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Iterative sparse reconstruction of spectral domain

OCT signal
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We propose and study an iterative sparse reconstruction for Fourier domain optical coherence tomography
(FD OCT) image by solving a constrained optimization problem that minimizes L-1 norm. Our method
takes the spectral shape of the OCT light source into consideration in the iterative image reconstruction
procedure that allows deconvolution of the axial point spread function from the blurred image during
reconstruction rather than after reconstruction. By minimizing the L-1 norm, the axial resolution and the
signal to noise ratio of image can both be enhanced. The effectiveness of our method is validated using
numerical simulation and experiment.
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Compressed sensing allows image construction from rel-
atively few measurements[1]. Techniques developed for
compressed sensing can be powerful signal processing
tools to enhance the quality of images such as ones ob-
tained from optical coherence tomography (OCT)[2]. In
this study, we propose to use L-1 norm minimization for
simultaneous OCT image reconstruction and deconvo-
lution. One of the big technical thrusts in OCT is to
improving the OCT imaging quality, including using a
light source with large bandwidth and Gaussian spectral
shape, optimizing reference reflectivity, using a high nu-
meric aperture objective in sample arm, etc. Neverthe-
less, software approachis a cost-effective way to achieve
OCT image enhancement. For example, deconvolution
can improve spatial resolution of OCT image, as well as
suppress side-lobes caused by the unevenness of source
spectral shape. If we regard OCT as a linear shift-
invariant system characterized by a point spread func-
tion (PSF) with finite spatial dimension, we can con-
sider an OCT image as the convolution of the system
PSF with the true object under imaging[3]. In previous
studies involving OCT image deconvolution, images were
first reconstructed with standard OCT signal process-
ing procedure and afterwards deconvolved with a known
kernel, i.e., the system PSF, using algorithms such as
Lucy-Richardson algorithm, Wiener algorithm, CLEAN
algorithm, etc[4−6]. However, the performance of these
reconstruction-deconvolution approaches is highly depen-
dent on the noise level of the raw spectral data. More-
over, these approaches would further decrease the image
signal to noise ratio (SNR) after deconvolution.

In this letter, we propose and study an iterative algo-
rithm for Fourier domain OCT(FD OCT) image recon-
struction by solving an L-1 norm regularized optimiza-
tion problem. L-1 norm is widely used in compressed
sensing (CS) as a measure of signal sparsity[1,2,7]. In our
iterative sparse reconstruction, the spectral shape of the
broadband light source of OCT system is taken into con-

sideration; therefore, our method essentially deconvolves
the PSF from the blurred image during the reconstruc-
tion rather than after reconstruction. In addition, by
minimizing the L-1 norm of an image, the sharpness and
SNR can both be preserved. To the best of our knowl-
edge, this approach for simultaneous reconstruction and
deconvolution of OCT image has not been investigated
before.

In this letter, we consider the reconstruction of individ-
ual A-scan and the PSF refers to one dimensional axial
PSF.

Denoting the spatial domain object (sample) as a vec-
tor x = [x0, x1, x2,, · · · , x(N−1)], Fourier domain (k-
space) measurements as a vector y = [y0, y1, y2, · · ·,
y(N−1)], and only considering the interference term of
the detected signal, we have

yk = Re

(

a0

∑

n

skxne−
j2πnk

N + εk

)

, (1)

where a0 is a constant taking into account the system
efficiency and detector response; j is the imaginary unit;
xn stands for sample field reflectivity in a small depth
interval from nδz to (n+ 1)δz with the depth referenced
to the zero-delay plane for reference and sample light; sk

stands for the normalized source spectral density within
the small spectral interval from k0 +kδk to k0 +(k+1)δk
where k0 indicates the starting wavenumber; εk stands for
noise term at the kth Fourier measurement bin; n = 0, 1,
2, · · · , N −1; k = 0, 1, 2, · · · , N −1. δk is the wavenum-
ber interval between adjacent Fourier measurement bin
and δz = π/(Nδk). In fact, x is an OCT A-scan and y
is a spectral interferogram.

Equation (1) can be also written in a matrix form as

y = ψx + ε, (2)

where ε is the noise vector, and Ψ is a N × N square
matrix which is the product of S, a diagonal matrix rep-
resenting source spectral shape, and F, the Fourier trans-
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formation operator, as shown in

ψ = a0SF;Snk =

{

0; if n 6= k
sk; if n = k

; Fnk = e−i 2πnk

N .

