Research Article
BibTex RIS Cite
Year 2021, Volume: 30 Issue: 2, 63 - 70, 15.12.2021
https://doi.org/10.38042/biotechstudies.953507

Abstract

References

  • Acemi,A., Bayrak,B., Çakır,M., Demiryürek,E., Gün,E., El Gueddari, N. E., & Özen, F. (2018). Comparative analysis of the effects of chitosan and common plant growth regulators on in vitro propagation of Ipomoea purpurea (L.) Roth from nodal explants.In Vitro Cellular & Developmental Biology - Plant, 54(5), 537-544. https://doi.org/10.1007/s11627-018-9915-0
  • Acemi, A., & Türker-Kaya, S. (2020). Biomolecular structure and composition changes in the root system of long- lipped Serapias (Serapias vomeracea) after in vitro Chitosan and plant growth regulator treatments. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-020-10191-4
  • Acemi, A. (2020a). Chitosan versus plant growth regulators: A comparative analysis of their effects on in vitro development of Serapias vomeracea (Burm.f.) Briq. Plant Cell, Tissue and Organ Culture (PCTOC), 141(2), 327-338. https://doi.org/10.1007/s11240-020-01789-3
  • Acemi, A. (2020b). Polymerization degree of chitosan affects structural and compositional changes in the cell walls, membrane lipids, and proteins in the leaves of Ipomoea purpurea: An FT-IR spectroscopy study.International Journal of Biological Macromolecules, 162, 715-722. https://doi.org/10.1016/j.ijbiomac.2020.06.171
  • Acemi, A. (2021). Effect of medium composition on in vitro seed germination and plant development in Kentucky Bluegrass (Poa pratensis L. cv. Evora). Commagene Journal of Biology, 5(1), 1-6. https://doi.org/10.31594/commagene.827909
  • Anusuya, S., & Sathiyabama, M. (2016). Effect of chitosan on growth, yield and curcumin content in turmeric under field condition. Biocatalysis and Agricultural Biotechnology, 6, 102-106. https://doi.org/10.1016/j.bcab.2016.03.002
  • Ayan, İ., Arslan, S., & Acar, Z. (2020). Adaptation and some quality parameters of cool season Turfgrass species in Samsun conditions. Turkish Journal of Agriculture - Food Science and Technology, 8(9), 1971-1975. https://doi.org/10.24925/turjaf.v8i9.1971-1975.3590
  • Bushman, B. S., Robbins, M. D., Robins, J. G., Thorsted, K., Harris, P., & Johnson, P. G. (2020). Response to salt stress imposed on cultivars of three turfgrass species: Poa pratensis, Lolium perenne, and Puccinellia distans. Crop Science, 60(3), 1648-1659. https://doi.org/10.1002/csc2.20014
  • Capstaff, N. M., & Miller, A. J. (2018). Improving the yield and nutritional quality of forage crops. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00535
  • Chang, T., & Yoon, J. (2011). Growth response of Kentucky bluegrass and creeping bentgrass by foliar spray with chitosan formulation and seaweed extracts during Fall season. Asian Journal of Turfgrass Science, 25(2), 195- 201.
  • El-Maarouf-Bouteau, H., Meimoun, P., Job, C., Job, D., & Bailly, C. (2013). Role of protein and mRNA oxidation in seed dormancy and germination. Frontiers in Plant Science, 4. https://doi.org/10.3389/fpls.2013.00077
  • Franco, F., & Iriti, M. (2007). Callose synthesis as a tool to screen chitosan efficacy in inducing plant resistance to pathogens. Caryologia, 60(1-2), 121-124. https://doi.org/10.1080/00087114.2007.10589558
  • Głąb, T., Szewczyk, W., Gondek, K., Knaga, J., Tomasik, M., & Kowalik, K. (2020). Effect of plant growth regulators on visual quality of turfgrass. Scientia Horticulturae, 267, 109314. https://doi.org/10.1016/j.scienta.2020.109314
  • Goatley, M., Hensler, K., & Askew, S. (2017). Cool‐season Turfgrass germination and morphological development comparisons at adjusted osmotic potentials. Crop Science, 57(S1). https://doi.org/10.2135/cropsci2016.06.0482
  • Haebel, S., Bahrke, S., & Peter, M. G. (2007). Quantitative sequencing of complex mixtures of Heterochitooligosaccharides by vmaldi-linear ion trap mass spectrometry. Analytical Chemistry, 79(15), 5557- 5566. https://doi.org/10.1021/ac062254u
  • Hidangmayum, A., Dwivedi, P., Katiyar, D., & Hemantaranjan, A. (2019). Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants, 25(2), 313-326. https://doi.org/10.1007/s12298- 018-0633-1
  • Jogaiah, S., Satapute, P., De Britto, S., Konappa, N., & Udayashankar, A. C. (2020). Exogenous priming of chitosan induces upregulation of phytohormones and resistance against cucumber powdery mildew disease is correlated with localized biosynthesis of defense enzymes. International Journal of Biological Macromolecules, 162, 1825-1838. https://doi.org/10.1016/j.ijbiomac.2020.08.124
  • Kim, K. (2014). Effect of polymer, calcium, perlite and Chitosan in organic amendment on growth in Kentucky bluegrass. Weed & Turfgrass Science, 3(1), 19-28. https://doi.org/10.5660/wts.2014.3.1.19
  • Liu, H., Baldwin, C., Totten, F., & McCarty, L. (2008). Foliar fertilization for turfgrasses. Acta Horticulturae, (783), 323-332. https://doi.org/10.17660/actahortic.2008.783.34
