., redshifts, the Herschel fluxes, stellar mass Mstar, the SFR, and total gas masses Mgas (${M}_{{\rm{gas}}}=100\times {M}_{{\rm{dust}}}$) of spiral galaxies in the control sample.

Table 4.  Herschel 5-band Fluxes and Physical Parameters of Spirals in the Control Sample

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Galaxy ID R.A. decl. z F100 μm F160 μm F250 μm F350 μm F500 μm log Mstar SFR log Mgas Galaxy ID
(Control) (J2000) (J2000) redshift (mJy) (mJy) (mJy) (mJy) (mJy) (log M) (M yr−1) (log M) (Pair)
lk-096 164.74153 58.133747 0.0319167 146.43 ± 7.43 253.13 ± 9.49 168.30 ± 11.17 90.81 ± 15.02 <65.03 10.58 0.49 9.61 J00202580+0049350
lk-416 158.55316 57.079830 0.0482240 113.78 ± 6.87 244.52 ± 10.39 212.03 ± 16.14 107.13 ± 22.57 <104.06 10.88 1.17 10.20 J01183417–0013416
lk-075 158.30994 56.741673 0.0468842 <43.80 <53.66 <107.36 <100.03 <135.08 10.71 <0.50 <9.57 J01183556–0013594
egs-009 213.96425 51.856659 0.0456582 171.32 ± 6.56 291.75 ± 7.25 156.07 ± 12.94 79.33 ± 13.09 <49.66 10.46 1.23 9.76 J02110638–0039191
en1-045 242.20769 53.997375 0.0627264 34.02 ± 7.18 56.46 ± 8.34 60.07 ± 10.28 <67.36 <58.72 10.58 0.72 9.59 J02110832–0039171
lk-244 161.47475 56.506535 0.0461360 83.70 ± 8.18 161.28 ± 8.62 112.31 ± 9.62 49.64 ± 12.35 <54.88 10.73 0.90 9.58 J03381222+0110088
lk-108 159.86114 57.662411 0.0719180 <26.53 <36.79 <43.59 <86.05 <52.88 10.86 <0.76 <9.59 J07543194+1648214
lk-368 163.04863 58.438011 0.0315815 1061.65 ± 14.82 1822.36 ± 13.97 1049.99 ± 13.65 500.07 ± 9.39 194.86 ± 12.86 11.06 3.29 10.28 J07543221+1648349
en1-016 242.03619 53.878147 0.0641164 135.56 ± 6.36 238.76 ± 7.81 118.15 ± 12.24 60.87 ± 12.12 <90.64 10.69 1.80 9.92 J08083377+3854534
lk-290 165.13409 57.497932 0.0275216 <26.97 <41.11 <53.30 <41.20 <84.54 10.18 <0.11 <8.91 J08233266+2120171
lk-148 164.15407 59.215527 0.0325229 40.95 ± 7.85 114.71 ± 12.27 <60.81 66.83 ± 11.68 <64.11 10.38 0.22 <9.09 J08233421+2120515
lk-390 160.60169 58.458820 0.0451383 <25.89 65.22 ± 8.39 <36.63 <55.28 <57.79 10.65 <0.28 <9.16 J08291491+5531227
lk-248 162.23958 56.620098 0.0468625 79.00 ± 7.22 175.56 ± 11.18 163.64 ± 13.32 102.59 ± 14.25 <66.15 10.71 1.01 10.26 J08292083+5531081
lk-282 164.20754 57.412735 0.0468024 37.15 ± 7.00 <38.31 <61.42 <73.00 <51.33 10.91 0.43 <9.37 J08364482+4722188
lk-171 163.19229 60.094456 0.0697656 289.83 ± 7.96 463.92 ± 11.13 279.43 ± 28.53 97.37 ± 20.75 <126.28 11.06 4.95 10.24 J08364588+4722100
lk-405 159.23137 58.560928 0.0715059 <31.49 78.56 ± 8.87 <54.77 <63.28 <55.17 10.71 <0.88 <9.66 J08381759+3054534
lk-271 161.58758 56.765396 0.0672263 142.12 ± 7.21 177.08 ± 8.76 145.22 ± 9.67 89.74 ± 9.71 <53.52 10.94 3.52 10.32 J08381795+3055011
lk-009 163.78018 59.654129 0.0451426 858.23 ± 13.86 948.72 ± 17.93 531.34 ± 30.12 185.74 ± 36.85 <156.50 10.81 5.39 10.03 J08390125+3613042
btsh-212 218.07066 33.590675 0.0847390 101.22 ± 7.29 280.92 ± 8.35 214.35 ± 12.92 112.67 ± 12.23 <54.57 11.46 3.22 10.65 J08414959+2642578
lk-327 158.39201 57.133083 0.0466682 123.93 ± 7.39 260.04 ± 9.79 143.05 ± 21.06 <112.46 <120.05 10.66 1.34 9.67 J09060498+5144071
btsh-111 218.37558 34.561275 0.0287766 133.23 ± 6.08 179.24 ± 9.26 139.30 ± 8.88 <65.03 <60.62 10.34 0.54 9.29 J09123676+3547462
egs-043 214.41007 52.693192 0.0631147 <24.61 34.02 ± 7.12 <39.34 <47.90 <56.15 10.97 <0.54 <9.45 J09134606+4742001
lk-276 162.26814 56.911495 0.0718246 <25.25 <35.21 57.55 ± 13.64 88.90 ± 11.89 83.98 ± 16.52 10.73 <0.72 9.69 J09155467+4419510
btsh-146 218.82675 35.118813 0.0284341 5395.36 ± 35.44 5274.42 ± 52.53 1902.35 ± 32.67 725.94 ± 33.25 254.42 ± 24.96 11.02 12.96 10.05 J09155552+4419580
lk-056 161.98213 57.188320 0.0898139 <26.02 <45.15 <42.39 <48.52 <58.04 11.00 <1.20 <9.76 J09264111+0447247
lk-175 158.62358 59.784828 0.0905889 122.43 ± 15.91 109.51 ± 23.54 153.42 ± 24.42 111.23 ± 23.32 <138.69 11.37 5.27 10.78 J09264137+0447260
en1-018 242.25880 53.743439 0.0643115 43.30 ± 7.09 44.96 ± 9.26 <76.72 <54.51 <73.00 11.12 0.96 <9.70 J09374413+0245394
en1-048 242.60513 53.779949 0.0658474 148.85 ± 6.95 251.71 ± 9.55 197.29 ± 17.72 107.12 ± 16.14 <58.32 10.79 3.87 10.42 J10100079+5440198
lk-150 164.46387 59.365425 0.0461592 786.03 ± 11.98 863.67 ± 21.83 423.96 ± 19.93 200.22 ± 21.31 <103.25 10.77 6.11 10.01 J10100212+5440279
lk-256 162.47282 56.647766 0.0459531 103.97 ± 6.84 181.74 ± 10.33 112.72 ± 9.52 51.06 ± 10.78 <59.50 10.48 0.75 9.64 J10155257+0657330