(3)
In standard OCT signal processing, inverse Fourier trans-
form (F−1) is applied to Fourier domain measurement y.
If the source has flat spectrum (sk is identical for different
values of k and we can assume sk ≡ 1), S is an identity
matrix and thus y = a0Fx. This allows x to be deter-
mined up to a scaling factor a0 by inverse Fourier trans-
form: x = (1/a0)(F

−1y) = F−1(Fx). However, in a real-
istic OCT system, S is not an identity matrix. Therefore,
the result of inverse Fourier transform on y is the convo-
lution of x with the system’s PSF and PSF = F−1S, as
shown in

1

a0
(F−1y) = F−1(SFx) = (F−1S) ⊗ x = PSF⊗ x, (4)

On the other hand, Eq. (2) shows that, theoretically
x can be reconstructed perfectly by multiplying y with
Ψ−1, if the inverse of Ψ exists and ε = 0. However,
unfortunately, Ψ is often an ill-conditioned matrix and
ε is not negligible. Nevertheless, x can be obtained by
solving a regularized optimization problem with iterative
algorithms. In this study, we use L-1 norm as a criterion
for a “good” reconstruction and reconstruct x by solving
the optimization problem shown in

minimize ||x||1

subject to ||ψx − y||22 < σ2 . (5)

Equation (5) poses a constrained optimization problem
that can be stated in the following Lagrangian form.

arg min
x

f(x)

f(x) = µ||x||1 +
1

2
||ψx − y||22

, (6)

where || · ||1 indicates L-1 norm of the reconstructed
image and || · ||2 indicates L-2 norm: ||ζ||1 =

∑

|ζi|;
||ζ||2 = (

∑

|ζi|
2)1/2. The first term of f(x) quantifies

image sparsity and the second term preserves data con-
sistency; µ > 0 is a constant parameter.

It is rational to solve the optimization problem that
involves both L-1 norm term and data consistency term
for the image reconstruction. For an image completely
deconvolved from the system PSF, the data consistency
term would have a small value; for an image with high
SNR, L-1 norm term would have a small value. There-
fore, Eq. (6) balances the trade-off between image sharp-
ness and SNR. Various algorithms were developed to
solve Eq. (6). Here we choose to use non-linear con-
jugate gradients (CG) and backtracking line-search algo-
rithm. Previously, we have used this algorithm to recon-
struct OCT image from randomly undersampled spec-
tral measurements, based on the principle of compressed
sensing[2]. Details of this algorithm are shown in Fig. 1.

We first evaluated the performance of our iterative
sparse reconstruction algorithm based on numerically
synthesized signal. We generated a source spectrum with
spectral fluctuation as shown in Fig. 2(a). According to
Eq. (4), the axial PSF of the OCT system is in fact

the inverse Fourier transform of the source spectrum. As
shown in Fig. 2(b), the main lobe of the axial PSF is
narrow due to the large bandwidth of the source spec-
trum. However, the PSF has a broadened pedestal, as
well as two side lobes, due to the spectral fluctuation.
When A-scan is formed by convolving PSF shown in Fig.
2(a) with the depth profile of the sample, such side-lobes
might introduce artifacts and lead to misinterpretation
of the resultant OCT image.

Spectral domain interferometric signal is simulated as-
suming a mirror is placed in the sample arm at depth
z0 = 0.5 mm (referenced to zero-delay plane). The re-
sultant spectral domain measurement y can be obtained
using Eq. (7) where n0 = z0/δz and sk takes value ac-
cording to the simulated source spectrum as shown in
Fig. 2(a) using

yk = sk cos
2πn0k

N
+ εk. (7)

f(x) = µ||x||1 + ||Ψx− y||22/2;

g = ∇f(x) = µx/(x∗x + w)1/2 + Ψ∗(Ψx − y) with w > 0

as a smoothing parameter; ∗ as conjugate transpose of a

matrix

Algorithm parameter:

α, β: line search parameters

Mmax: maximum number of iteration;

δ-stopping criteria by gradient magnitude

Interlization:

m = 0; x0 = 0; g0 = ∇f(x0); ∆x0 = −g0;

Iterations:

while ((m < Mmax)&&(||gm||2 > δ))

{

t = 1;

while (f(xm + t∆xm) > f(xm) + αt teal(g∗mxm))t = βt

xm+1 = xm + t∆xm

gm+1 = ∇f(xm+1)

γ = (||gm+1||2/||gm||2)2

∆xm+1 = −gm+1 + γ∆xm

m = m + 1

}

Fig. 1. Algorithm of the iterative L-1 norm minimization im-
age reconstruction.