  • Lopez-Moya, F., Escudero, N., Zavala-Gonzalez, E. A., Esteve- Bruna, D., Blázquez, M. A., Alabadí, D., & Lopez- Llorca, L. V. (2017). Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-16874-5
  • Ma, X., Zhang, J., Burgess, P., Rossi, S., & Huang, B. (2018). Interactive effects of melatonin and cytokinin on alleviating drought-induced leaf senescence in creeping bentgrass (Agrostis stolonifera).Environmental and Experimental Botany, 145, 1-11. https://doi.org/10.1016/j.envexpbot.2017.10.010
  • Marcum, K. B., & Pessarakli, M. (2010). Salinity tolerance of Ryegrass turf cultivars. HortScience, 45(12), 1882-1884. https://doi.org/10.21273/hortsci.45.12.1882
  • McMahon, G., & Hunter, A. (2012). Determination of the effects of plant growth regulators on Agrostis stolonifera and Poa annua. Acta Horticulturae, (937), 161-168. https://doi.org/10.17660/actahortic.2012.937.19
  • Metsalu, T., & Vilo, J. (2015). ClustVis: A web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. https://doi.org/10.1093/nar/gkv468
  • Mondal, M. M. A., Malek, M. A., Puteh, A. B., Ismail, M. R., Ashrafuzzaman, M., & Naher, L. (2012). Effect of foliar application of chitosan on growth and yield in okra. Australian Journal of Crop Science, 6, 918-921.
  • Müller, K., Linkies, A., Vreeburg, R. A., Fry, S. C., Krieger- Liszkay, A., & Leubner-Metzger, G. (2009). In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiology, 150(4), 1855-1865. https://doi.org/10.1104/pp.109.139204
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Nedukha, O. M. (2015). Callose: Localization, functions, and synthesis in plant cells. Cytology and Genetics, 49(1), 49- 57. https://doi.org/10.3103/s0095452715010090
  • Romanazzi, G., Feliziani, E., Baños, S. B., & Sivakumar, D. (2016). Shelf life extension of fresh fruit and vegetables by chitosan treatment. Critical Reviews in Food Science and Nutrition, 57(3), 579-601. https://doi.org/10.1080/10408398.2014.900474
  • Schatz, C., Viton, C., Delair, T., Pichot, C., & Domard, A. (2003). Typical physicochemical behaviors of Chitosan in aqueous solution. Biomacromolecules, 4(3), 641-648. https://doi.org/10.1021/bm025724c
  • St. John, L., Tilley, D., Hunt, P., & Wright, S. (2012). Plant Guide for Red Fescue (Festuca rubra) USDA-Natural Resources Conservation Service, Plant Materials Center, Aberdeen, Idaho 83210.
  • Tan, Y. N., Lee, P. P., & Chen, W. N. (2020). Dual extraction of crustacean and fungal Chitosan from a single Mucor circinelloides fermentation. Fermentation, 6(2), 40. https://doi.org/10.3390/fermentation6020040
  • Thiele, K., Wanner, G., Kindzierski, V., Jürgens, G., Mayer, U., Pachl, F., & Assaad, F. F. (2009). The timely deposition of callose is essential for cytokinesis in Arabidopsis. The Plant Journal, 58(1), 13-26. https://doi.org/10.1111/j.1365-313x.2008.03760.x
  • Trethewey, J., Rolston, M., McCloy, B., & Chynoweth, R. (2016). The plant growth regulator, trinexapac-Ethyl, increases seed yield in annual ryegrass (Lolium multiflorum Lam.). New Zealand Journal of Agricultural Research, 59(2), 113-121. https://doi.org/10.1080/00288233.2015.1134590
  • Vårum, K. M., Antohonsen, M. W., Grasdalen, H., & Smidsrød, O. (1991). Determination of the degree of N- acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field N.M.R. spectroscopy. Carbohydrate Research, 211(1), 17-23. https://doi.org/10.1016/0008-6215(91)84142-2
  • Vigliocco, A., Del Bel, Z., Pérez‐Chaca, M. V., Molina, A., Zirulnik, F., Andrade, A. M., & Alemano, S. (2019). Spatiotemporal variations in salicylic acid and hydrogen peroxide in sunflower seeds during transition from dormancy to germination. Physiologia Plantarum, 169(1), 27-39. https://doi.org/10.1111/ppl.13043
  • Wang, J., Burgess, P., Bonos, S. A., Meyer, W. A., & Huang, B. (2017). Differential physiological responses and genetic variations in fine fescue species for heat and drought stress. Journal of the American Society for Horticultural Science, 142(5), 367-375. https://doi.org/10.21273/jashs04121-17
  • Wennerberg, S. (2004). Kentucky Bluegrass Poa pratensis L. USDA NRCS Plant Guide. Retrieved January 19, 2021, from https://plants.usda.gov/plantguide/pdf/pg_popr.pdf
  • Wilen, C. A., Downer, A. J., Sutherland, A. M., Westerdahl, B. B., Baird, J. H., Caswell-Chen, E. P., Cudney, D. W., Elmore, C. L., Flint, M. L., Harivandi, M. A., & Lestrange, M. (2009). UC IPM Pest Management Guidelines: Turfgrass. UC ANR Publication 3365-T. Oakland, CA.
  • Xu, C., & Mou, B. (2018). Chitosan as soil amendment affects lettuce growth, photochemical efficiency, and gas exchange. HortTechnology, 28(4), 476-480. https://doi.org/10.21273/horttech04032-18
  • Yoon, O., Kim, S., Kim, K., & Lee, J. (2006). Effects of chiton on growth responses of creeping bentgrass (Agrostis palustris H.). Korean Turfgrass Science, 20(2), 167-174.
  • Yoon, O., & Kim, K. (2007). Effects of chitosan on the growth responses of Kentucky bluegrass (Poa pratensis L.). Korean Turfgrass Science, 21(2), 163-176.