btsh-148 218.99033 35.172455 0.0540843 74.98 ± 11.19 120.83 ± 11.79 85.83 ± 11.99 <61.30 <53.69 10.52 1.12 9.60 J10205188+4831096
lk-323 158.20479 56.945797 0.0569093 <54.04 122.49 ± 15.06 <105.94 <122.96 <111.23 10.61 <0.91 <9.72 J10225647+3446564
lk-155 158.16884 58.766632 0.0735668 <28.58 <40.19 <57.93 <62.76 <55.66 10.93 <0.86 <9.71 J10225655+3446468
lk-014 161.36885 59.496750 0.0724664 42.32 ± 7.49 97.26 ± 9.76 75.35 ± 8.81 54.89 ± 12.54 <65.91 10.75 1.25 10.17 J10233658+4220477
lk-259 163.53919 56.821007 0.0464892 444.33 ± 6.80 545.14 ± 10.77 293.35 ± 13.75 132.02 ± 16.50 62.02 ± 12.72 10.65 4.87 9.98 J10233684+4221037
lk-049 158.95834 56.568207 0.0437173 88.81 ± 7.24 213.97 ± 9.91 133.30 ± 17.40 99.05 ± 18.54 <88.23 10.50 0.64 9.95 J10272950+0114490
lk-203 162.58281 56.347740 0.0683074 <32.69 56.70 ± 12.84 104.47 ± 23.80 83.08 ± 13.14 <50.25 10.92 <0.83 9.86 J10325316+5306536
lk-082 159.70738 57.004242 0.0725609 100.16 ± 7.13 145.67 ± 9.50 74.33 ± 8.73 <57.07 <66.15 11.07 2.74 9.79 J10332972+4404342
en1-046 242.37892 53.863384 0.0623371 92.44 ± 7.53 150.81 ± 9.32 <109.83 <63.50 <88.18 10.84 1.84 <9.81 J10333162+4404212
lk-311 163.57295 57.726276 0.0751972 <30.52 102.61 ± 10.27 109.41 ± 12.00 74.62 ± 16.78 58.92 ± 14.05 10.85 1.21 10.75 J10364274+5447356
lk-048 158.79388 56.524883 0.0648007 <35.42 <46.16 <97.36 <135.89 <100.23 10.72 <0.80 <9.79 J10392338+3904501
lk-210 164.78847 56.918480 0.0467608 116.47 ± 9.11 125.71 ± 11.82 104.12 ± 10.38 <59.94 <56.94 10.46 1.27 9.56 J10435053+0645466
lk-006 161.48135 59.154591 0.0443921 115.51 ± 7.66 144.93 ± 9.13 140.13 ± 21.92 97.94 ± 23.19 <71.20 10.46 1.26 10.04 J10435268+0645256
lk-294 158.20099 56.595795 0.0468146 125.28 ± 13.13 136.48 ± 23.07 129.06 ± 24.26 <125.81 <133.61 10.72 1.36 9.64 J10452478+3910298
lk-355 159.07225 57.611805 0.0734656 52.54 ± 7.38 93.05 ± 9.02 <70.37 <47.40 <54.86 10.71 1.52 <9.78 J10514450+5101303
egs-017 213.85736 52.332111 0.0738315 <22.04 <30.92 <44.65 <41.72 <61.61 10.84 <0.67 <9.62 J10595915+0857357
lk-217 164.84148 56.605415 0.0478231 437.11 ± 15.59 288.91 ± 20.60 180.96 ± 17.65 79.12 ± 16.90 <84.74 10.53 5.01 9.53 J11014364+5720336
lk-379 159.88892 58.362122 0.0711125 59.99 ± 7.35 47.98 ± 8.99 <78.01 <72.30 <51.81 10.99 1.61 <9.79 J11064944+4751119
lk-357 159.91113 57.933495 0.0743553 <32.79 61.94 ± 8.95 96.29 ± 10.65 60.19 ± 12.21 62.14 ± 11.12 11.12 0.76 10.73 J11065068+4751090
lk-030 162.42171 60.293438 0.0444752 130.94 ± 7.59 231.78 ± 12.74 192.14 ± 12.74 118.29 ± 13.71 <59.04 10.56 1.50 10.24 J11204657+0028142
lk-273 161.65997 56.893730 0.0739821 <28.15 <41.51 <39.40 <70.40 <62.29 10.74 <0.85 <9.57 J11204801+0028068
lk-235 163.38641 56.303272 0.0719963 <66.31 <78.02 <53.87 <54.18 <63.11 10.63 <1.82 <9.66 J11251704+0227007
lk-403 159.10716 58.556229 0.0271570 448.17 ± 14.58 844.33 ± 19.78 562.00 ± 34.14 335.35 ± 44.40 223.49 ± 32.19 10.88 1.87 10.33 J11251716+0226488
lk-200 162.21944 56.336193 0.0457280 272.88 ± 8.58 445.66 ± 12.10 232.15 ± 10.65 120.48 ± 13.54 64.99 ± 13.83 10.77 1.86 9.94 J11273289+3604168
lk-411 164.21436 59.534958 0.0564417 271.46 ± 9.06 394.70 ± 15.80 233.74 ± 20.27 136.18 ± 25.48 <104.61 11.10 3.99 10.19 J11273467+3603470
egs-005 213.76653 52.056580 0.0730016 140.23 ± 6.04 237.95 ± 7.26 124.57 ± 9.91 <54.80 <64.39 10.76 3.82 9.98 J11375801+4728143
egs-064 215.64249 53.585861 0.0391728 <23.97 <26.64 65.03 ± 14.33 67.53 ± 14.67 <56.35 10.30 <0.20 9.25 J11440433+3332339
lk-143 161.00293 58.760281 0.0727644 409.63 ± 7.16 501.07 ± 9.47 266.59 ± 9.86 128.54 ± 8.99 <54.95 10.84 9.91 10.25 J11484370+3547002
lk-054 160.78687 56.820522 0.0669273 52.30 ± 6.56 79.20 ± 10.29 42.51 ± 9.46 <41.99 <61.66 11.25 1.25 9.52 J11484525+3547092
lk-257 162.54466 56.727203 0.0480569 29.78 ± 6.97 82.68 ± 9.78 <52.06 <56.41 <38.82 10.76 0.37 <9.33 J11501333+3746107
lk-196 161.76175 56.254833 0.0460456 47.67 ± 8.59 <48.78 <46.06 <40.77 <72.34 10.87 0.52 <9.25 J11501399+3746306
en1-024 242.69853 53.422432 0.0630939 63.42 ± 14.58 116.81 ± 26.63 <51.28 <49.94 <41.89 10.78 1.32 <9.54 J11505764+1444200
lk-396 164.28052 59.031815 0.0738622 81.36 ± 8.56 143.36 ± 10.04 122.00 ± 11.69 82.89 ± 14.02 <77.19 10.87 3.08 10.57 J11542299+4932509
lk-267 161.13715 56.678345 0.0671536 493.37 ± 7.34 454.31 ± 10.58 224.42 ± 9.07 97.70 ± 14.05 <49.95 10.79 12.11 9.99 J12020424+5342317
