Skip to main content
Log in

The anti-melanogenic effects of Petalonia binghamiae extracts in α-melanocyte stimulating hormone-induced B16/F10 murine melanoma cells

  • Short Communication
  • Published:
Journal of the Korean Society for Applied Biological Chemistry Submit manuscript

Abstract

Petalonia binghamiae extracts (PBE) suppressed melanin synthesis in a dose-dependent manner in α-melanocyte stimulating hormone (α-MSH)-treated B16/F10 murine melanoma cells. Specifically, the cell tyrosinase activity and melanin content were inhibited by 72% and 48%, respectively, in response to treatment with 100 μg/mL of PBE. The results of western blot analysis suggest that PBE induced the inhibition of tyrosinase and TRP-1 protein expression through suppression of α-MSH induced p38 and ERK activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

ERK:

extracellular signal-regulated kinase

α-MSH:

α-melanocyte stimulating hormone

MTT:

3-(4, 5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

PBE:

Petalonia Binghamiae extracts

TRP:

tyrosinase-related protein

References

  • Briganti S, Camera E, and Picardo M (2003) Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res 16, 101–110.

    Article  Google Scholar 

  • Corre S, Primot A, Sviderskaya E, Bennett DC, Vaulont S, Goding CR, and Galibert MD (2004) UV-induced expression of key component of the tanning process, the POMC and MC1R genes, is dependent on the p-38-activated upstream stimulating factor-1 (USF-1). J Biol Chem 279, 51226–51233.

    Article  CAS  Google Scholar 

  • Gilchrest BA, Park HY, Eller MS, and Yaar M (1996) Mechanisms of ultraviolet light-induced pigmentation. Photochem Photobiol 63, 1–10.

    Article  CAS  Google Scholar 

  • Goding CR (2006) Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev 14, 1712–1728.

    Google Scholar 

  • Hearing VJ and Tsukamoto K (1991) Enzymatic control of pigmentation in mammals. FASEB J 5, 2902–2909.

    CAS  Google Scholar 

  • Hill HZ, Li W, Xin P, and Michell DL (1997) Melanin: a two edged sword? Pigment Cell Res 10, 158–161.

    Article  CAS  Google Scholar 

  • Imokawa G, Kobayashi T, Miyagishi M, Higashi K, and Yada Y (1997) The role of endrothelin-1 in epidermal hyperpigmentation and signaling mechanisms of mitogenesis and melanogenesis. Pigment Cell Res 10, 218–228.

    Article  CAS  Google Scholar 

  • Kang JR, Lee MK, and Kang SM (2008a) Anti-oxidant property and tyrosinase inhibition activity of various extracts from plants in Compositae plants. J Korean Soc Appl Biol Chem 51, 321–328.

    Article  CAS  Google Scholar 

  • Kang SI, Jin YJ, Ko HC, Choi SY, Hwang JH, Whang I, Kim MH, Shin HS, Jeong HB, and Kim SJ (2008b) Petalonia improves glucose homeostasis in streptozotocin-induced diabetic mice. Biochem Biophys Res Commun 373, 265–269.

    Article  CAS  Google Scholar 

  • Kobayashi T, Imokawa G, Bennett DC, and Hearing VJ (1998) Tyrosinase stabilization by Tyrp1 (the brown locus protein). J Biol Chem 273, 31801–31805.

    Article  CAS  Google Scholar 

  • Kuda T, Hishi T, and Maekawa S (2006) Anti-oxidant properties of dried product of ‘habanori’, an edible brown alga, Petalonia binhamiae (J. Agaradh) Vinogrdova. Food Chem 98, 545–550.

    Article  CAS  Google Scholar 

  • Martinez-Liarte JH, Solano F, Garcia-Borron JC, Jara JR, and Lozano JA (1992) α-MSH and other melanogenic activators mediate opposite effects on tyrosinase and dopachrome tautomerase in B16/F10 mouse melanoma cells. J Invest Dermatol 99, 435–439.

    Article  CAS  Google Scholar 

  • Mizushina Y, Sugiyama Y, Yoshida H, Hanashima S, Yamzaki T, Kamisuki S, Ohta K, Takemura M, Yamaguchi T, Matsukage A, Yoshida S, Saneyoshi M, Sugawara F, and Sakagauchi K (2001) Galactosyl-diacylglycerol, a mammalian DNA polymerase α-specific inhibitor from a sea alga, Petalonia binhamiae. Biol Pharm Bull 24, 982–987.

    Article  CAS  Google Scholar 

  • Mori K, Ooi T, Hiraoka M, Oka N, Hamada H, Tamuara M, and Kusumi T (2004) Fucoxanthin and its metabolites in edible brown algae cultivated in deep seawater. Mar Drugs 2, 63–72.

    Article  CAS  Google Scholar 

  • Thody AJ and Graham A (1998) Does alpha-MSH have a role in regulating skin pigmentation in humans? Pigment Cell Res 11, 265–274.

    Article  CAS  Google Scholar 

  • Tsukamoto K, Jackson IJ, Urabe K, Montague PM, and Hearing VJ (1992) A second tyrosinase-related protein, TRP-2, is a melanogenic enzyme termed DOPAchrome tautomerase. EMBO J 11, 519–526.

    CAS  Google Scholar 

  • Yanase H, Ando H, Horikawa M, Watanabe M, Mori T, and Matsuda N (2001) Possible involvement of ERK 1/2 in UVA-induced melanogenesis in cultured normal human epidermal melanocytes. Pigment Cell Res 14, 103–109.

    Article  CAS  Google Scholar 

  • Yoon HS and Kim JK (2007) The inhibitory effect of Acanthopeltis japonica on melanogenesis. J Soc Cosmet Sci Korea 33, 87–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Jung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, H.S., Koh, W.B., Oh, YS. et al. The anti-melanogenic effects of Petalonia binghamiae extracts in α-melanocyte stimulating hormone-induced B16/F10 murine melanoma cells. J. Korean Soc. Appl. Biol. Chem. 52, 564–567 (2009). https://doi.org/10.3839/jksabc.2009.095

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3839/jksabc.2009.095

Key words

Navigation