Developmental responses of perennial ryegrass, red fescue, and Kentucky bluegrass to In vitro chitosan treatments

Year 2021, Volume: 30 Issue: 2, 63 - 70, 15.12.2021
https://doi.org/10.38042/biotechstudies.953507

Abstract

Effects of chitosan oligomers and polymer on in vitro development of perennial ryegrass (Lolium perenne L.), red fescue (Festuca rubra L.), and Kentucky bluegrass (Poa pratensis L.) were studied to elucidate a possible differentiation between the effects of chitosan depending on its chemical structure. The seed germination rate was enhanced after the oligomer treatments. The oligomer mixture triggered leaf elongation better than the polymer. However, the highest number of leaves was found from L. perenne in the polymer's presence at 10 mg·L-1 in the medium. The maximum leaf length was reached in L. perenne after oligomeric chitosan treatment at 5 mg·L-1. The plant's rhizogenic response was enhanced in P. pratensis but decreased in L. perenne and F. rubra after 2.5 mg·L-1 oligomeric chitosan treatment. However, the root elongation was restricted in F. rubra and P. pratensis after chitosan treatments. Conversely, chitosan treatments augmented root elongation in L. perenne. This study suggested that chitosan might be preferred to ensure better turf coverage in these grass species. However, constant- or over-treatment with chitosan could reduce root growth and increase the plant's leaf elongation that might contribute to nutritional deficiency and increased mowing costs, respectively.