lk-306 162.71820 57.585117 0.0268691 188.75 ± 6.88 194.89 ± 9.89 116.89 ± 12.05 69.83 ± 9.63 <53.31 10.29 0.69 9.21 J12054066+0135365
egs-050 216.14351 53.639969 0.0305066 556.26 ± 5.28 635.53 ± 7.29 289.99 ± 14.49 133.67 ± 13.69 <67.75 10.48 1.35 9.48 J12115507+4039182
egs-066 215.92018 53.915695 0.0337332 158.61 ± 6.09 297.18 ± 8.51 184.69 ± 16.18 113.68 ± 16.65 <56.01 10.46 0.61 9.73 J12115648+4039184
lk-007 162.01831 59.344875 0.0285956 35.20 ± 7.66 <38.28 <73.25 <112.69 <97.98 10.18 0.15 <9.06 J12191866+1201054
lk-334 160.10893 57.439854 0.0471860 156.15 ± 6.90 200.26 ± 9.94 118.32 ± 13.26 64.13 ± 12.23 <51.23 10.78 1.84 9.73 J12433887+4405399
lk-406 159.30702 58.571445 0.0710580 <29.39 72.43 ± 8.91 <77.49 <70.40 <64.35 10.97 <0.82 <9.78 J12525011+4645272
lk-079 158.74356 56.912376 0.0467561 50.86 ± 8.57 83.89 ± 9.61 <86.29 <74.66 <110.59 10.41 0.58 <9.49 J13011662+4803366
en1-015 241.90225 53.958252 0.0297046 500.88 ± 10.97 563.42 ± 14.85 262.97 ± 19.24 107.80 ± 24.03 <89.74 10.39 1.33 9.37 J13011835+4803304
lk-242 160.95529 56.281364 0.0240286 162.87 ± 6.55 107.87 ± 10.17 71.16 ± 13.78 <51.34 <57.17 9.71 0.46 8.92 J13082737+0422125
lk-015 161.59250 59.595676 0.0309583 <26.33 87.37 ± 9.83 <63.95 <54.83 <54.81 10.28 <0.13 <9.07 J13082964+0422045
btsh-094 216.88402 34.510860 0.0684431 56.61 ± 7.59 144.69 ± 10.43 118.59 ± 13.21 78.80 ± 19.06 <68.62 10.83 1.41 9.91 J13131470+3910382
en1-003 240.67156 54.337185 0.0653331 <42.65 <58.05 <53.20 <58.65 <74.50 10.69 <0.98 <9.58 J13151386+4424264
btsh-049 218.32701 34.734619 0.0343026 160.07 ± 6.58 259.88 ± 8.81 142.83 ± 9.14 70.35 ± 11.08 <55.22 10.97 0.62 9.46 J13151726+4424255
lk-035 159.37373 60.002872 0.0281504 657.91 ± 30.36 1118.77 ± 39.53 552.61 ± 31.50 261.23 ± 35.17 <179.53 10.71 1.66 9.89 J13153076+6207447
egs-040 214.24640 52.730427 0.0742157 <18.28 <24.81 <43.90 <60.95 <57.34 10.84 <0.57 <9.61 J13153506+6207287
lk-332 159.63516 57.400383 0.0470770 132.21 ± 7.70 101.67 ± 9.57 85.55 ± 13.16 <65.46 <53.79 10.67 1.45 9.49 J13325525–0301347
lk-279 163.63444 57.159027 0.0676157 170.72 ± 7.05 132.56 ± 10.32 69.30 ± 14.74 <69.46 <64.70 10.81 3.92 9.70 J13325655–0301395
lk-127 161.54971 58.449306 0.0496845 81.77 ± 6.99 126.44 ± 9.94 96.08 ± 8.88 63.09 ± 9.53 <59.96 10.72 1.19 10.02 J13462001–0325407
btsh-063 217.60631 35.321106 0.0104899 7971.50 ± 34.10 10153.50 ± 49.49 4483.15 ± 51.59 2000.98 ± 40.83 778.11 ± 50.94 10.69 2.69 9.80 J14003661–0254327
lk-078 158.71724 56.837643 0.0438288 112.75 ± 7.45 134.45 ± 9.45 104.62 ± 19.58 <72.55 <73.73 10.62 1.07 9.51 J14003796–0254227
btsh-123 217.08795 35.405602 0.0292952 271.58 ± 13.39 417.54 ± 12.38 285.34 ± 16.88 143.71 ± 17.97 <84.96 10.73 1.06 9.76 J14005783+4251203
lk-338 160.79364 57.647472 0.0467886 161.47 ± 7.16 237.07 ± 9.62 165.98 ± 10.06 66.66 ± 13.05 <90.31 10.57 1.46 9.79 J14005879+4250427
lk-130 163.01991 58.599899 0.0317531 54.19 ± 6.54 54.17 ± 8.89 85.58 ± 9.70 64.20 ± 12.10 <50.77 10.32 0.34 9.78 J14055079+6542598
lk-409 161.11449 58.903076 0.0312686 185.49 ± 7.64 266.49 ± 10.36 177.81 ± 9.91 93.54 ± 14.95 <55.48 10.15 0.92 9.65 J14062157+5043303
lk-170 161.25214 59.736507 0.0443880 74.04 ± 6.60 130.72 ± 8.45 93.14 ± 9.62 <60.19 <55.10 10.91 0.74 9.48 J14070703–0234513
lk-119 159.54161 58.017307 0.0237380 77.94 ± 6.04 153.66 ± 10.70 97.03 ± 11.75 76.17 ± 17.04 <68.58 10.05 0.15 9.25 J14234238+3400324
btsh-004 217.07809 34.284489 0.0333809 178.35 ± 7.68 213.48 ± 9.38 134.03 ± 7.29 72.16 ± 9.97 <54.91 10.06 1.15 9.51 J14234632+3401012
lk-270 161.44302 56.836800 0.0726175 <27.74 <40.26 <46.23 <57.17 <65.56 10.82 <0.81 <9.62 J14245831–0303597
lk-140 159.77400 58.361572 0.0733310 60.41 ± 7.80 186.05 ± 11.47 140.70 ± 10.95 72.19 ± 11.29 <53.95 11.07 1.67 10.37 J14245913–0304012
lk-321 158.19514 57.005798 0.0435024 95.40 ± 7.95 185.53 ± 10.26 <163.27 <116.77 <120.75 10.39 0.90 <9.67 J14250739+0313560
lk-383 160.20712 58.256981 0.0744073 <30.14 <39.98 <57.00 <72.24 <58.32 10.87 <0.92 <9.71 J14294766+3534275
lk-221 164.12077 56.910526 0.0469288 33.46 ± 7.51 129.71 ± 9.38 95.80 ± 10.13 <53.62 <93.02 10.57 0.39 9.53 J14295031+3534122
lk-245 161.70120 56.567902 0.0449944 49.80 ± 7.16 82.05 ± 10.14 65.79 ± 9.69 <53.06 <48.52 10.85 0.52 9.36 J14334683+4004512
lk-115 161.89583 58.101940 0.0742169 <33.16 <41.34 <74.73 <70.31 <57.00 10.86 <1.01 <9.81 J14334840+4005392
lk-055 161.28499 56.976227 0.0722381 175.59 ± 6.84 211.69 ± 9.60 114.39 ± 7.90 <50.18 <83.80 10.71 4.63 9.94 J14442055+1207429
egs-006 213.82188 51.831017 0.0745795 46.67 ± 5.32 54.83 ± 7.23 72.37 ± 10.70 <94.89 <61.91 11.06 1.41 9.80 J14442079+1207552
btsh-110 217.33472 34.753334 0.0688272 63.96 ± 6.98 78.00 ± 9.44 79.16 ± 8.47 <45.69 <64.54 10.68 1.60 9.77 J15002500+4317131
lk-156 158.50607 58.807034 0.0739712 <31.01 <41.82 <49.94 <48.82 <72.75 10.94 <0.94 <9.66 J15053137+3427534
lk-392 161.18837 58.454979 0.0313002 711.58 ± 15.32 1074.62 ± 19.74 690.00 ± 22.86 386.12 ± 25.36 193.31 ± 24.17 10.84 3.94 10.37 J15064391+0346364
btsh-200 217.19626 33.387711 0.0424442 817.96 ± 19.21 767.78 ± 21.78 376.05 ± 9.11 159.56 ± 12.17 46.20 ± 10.36 10.77 5.92 9.78 J15064579+0346214
btsh-102 218.83510 33.846039 0.0581498 168.61 ± 6.19 209.07 ± 8.98 127.37 ± 14.89 67.08 ± 16.65 54.19 ± 13.48 10.68 2.82 9.80 J15101587+5810425
lk-365 162.09343 58.195721 0.0465291 37.22 ± 7.18 138.01 ± 9.67 89.73 ± 15.62 48.23 ± 10.88 <58.27 10.49 0.45 9.90 J15101776+5810375
egs-044 214.52928 52.697277 0.0659781 61.25 ± 5.59 95.40 ± 8.69 <47.40 <50.54 <63.38 10.73 1.40 <9.55 J15144544+0403587
lk-169 159.02901 59.379044 0.0732209 104.47 ± 7.13 168.32 ± 8.29 80.07 ± 13.21 <51.76 <60.20 10.67 2.91 9.82 J15144697+0403576
btsh-050 218.26311 34.744881 0.0296272 75.02 ± 8.03 187.08 ± 10.74 190.83 ± 7.02 113.02 ± 14.13 54.16 ± 11.13 10.14 0.40 9.97 J15233768+3749030
lk-091 163.20827 57.747452 0.0730649 175.22 ± 7.75 151.40 ± 9.59 77.31 ± 9.95 51.25 ± 11.66 <36.18 10.70 5.03 9.61 J15264774+5915464
lk-106 159.34660 57.520683 0.0718920 397.72 ± 7.14 376.18 ± 10.43 168.52 ± 16.53 <64.12 <61.08 10.87 9.96 10.07 J15281276+4255474
lk-164 163.10425 59.685532 0.0277227 1146.73 ± 12.16 1605.01 ± 17.47 875.35 ± 19.63 416.53 ± 35.14 132.22 ± 26.56 10.74 2.78 9.99 J15281667+4256384
lk-269 161.45438 56.701805 0.0672907 57.40 ± 6.92 103.00 ± 8.95 48.54 ± 10.61 <54.29 <58.99 10.84 1.38 9.57 J15523393+4620237
lk-146 162.65512 59.095657 0.0323721 290.86 ± 7.64 259.00 ± 10.45 145.66 ± 13.88 <64.38 <61.28 10.22 1.43 9.40 J15562191+4757172
lk-040 162.04411 56.704330 0.0477595 74.63 ± 6.81 125.26 ± 10.66 74.89 ± 7.77 <37.45 <47.58 10.48 0.87 9.46 J15583749+3227379
lk-028 161.42595 60.067890 0.0719979 53.20 ± 7.18 103.07 ± 11.01 71.96 ± 10.60 <53.86 <68.80 10.79 1.48 9.77 J15583784+3227471
egs-026 213.78456 51.613804 0.0742349 244.41 ± 10.83 287.85 ± 12.13 127.77 ± 14.48 <71.02 <62.44 10.75 6.71 10.00 J16024254+4111499
lk-224 165.37244 57.117775 0.0451835 303.19 ± 7.74 467.53 ± 12.26 229.45 ± 9.54 108.68 ± 9.88 <60.84 10.58 1.97 9.84 J16024475+4111589
lk-366 162.32683 58.345104 0.0280867 78.43 ± 8.30 237.33 ± 9.72 215.25 ± 10.28 112.63 ± 13.33 <87.83 10.81 0.32 9.87 J16080559+2529091
lk-281 164.13226 57.347748 0.0675492 51.07 ± 7.74 127.73 ± 9.47 120.37 ± 12.37 65.86 ± 13.76 <75.45 11.11 1.06 10.31 J16080648+2529066
btsh-028 218.14639 34.364929 0.0422711 30.39 ± 6.33 68.86 ± 8.07 57.41 ± 9.14 <53.69 <70.53 10.47 0.29 9.27 J16082261+2328459
lk-345 162.32899 57.821774 0.0702557 128.20 ± 7.22 176.90 ± 9.49 66.96 ± 13.36 <68.14 <53.16 10.57 3.23 9.72 J16082354+2328240
lk-387 160.41603 58.317230 0.0722775 65.57 ± 6.61 96.26 ± 10.94 84.75 ± 12.78 <63.62 <61.34 11.10 1.82 9.83 J16145418+3711064
lk-243 161.15924 56.369724 0.0240542 1293.33 ± 11.99 1304.87 ± 16.83 588.23 ± 21.66 286.68 ± 21.50 <135.42 10.81 3.66 9.63 J16282497+4110064
lk-139 159.74431 58.376003 0.0679610 172.97 ± 7.39 165.39 ± 9.12 84.48 ± 10.98 62.33 ± 12.82 <97.77 10.74 4.14 9.73 J16282756+4109395
lk-278 163.33688 57.242729 0.0802541 75.46 ± 6.70 91.48 ± 8.92 53.06 ± 13.16 <71.33 <54.35 11.19 2.60 9.75 J16354293+2630494
egs-038 213.91566 52.543880 0.0737351 61.64 ± 5.41 143.09 ± 7.66 164.18 ± 11.88 66.53 ± 14.99 <48.53 11.29 2.04 10.52 J16372583+4650161
lk-227 162.26764 56.223995 0.0719589 549.85 ± 8.26 538.53 ± 11.64 269.88 ± 10.05 115.67 ± 12.98 61.87 ± 10.89 10.90 15.46 10.19 J16372754+4650054
en1-041 241.28255 54.887733 0.0632211 <27.27 <45.90 58.78 ± 14.37 <54.11 <113.47 10.60 <0.60 9.59 J17020378+1859495
lk-122 160.10104 58.155136 0.0720025 174.47 ± 6.81 321.35 ± 10.52 175.95 ± 9.86 73.90 ± 15.11 <55.78 10.72 3.16 10.17 J17045089+3448530
lk-376 159.78526 58.231022 0.0729322 57.36 ± 7.32 <45.37 83.03 ± 8.45 <68.12 <66.86 10.90 1.63 9.83 J17045097+3449020
lk-240 160.43297 56.250572 0.0704346 58.85 ± 6.97 80.12 ± 9.71 64.40 ± 11.86 <43.86 <55.05 10.98 1.55 9.71 J20471908+0019150