References

  • Acemi,A., Bayrak,B., Çakır,M., Demiryürek,E., Gün,E., El Gueddari, N. E., & Özen, F. (2018). Comparative analysis of the effects of chitosan and common plant growth regulators on in vitro propagation of Ipomoea purpurea (L.) Roth from nodal explants.In Vitro Cellular & Developmental Biology - Plant, 54(5), 537-544. https://doi.org/10.1007/s11627-018-9915-0
  • Acemi, A., & Türker-Kaya, S. (2020). Biomolecular structure and composition changes in the root system of long- lipped Serapias (Serapias vomeracea) after in vitro Chitosan and plant growth regulator treatments. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-020-10191-4
  • Acemi, A. (2020a). Chitosan versus plant growth regulators: A comparative analysis of their effects on in vitro development of Serapias vomeracea (Burm.f.) Briq. Plant Cell, Tissue and Organ Culture (PCTOC), 141(2), 327-338. https://doi.org/10.1007/s11240-020-01789-3
  • Acemi, A. (2020b). Polymerization degree of chitosan affects structural and compositional changes in the cell walls, membrane lipids, and proteins in the leaves of Ipomoea purpurea: An FT-IR spectroscopy study.International Journal of Biological Macromolecules, 162, 715-722. https://doi.org/10.1016/j.ijbiomac.2020.06.171
  • Acemi, A. (2021). Effect of medium composition on in vitro seed germination and plant development in Kentucky Bluegrass (Poa pratensis L. cv. Evora). Commagene Journal of Biology, 5(1), 1-6. https://doi.org/10.31594/commagene.827909
  • Anusuya, S., & Sathiyabama, M. (2016). Effect of chitosan on growth, yield and curcumin content in turmeric under field condition. Biocatalysis and Agricultural Biotechnology, 6, 102-106. https://doi.org/10.1016/j.bcab.2016.03.002
  • Ayan, İ., Arslan, S., & Acar, Z. (2020). Adaptation and some quality parameters of cool season Turfgrass species in Samsun conditions. Turkish Journal of Agriculture - Food Science and Technology, 8(9), 1971-1975. https://doi.org/10.24925/turjaf.v8i9.1971-1975.3590
  • Bushman, B. S., Robbins, M. D., Robins, J. G., Thorsted, K., Harris, P., & Johnson, P. G. (2020). Response to salt stress imposed on cultivars of three turfgrass species: Poa pratensis, Lolium perenne, and Puccinellia distans. Crop Science, 60(3), 1648-1659. https://doi.org/10.1002/csc2.20014
  • Capstaff, N. M., & Miller, A. J. (2018). Improving the yield and nutritional quality of forage crops. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00535
  • Chang, T., & Yoon, J. (2011). Growth response of Kentucky bluegrass and creeping bentgrass by foliar spray with chitosan formulation and seaweed extracts during Fall season. Asian Journal of Turfgrass Science, 25(2), 195- 201.
  • El-Maarouf-Bouteau, H., Meimoun, P., Job, C., Job, D., & Bailly, C. (2013). Role of protein and mRNA oxidation in seed dormancy and germination. Frontiers in Plant Science, 4. https://doi.org/10.3389/fpls.2013.00077
  • Franco, F., & Iriti, M. (2007). Callose synthesis as a tool to screen chitosan efficacy in inducing plant resistance to pathogens. Caryologia, 60(1-2), 121-124. https://doi.org/10.1080/00087114.2007.10589558
  • Głąb, T., Szewczyk, W., Gondek, K., Knaga, J., Tomasik, M., & Kowalik, K. (2020). Effect of plant growth regulators on visual quality of turfgrass. Scientia Horticulturae, 267, 109314. https://doi.org/10.1016/j.scienta.2020.109314
  • Goatley, M., Hensler, K., & Askew, S. (2017). Cool‐season Turfgrass germination and morphological development comparisons at adjusted osmotic potentials. Crop Science, 57(S1). https://doi.org/10.2135/cropsci2016.06.0482