Note. Descriptions of Columns: (1) Control Galaxy ID. (2) Control Galaxy R.A. (deg, J2000). (3) Control Galaxy decl. (deg, J2000). (4) Control Galaxy redshift z taken from SDSS. (5) Herschel PACS 100 μm flux (mJy). (6) Herschel PACS 160 μm flux (mJy). (7) Herschel SPIRE 250 μm flux (mJy). (8) Herschel SPIRE 350 μm flux (mJy). (9) Herschel SPIRE 500 μm flux (mJy). (10) Stellar mass (log(M)). (11) Star formation rate (M yr−1). (12) Total gas mass (log(M)). (13) ID of matched H-KPAIR galaxy.

A machine-readable versions of the table is available.

Download table as:  DataTypeset images: 1 2 3

It should be noted in the following comparisonal analysis with the control sample, each galaxy in the pairs of our H-KPAIR sample was included independently, rather than the pair as whole, which would introduce a bias.

6. SPECIFIC SFR ENHANCEMENT

Figure 7 is a scatterplot for the relation between Mstar and the sSFR for spirals in H-KPAIR and in the control sample. The maximum likelihood Kaplan–Meier (K–M) estimator (Kaplan & Meier 1958, see also Xu et al. 1998), which exploits information in the upper limits, was used to calculate the means of the sSFR of different populations. For spirals in H-KPAIR the mean is $\mathrm{log}(\mathrm{sSFR}/{\mathrm{yr}}^{-1})=-10.66\pm 0.06$, and for spirals in the control sample it is nearly identical: $\mathrm{log}(\mathrm{sSFR}/{\mathrm{yr}}^{-1})=-10.65\pm 0.04$. However, detailed inspections of Figure 7 reveal a mismatch between the H-KPAIR and the control sample: while none of the control galaxies have a value or upper limit of $\mathrm{log}(\mathrm{sSFR}/{\mathrm{yr}}^{-1})$ below −11.3, many H-KPAIR spirals have their $\mathrm{log}(\mathrm{sSFR}/{\mathrm{yr}}^{-1})$ values/upper limits below this threshold. This is due to the fact that control galaxies are more distant (median z = 0.056) than H-KPAIR galaxies (median z = 0.040), and their Herschel observations in the HerMES Level-5 survey (Oliver et al. 2012) are shallower than our H-KPAIR observations. Therefore their upper limits are in general significantly higher than those of H-KPAIR galaxies, and none of them were detected below $\mathrm{log}(\mathrm{sSFR}/{\mathrm{yr}}^{-1})=-11.3$. This mismatch can bias the mean of the control sample toward higher values even though the K–M estimator is used, for the algorithm requires that the detections cover the entire data range and the detections and upper limits are well mixed (Feigelson & Nelson 1985). In order to confirm that this is indeed the case, the following test was carried out: a hybrid sample was constructed by replacing those galaxies in the control sample that matched to the low sSFR H-KPAIR galaxies ($\mathrm{log}(\mathrm{sSFR}/{\mathrm{yr}}^{-1})$ values/upper limits below −11.3) with the H-KPAIR galaxies themselves. Again using the K–M estimator, we found a mean $\mathrm{log}(\mathrm{sSFR}/{\mathrm{yr}}^{-1})=-10.94\pm 0.05$ for such a sample, significantly lower than the result for the control sample. The implicit assumption in this test is that below $\mathrm{log}(\mathrm{sSFR}/{\mathrm{yr}}^{-1})=-11.3$ the control and H-KPAIR samples have nearly identical sSFR distributions, which is reasonable if the red spirals with low sSFRs are similar to early-type galaxies that show no interaction-induced star formation enhancement (Sulentic 1989).

Figure 7.

Figure 7. Stellar mass (Mstar) vs. sSFR scatter plot, for S in S+S (filled circles) and S+E (open squares) pairs, and control samples (crosses). The blue and red lines represent the blue and red sequences, taken from Schiminovich et al. (2007).

Standard image High-resolution image

In Figure 7 we plotted the lines representing the blue sequence and the red sequence, taken from Figure 7 of Schiminovich et al. (2007), where it is also shown that galaxies with $\mathrm{log}(\mathrm{sSFR}/{\mathrm{yr}}^{-1})\lt -11.3$ belong to the red sequence.

Figure 8.

Figure 8. Plot of the mean values of sSFRs in four stellar mass (Mstar) bins: for SFGs in S+S (black filled circles) and S+E (open squares) pairs, and control samples (crosses).

Standard image High-resolution image

In order to minimize the bias due to the mismatch, we confined the star formation enhancement analysis to H-KPAIR galaxies with values/upper limits of $\mathrm{log}(\mathrm{sSFR}/{\mathrm{yr}}^{-1})\geqslant -11.3$ and the control galaxies matched to them. Among these 101 paired SFG galaxies, the sSFR of 5 galaxies are upper limits; for their matches in the control sample, 19 have the sSFR in upper limits. It is possible that the true values of some of the upper limits are below the $\mathrm{log}(\mathrm{sSFR})$ cutoff. However, they are only small fractions of both samples. Furthermore, because in the K–S estimator the probability distributions of the true values of the upper limits are estimated using data points included in the analysis (none of them is below the cutoff), the possible contamination by low sSFR red spirals should not significantly affect the mean sSFR of SFGs in both the H-KPAIR and control samples.

We found a mean of $\mathrm{log}(\mathrm{sSFR}/{\mathrm{yr}}^{-1})=-10.34\pm 0.05$ for SFGs in the H-KPAIR, and $\mathrm{log}(\mathrm{sSFR}/{\mathrm{yr}}^{-1})=-10.67\pm 0.04$ for their matches in the control sample. The corresponding sSFR enhancement (Xu et al. 2010) is $\mathrm{enh}=\langle \mathrm{log}(\mathrm{sSFR}){\rangle }_{\mathrm{pair}}$ $-\langle \mathrm{log}(\mathrm{sSFR}){\rangle }_{\mathrm{cont}}=0.33\pm 0.06$. This indicates that the sSFR of paired SFGs is enhanced on average by a factor of ∼2 compared to control galaxies, and the enhancement is significant at the $\gt 5\sigma $ level. When paired SFGs are divided into subsamples of galaxies in S+S pairs and in S+E pairs, we found a mean of $\mathrm{log}(\mathrm{sSFR}/{\mathrm{yr}}^{-1})=-10.21\pm 0.06$ for the S+S subsample and $\mathrm{log}(\mathrm{sSFR}/{\mathrm{yr}}^{-1})=-10.64\pm 0.07$ for the S+E subsample. This shows that SFGs in S+S pairs have strong sSFR enhancement (with $\mathrm{enh}=0.46\pm 0.08$) and those in S+E have no significant sSFR enhancement. The result is in very good agreement with that of (Xu et al. 2010) based on Spitzer observations of a smaller subsample of KPAIR. We further divided the S+S and S+E subsamples by the interaction morphology (INT/MER vs JUS), and found that the mean values for SFGs in S+S pairs of INT/MER types and of JUS type are $\mathrm{log}(\mathrm{sSFR}/{\mathrm{yr}}^{-1})=-10.14\pm 0.07$ and $\mathrm{log}(\mathrm{sSFR}/{\mathrm{yr}}^{-1})=-10.31\pm 0.08$, respectively. This suggests that SFGs in S+S pairs of INT and MER types are slightly more enhanced (by 0.17 dex) than those in JUS pairs, though the significance of the difference is only at the 1.5σ level. No significant sSFR enhancement is found for SFGs in S+E pairs of either the INT/MER types (mean $\mathrm{log}(\mathrm{sSFR}/{\mathrm{yr}}^{-1})\ =-10.58\pm 0.11$) or the JUS type (mean $\mathrm{log}(\mathrm{sSFR}/{\mathrm{yr}}^{-1})\ =-10.71\pm 0.11$).

In Figure 8 we compared the sSFR of SFGs in S+S pairs and S+E pairs with the controls in four ${M}_{{\rm{star}}}$ bins (log(Mstar/M) <10.4, 10.4 $\leqslant $ log(Mstar/M) <10.7, and 10.7 $\leqslant $ log(Mstar/M). For SFGs in S+S pairs we found a similar amount of sSFR enhancement in different Mdust bins. For SFGs in S+E pairs no significant sSFR enhancement is found in any Mdust bin. It is worth noting that Xu et al. (2010) found that SFGs in S+S pairs in their lowest Mstar bin (corresponding to $9.3\lt \mathrm{log}({M}_{\mathrm{star}}/{M}_{\odot })\lt 9.8$ for the Mstar calibration used in this paper) do not show any significant sSFR enhancement. These low-mass galaxies are not included in H-KPAIR because of the exclusion of pairs of $v\lt 2000\;\mathrm{km}\;{{\rm{s}}}^{-1}$.

7. STAR FORMATION EFFICIENCY ENHANCEMENT

According to James et al. (2002) the total gas mass (Mgas) can be estimated from Mdust : ${M}_{{\rm{gas}}}/{M}_{{\rm{dust}}}=1/(Z\times e\times f)\ =114/Z$, where Z is the metallicity in solar units, e = 0.456 is the fraction of metals incorporated in dust in the ISM, and f = 0.019 is the metal mass fraction in gas of solar metallicity. Draine et al. (2007) found a very similar gas-to-dust ratio (Mgas/Mdust ∼100) for SINGS galaxies, including interacting galaxies. Studies on gas-to-dust mass ratios in local galaxies (e.g., Rémy-Ruyer et al. 2014) show that for metal-rich galaxies the ratios are uniformally distributed, and only very metal-poor galaxies have significantly higher Mgas/Mdust ratios. In the local universe, only low-mass galaxies have such low metallicities (Tremonti et al. 2004). All SFGs in H-KPAIR have ${M}_{{\rm{star}}}\gt {10}^{9.8}{M}_{\odot }$, and the control galaxies are 1-to-1 matched to paired galaxies according to Mstar. Therefore we adopted a fixed gas-to-dust ratio of 100 for the conversion from Mdust to Mgas. Using the K–M estimator, we found that the means of $\mathrm{log}({M}_{{\rm{gas}}}/{M}_{{\rm{star}}})$ of SFGs in S+S pairs, in S+E pairs, and in the control sample are −0.93 ± 0.05, −1.07 ± 0.07, and −1.00 ± 0.04, respectively. For both SFGs in S+S pairs and in S+E pairs, the mean $\mathrm{log}({M}_{{\rm{gas}}}/{M}_{{\rm{star}}})$ differs from that of control galaxies only at a $\sim 1\sigma $ level. In Figure 9 the means of $\mathrm{log}({M}_{{\rm{gas}}}/{M}_{{\rm{star}}})$ of different samples in different mass bins are compared. No clear trend is found in the plot.

Figure 9.

Figure 9. Plot of means of $\mathrm{log}({M}_{{\rm{gas}}}/{M}_{{\rm{star}}})$) in four stellar mass (Mstar) bins for SFGs in S+S (filled circles) and S+E (open squares) pairs, and control samples (crosses).