  • Haebel, S., Bahrke, S., & Peter, M. G. (2007). Quantitative sequencing of complex mixtures of Heterochitooligosaccharides by vmaldi-linear ion trap mass spectrometry. Analytical Chemistry, 79(15), 5557- 5566. https://doi.org/10.1021/ac062254u
  • Hidangmayum, A., Dwivedi, P., Katiyar, D., & Hemantaranjan, A. (2019). Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants, 25(2), 313-326. https://doi.org/10.1007/s12298- 018-0633-1
  • Jogaiah, S., Satapute, P., De Britto, S., Konappa, N., & Udayashankar, A. C. (2020). Exogenous priming of chitosan induces upregulation of phytohormones and resistance against cucumber powdery mildew disease is correlated with localized biosynthesis of defense enzymes. International Journal of Biological Macromolecules, 162, 1825-1838. https://doi.org/10.1016/j.ijbiomac.2020.08.124
  • Kim, K. (2014). Effect of polymer, calcium, perlite and Chitosan in organic amendment on growth in Kentucky bluegrass. Weed & Turfgrass Science, 3(1), 19-28. https://doi.org/10.5660/wts.2014.3.1.19
  • Liu, H., Baldwin, C., Totten, F., & McCarty, L. (2008). Foliar fertilization for turfgrasses. Acta Horticulturae, (783), 323-332. https://doi.org/10.17660/actahortic.2008.783.34
  • Lopez-Moya, F., Escudero, N., Zavala-Gonzalez, E. A., Esteve- Bruna, D., Blázquez, M. A., Alabadí, D., & Lopez- Llorca, L. V. (2017). Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-16874-5
  • Ma, X., Zhang, J., Burgess, P., Rossi, S., & Huang, B. (2018). Interactive effects of melatonin and cytokinin on alleviating drought-induced leaf senescence in creeping bentgrass (Agrostis stolonifera).Environmental and Experimental Botany, 145, 1-11. https://doi.org/10.1016/j.envexpbot.2017.10.010
  • Marcum, K. B., & Pessarakli, M. (2010). Salinity tolerance of Ryegrass turf cultivars. HortScience, 45(12), 1882-1884. https://doi.org/10.21273/hortsci.45.12.1882
  • McMahon, G., & Hunter, A. (2012). Determination of the effects of plant growth regulators on Agrostis stolonifera and Poa annua. Acta Horticulturae, (937), 161-168. https://doi.org/10.17660/actahortic.2012.937.19
  • Metsalu, T., & Vilo, J. (2015). ClustVis: A web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. https://doi.org/10.1093/nar/gkv468
  • Mondal, M. M. A., Malek, M. A., Puteh, A. B., Ismail, M. R., Ashrafuzzaman, M., & Naher, L. (2012). Effect of foliar application of chitosan on growth and yield in okra. Australian Journal of Crop Science, 6, 918-921.
  • Müller, K., Linkies, A., Vreeburg, R. A., Fry, S. C., Krieger- Liszkay, A., & Leubner-Metzger, G. (2009). In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiology, 150(4), 1855-1865. https://doi.org/10.1104/pp.109.139204
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Nedukha, O. M. (2015). Callose: Localization, functions, and synthesis in plant cells. Cytology and Genetics, 49(1), 49- 57. https://doi.org/10.3103/s0095452715010090
  • Romanazzi, G., Feliziani, E., Baños, S. B., & Sivakumar, D. (2016). Shelf life extension of fresh fruit and vegetables by chitosan treatment. Critical Reviews in Food Science and Nutrition, 57(3), 579-601. https://doi.org/10.1080/10408398.2014.900474
  • Schatz, C., Viton, C., Delair, T., Pichot, C., & Domard, A. (2003). Typical physicochemical behaviors of Chitosan in aqueous solution. Biomacromolecules, 4(3), 641-648. https://doi.org/10.1021/bm025724c