Standard image High-resolution image

The SFE is defined as the ratio between the SFR and total gas mass: $\mathrm{SFE}=\mathrm{SFR}/{M}_{{\rm{gas}}}$. The SFE analysis was confined to SFGs with Mgas detections. The means of $\mathrm{log}(\mathrm{SFE}/{\mathrm{yr}}^{-1})$ of SFGs in S+S pairs, in S+E pairs, and in the control sample are found to be −9.26 ± 0.05, −9.56 ± 0.05, and −9.67 ± 0.05, respectively. Figure 10 shows that the means of $\mathrm{log}(\mathrm{SFE})$ of SFGs in S+S pairs are consistently above that of control galaxies at a ∼0.4 dex level in all mass bins. On the other hand, the means of $\mathrm{log}(\mathrm{SFE})$ of SFGs in S+E pairs are seen both above and below that of control galaxies, consistent with no significant SFE enhancement.

Figure 10.

Figure 10. Statistical comparison of star formation efficiencies (SFE = SFR/Mgas) in four stellar mass (Mstar) bins for SFGs in S+S (filled circles) and S+E (open squares) pairs, and control samples (crosses).

Standard image High-resolution image

In Figure 11 we plotted the mean $\mathrm{log}(\mathrm{SFE})$ against the gas fraction ${f}_{{\rm{gas}}}={M}_{{\rm{gas}}}/({M}_{{\rm{star}}}+{M}_{{\rm{gas}}})$ for the S+S pair and control samples. Within the range of fgas covered by SFGs in our samples, which is [0, 0.25], there is no significant dependence of the SFE enhancement on fgas. Taken at the face value, this does not confirm the results of theoretical simulations showing weaker merger-induced star formation enhancement for high fgas (Hopkins et al. 2009; Perret et al. 2014; Scudder et al. 2015). However, it appears that the effect of fgas on star formation enhancement is significant only when ${f}_{{\rm{gas}}}\gtrsim 0.3$ (Scudder et al. 2015), which is beyond the range covered by our samples.

Figure 11.

Figure 11. Statistical comparison of SFEs in five gas mass fraction (fgas = Mgas/(${M}_{{\rm{gas}}}+{M}_{{\rm{star}}}$)) bins, for SFGs in S+S pairs (filled circles) and control samples (crosses).

Standard image High-resolution image

8. DISCUSSION

8.1. AGNs in H-KPAIR

In the H-KPAIR sample, some spiral galaxies are classified as AGNs based on their optical spectra. J08364588+4722100, J11251716+0226488, J11484525+3547092, J13151386+4424264, J13325655−0301395, J14234632+3401012, J14294766+3534275, J15281276+4255474, and J20471908+0019150 are sub-classified (SUBCLASS) as AGNs or AGN Broadline in the SDSS archive (using line ratios). J09134606+4742001 and J13151726+4424255 are classified as AGNs in "Quasars and AGNs" (13th Ed.; Véron-Cetty & Véron 2010). J13462001−0325407 is classified as Sy2 in Véron-Cetty & Véron (2010).

The identification of AGNs has been successful through the use of WISE photometry (Jarrett et al. 2011; Stern et al. 2012; Mateos et al. 2012; Secrest et al. 2015). To apply the corresponding AGN color criteria of Mateos et al. (2012), the W1, W2, and W3 magnitudes are taken from the unWISE forced photometry catalog (Lang et al. 2014; Lang 2014). The catalog apertures are chosen from SDSS photometry and are held constant for each identified object across the three WISE bands. The forced photometry should be sufficient to measure the magnitude differences W1–W2 and W2–W3 for the placement of the H-KPAIRs in the WISE color–color diagram. A comparison to manual aperture photometry is examined in Domingue et al. (2015, in preparation). From the full set of spirals in the H-KPAIRs, only J13151726+4424255 falls within the color–color diagram area associated with AGNs in Mateos et al. (2012) and therefore this may be our only AGN candidate in addition to the optically determined AGNs. More details on discussions on WISE AGNs will be in D. Domingue et al. (2015, in preparation).

Lam et al. (2013) found that the FIR/submillimeter properties of galaxies with AGNs are similar to those of star-forming galaxies, and the AGN contribution to the FIR/submillimeter luminosity is in general insignificant. Even in the MIR band where the AGN contribution is much stronger, Nordon et al. (2012) found that only in 2 out of 18 AGN-hosting galaxies is the emission significantly enhanced by the AGN. Therefore, differing from Xu et al. (2010), we choose to keep the AGN candidates in our analyses. Indeed we found that keeping or removing AGN candidates will not affect the major results of this paper.

8.2. Why is SFR Enhancement Absent in S+E Pairs?

The significant sSFR enhancements of SFGs in S+S pairs found in Xu et al. (2010) and in this work are due to a significant SFE enhancement within them, while they have the same mean gas content as the control galaxies. On the other hand, the lack of sSFR enhancement in SFGs in S+E pairs cannot be attributed to a deficiency of gas content, as speculated by Xu et al. (2010), but to a significantly lower SFE than that of SFGS in S+S pairs (Table 5). It is difficult to understand the SFE difference between SFGs in S+S pairs and those in S+E pairs, if the enhancement is triggered by tidal effects (the tidal effects caused by a spiral companion and by a elliptical companion should be similar). It has been suggested that cloud-cloud collisions (Scoville et al. 1986; Tan et al. 2006) or cloud-squeezing by shock-heated diffuse gas in two colliding disks (Jog & Solomon 1992; Saitoh et al. 2009; Hayward et al. 2014; Renaud et al. 2015) can trigger starbursts. Our results indicate that these mechanisms, associated with the collision between the ISM in two gas-rich galaxies (which is absent in S+E pairs), may indeed be the major mode for the SFR enhancement in paired SFGs (mostly early-stage mergers). Hwang et al. (2011) also found that in the GOODS-Herschel fields the SFR and sSFR increase as a late-type galaxy approaches a late-type neighbor (S+S pairs), while the SFR and sSFR decrease or do not change much as the galaxy approaches an early-type neighbor (S+E pairs). They argued for X-rays from the ellipticals as the reason for the suppression of star formations in the spirals in S+E pairs.

Table 5.  sSFR and SFE Enhancement

(1) (2) (3) 4
Type sSFR Enhancement SFE Enhancement $\delta \mathrm{log}({M}_{{\rm{gas}}}/{M}_{{\rm{star}}})$
  (dex) (dex) (dex)
S in S+S 0.46 ± 0.08 0.41 ± 0.07 0.07 ± 0.06
S in S+E 0.03 ± 0.08 0.11 ± 0.07 −0.07 ± 0.08

Note. Mean values of sSFR and SFE enhancements (dex) and of the difference in $\mathrm{log}({M}_{{\rm{gas}}}/{M}_{{\rm{star}}})$, for SFGs in S+S and S+E pairs.

Download table as:  ASCIITypeset image

8.3. Separation and SFR Enhancement

In Section 5.7 of Xu et al. (2010), they discussed how the star formation enhancement is related to the projected separation between the two galaxies in pairs. Here we made a similar analysis using the normalized separation parameter: SEP = s/(r1+r2). Here s is the projected separation, and r1 and r2 are the K-band Kron radii (taken from 2MASS) of the primary and the secondary, respectively, in the same units as those of s (arcsec). Figures 12 and 13 are plots of mean log(SFR/Mstar) and log(SFR/Mgas) versus log(Mstar) of star-forming spirals (SFGs) in S+S pairs, separated into two subsamples of SEP < 1 (39 SFGs) and SEP > 1 (30 SFGs). Similar to Xu et al. (2010), for both subsamples we found that the log(SFR/Mstar) and log(SFR/Mgas) versus log(Mstar) relations scatter around the means of the total sample without any obvious trend, and no significant differences between the two subsamples are detected. This confirms Xu et al.'s (2010) finding and suggests that for early-stage mergers in H-KPAIR, the separation is not an important parameter anymore once the two galaxies are close enough. This is different from FIR-selected late-stage mergers for which Gao & Solomon (1999) found an anti-correlation between SFE and the pair separation.

Figure 12.

Figure 12. Similar to Figure 17 in Xu et al. (2010), average sSFRs of SFGs in S+S pairs, separated into two subsamples of SEP < 1 (filled dots) and SEP > 1 (opened circles), respectively. The dotted line marks the mean log(SFR/Mstar) of all SFGs in the H-KPAIR sample.

Standard image High-resolution image
Figure 13.

Figure 13. Average log(SFE) (SFR/Mgas) of SFGs in S+S pairs, separated into two subsamples of SEP < 1 (filled dots) and SEP > 1 (opened circles), respectively. The dotted line marks the mean log(SFR/Mgas) of all SFGs in the H-KPAIR sample.

Standard image High-resolution image

8.4. "Holmberg Effect"

Figure 14 shows a correlation between the sSFR of primary galaxies and that of secondary galaxies in S+S pairs with the Spearman's rank correlation coefficient equal to 0.56, while for corresponding control galaxies there is no such correlation. This reconfirms the "Holmberg effect" on the sSFR previously found by Xu et al. (2010) using Spitzer observations of a small subsample of KPAIR.

Figure 14.

Figure 14. Plot of sSFRs of primary and secondary star-forming spiral galaxies in S+S pairs (filled circles) and control samples (crosses).

Standard image High-resolution image

9. SUMMARY AND FUTURE PLAN

In this paper we present Herschel observations for a large and complete sample of close major-merger pairs of galaxies selected from a 2MASS/SDSS-DR5 cross-match. The H-KPAIR sample includes 176 galaxies (132 spirals and 44 ellipticals) in 88 pairs (44 S+S and 44 S+E). Herschel maps, in the 3 PACS bands at 70, 100 and 160 μm and the three SPIRE bands at 250, 350 and 500 μm, show very diversified FIR-submillimeter emission properties among H-KPAIR galaxies. The SFR (estimated using the IR luminosity), the sSFR, the total gas mass Mgas (estimated using the SED fitting resulted dust mass), and the SFE of the spiral galaxies in H-KPAIR are compared to those of single spirals in a control sample in order to study the interaction-induced enhancement. The control sample is selected from 2MASS galaxies with Herschel data obtained in HerMES Level-5 surveys. In order to minimize a bias due to different depths of the Herschel data of H-KPAIR and of the control sample, the enhancement analyses are confined to SFGs with $\mathrm{log}(\mathrm{sSFR}/{\mathrm{yr}}^{-1})\gt -11.3$. The following results are found.

  • 1.  
    The mean $\mathrm{log}(\mathrm{sSFR})$ of the SFGs in S+S pairs is significantly higher than that of the SFGs in the control sample, but that of SFGs in the S+E pairs is not. The sSFR enhancement level for SFGs in S+S pairs is ∼0.5 dex. This result is in very good agreement with Xu et al. (2010).
  • 2.  
    SFGs in S+S pairs of INT and MER types have enhancement of log(sSFR) (by 0.17 dex) above those in JUS pairs, though the significance of the difference is only at the 1.5σ level. No significant sSFR enhancement is found for SFGs in S+E pairs of either the INT/MER types or the JUS type.
  • 3.  
    There is no significant difference among the means of $\mathrm{log}({M}_{{\rm{gas}}}/{M}_{{\rm{star}}})$ of SFGs in S+S pairs, in S+E pairs, and in the control sample.
  • 4.  
    The mean $\mathrm{log}(\mathrm{SFE})$ of the SFGs in S+S pairs is higher than those of the SFGs in S+E pairs and in the control sample. This indicates that star formation triggered by disk–disk collision may play an important role in the interaction-induced star formation activity.
  • 5.  
    There is no dependence of the SFE enhancement on the gas fraction, fgas, in the range of fgas of our sample ($0\lt {f}_{{\rm{gas}}}\lt 0.25$).

In future works we will study the atomic and molecular gas contents in H-KPAIR galaxies using GBT HI and IRAM-30 m CO observations (U. Lisenfeld et al. 2015, in preparation). Using WISE mid-infrared images, we will analyze the PAH properties and AGN activities of paired galaxies (D. Domingue et al. 2015, in preparation). Analysis on the stellar populations and metallicity gradients in paired galaxies and detailed studies on SFGs in S+E pairs will be carried out by using optical spectroscopic observations with the 2.16 m telescope of the National Astronomical Observatory of China (NAOC), and narrowband Hα imaging observations with the 2.4 m telescope of the Yunnan Astronomical Observatory.

We thank the anonymous referee for helpful comments and suggestions. We acknowledge useful discussions with Dr. Yinghe Zhao, and thank Dr. Yuyen Chang for the help with data tables of 1 M galaxies from SDSS+WISE. C.C. and Y.G. are supported by NSFC-11503013, NSFC-11420101002, NSFC-10978014, NSFC-11173059, NSFC-11390373, and CAS-XDB09000000. U.L. acknowledges support by the research projects AYA2011-24728 and AYA2014-53506-P from the Spanish Ministerio de Economía y Competividad and the Junta de Andalucía (Spain). The Herschel spacecraft was designed, built, tested, and launched under a contract with ESA, managed by the Herschel/Planck Project team through an industrial consortium under the overall responsibility of the prime contractor Thales Alenia Space (Cannes), and including Astrium (Friedrichshafen), responsible for the payload module and for system testing at the spacecraft level, Thales Alenia Space (Turin), responsible for the service module, and Astrium (Toulouse) responsible for the telescope, with an excess of a hundred subcontractors. HCSS/HSpot/HIPE are joint developments by the Herschel Science Ground Segment Consortium, consisting of ESA, the NASA Herschel Science Center, and the HIFI, PACS and SPIRE consortia. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Please wait… references are loading.
10.3847/0067-0049/222/2/16