  • St. John, L., Tilley, D., Hunt, P., & Wright, S. (2012). Plant Guide for Red Fescue (Festuca rubra) USDA-Natural Resources Conservation Service, Plant Materials Center, Aberdeen, Idaho 83210.
  • Tan, Y. N., Lee, P. P., & Chen, W. N. (2020). Dual extraction of crustacean and fungal Chitosan from a single Mucor circinelloides fermentation. Fermentation, 6(2), 40. https://doi.org/10.3390/fermentation6020040
  • Thiele, K., Wanner, G., Kindzierski, V., Jürgens, G., Mayer, U., Pachl, F., & Assaad, F. F. (2009). The timely deposition of callose is essential for cytokinesis in Arabidopsis. The Plant Journal, 58(1), 13-26. https://doi.org/10.1111/j.1365-313x.2008.03760.x
  • Trethewey, J., Rolston, M., McCloy, B., & Chynoweth, R. (2016). The plant growth regulator, trinexapac-Ethyl, increases seed yield in annual ryegrass (Lolium multiflorum Lam.). New Zealand Journal of Agricultural Research, 59(2), 113-121. https://doi.org/10.1080/00288233.2015.1134590
  • Vårum, K. M., Antohonsen, M. W., Grasdalen, H., & Smidsrød, O. (1991). Determination of the degree of N- acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field N.M.R. spectroscopy. Carbohydrate Research, 211(1), 17-23. https://doi.org/10.1016/0008-6215(91)84142-2
  • Vigliocco, A., Del Bel, Z., Pérez‐Chaca, M. V., Molina, A., Zirulnik, F., Andrade, A. M., & Alemano, S. (2019). Spatiotemporal variations in salicylic acid and hydrogen peroxide in sunflower seeds during transition from dormancy to germination. Physiologia Plantarum, 169(1), 27-39. https://doi.org/10.1111/ppl.13043
  • Wang, J., Burgess, P., Bonos, S. A., Meyer, W. A., & Huang, B. (2017). Differential physiological responses and genetic variations in fine fescue species for heat and drought stress. Journal of the American Society for Horticultural Science, 142(5), 367-375. https://doi.org/10.21273/jashs04121-17
  • Wennerberg, S. (2004). Kentucky Bluegrass Poa pratensis L. USDA NRCS Plant Guide. Retrieved January 19, 2021, from https://plants.usda.gov/plantguide/pdf/pg_popr.pdf
  • Wilen, C. A., Downer, A. J., Sutherland, A. M., Westerdahl, B. B., Baird, J. H., Caswell-Chen, E. P., Cudney, D. W., Elmore, C. L., Flint, M. L., Harivandi, M. A., & Lestrange, M. (2009). UC IPM Pest Management Guidelines: Turfgrass. UC ANR Publication 3365-T. Oakland, CA.
  • Xu, C., & Mou, B. (2018). Chitosan as soil amendment affects lettuce growth, photochemical efficiency, and gas exchange. HortTechnology, 28(4), 476-480. https://doi.org/10.21273/horttech04032-18
  • Yoon, O., Kim, S., Kim, K., & Lee, J. (2006). Effects of chiton on growth responses of creeping bentgrass (Agrostis palustris H.). Korean Turfgrass Science, 20(2), 167-174.
  • Yoon, O., & Kim, K. (2007). Effects of chitosan on the growth responses of Kentucky bluegrass (Poa pratensis L.). Korean Turfgrass Science, 21(2), 163-176.
There are 42 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Research Articles
Authors

Arda Acemi This is me

Duhan Tırlı This is me

Serdar Yıldız This is me

Fazıl Özen This is me

Publication Date December 15, 2021
Published in Issue Year 2021 Volume: 30 Issue: 2

Cite

APA Acemi, A., Tırlı, D., Yıldız, S., Özen, F. (2021). Developmental responses of perennial ryegrass, red fescue, and Kentucky bluegrass to In vitro chitosan treatments. Biotech Studies, 30(2), 63-70. https://doi.org/10.38042/biotechstudies.953507


ULAKBIM TR Index, Scopus, Google Scholar, Crossref, Scientific Indexing Services