Fig. 2. (a) Simulated source spectrum and (b) axial PSF of
the OCT system.
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For simplicity, we let the constant a0 to be 1 in our sim-
ulation. We also generated a random array to represent
the noise term ε. An example of spectral domain signal
(noise free) and additive noise are shown as red and blue
curves in Figure 3(a). A spectral interferogram y with
noise variance σ2(ε) equal to 1 was simulated. After-
wards, we reconstructed A-scan by solving the optimiza-
tion problem in Eq. (6) with µ = 1. The result obtained
from our iterative sparse reconstruction is shown in Fig.
3(b) as the red curve (linear scale). For comparison, A-
scan reconstructed using inverse Fourier transform from
the same simulated spectral data is shown as the black
curve (linear scale) in Fig. 3(b). Both black and red
curves in Fig. 3(b) are normalized to their maximum
values. Clearly, the red curve has a narrow main signal
lobe and significantly suppressed side-lobes compared to
the black curve. To compare the SNR performance, loga-
rithm scaled A-scans (xlog = 20log10(xlinear)) are shown
in Fig. 3(c) in which the red curve has a lower noise
floor. SNR of A-scan obtained from iFFT is 28 dB and
SNR of A-scan obtained from our sparse reconstruction
is 33 dB, indicating a 5 dB SNR enhancement.

To further evaluate the performance of the iterative
sparse reconstruction, we simulated y using Eq. (7) with
different levels of noise variance σ2. A-scans were ob-
tained from iterative sparse reconstruction, with µ equal
to 0.1 and 1, respectively. We compared four parame-
ters that quantitatively assess the reconstructed signal
and showed the results in Fig. 4[5]. The first parameter
was used to quantify the image sharpness (Fig. 4(a)):
Kpeak = (xi peak+1 + xi peak−1)/(2xi peak) where i peak
denotes the peak pixel index; the second parameter is
used to quantify the effectiveness of side-lobe suppression
(Fig. 4(b)): Kside−lobe=(xi side l + xi side r)/ (2xi peak)
where i side l and i side r indicate the pixel indices of left
and right side-lobes. A smaller value of Kpeak indicates
a sharper signal and a smaller value of Kside−lobe indi-
cates a better suppression of side-lobes. In addition, we
compared SNR defined as SNR=10log10(x

2
max/σ

2
x) (Fig.

4(c)) and L-1 norm (Fig. 4(d)) of the reconstructed A-
scans. In Fig. 4, results obtained from iterative sparse

Fig. 3. (Color online) (a) Spectral domain signal (noise free,
red) and noise (blue); A-scan obtained from sparse reconstruc-
tion (red) and iFFT (black) in (b) linear and (c) logarithn
scale.

Fig. 4. Quantitate evaluation of reconstructed A-scans us-
ing different values µ under different noise levels: (a) Kpeak

that assesses peak width; (b) Kside−lobe that assesses side-lobe
suppression; (c) SNR; (d) L-1 norm.

reconstruction are shown as circles (blue circles for
µ = 0.1 and green circles for µ = 1); while results ob-
tained from inverse Fourier transform are shown as black
curves. Figures 4 (a) and (b) show that both Kpeak

and Kside−lobe are reduced when the proposed iterative
sparse reconstruction was used. In other words, images
obtained using our iterative sparse reconstruction exhibit
narrower axial PSFs and significantly smaller side-lobes,
at various noise levels. These imply that our method
effectively deconvolves true “object” from system PSF
at different noise levels. Figure 4(c) shows that our it-
erative sparse reconstruction algorithm improves SNR
significantly when µ = 1. This result is due to the L-1
norm minimization nature of the algorithm. When sig-
nal sparsity is weighed more heavily (µ = 1 as oppose to
µ = 0.1), greater penalty is placed in pixels with small
value (usually noise) compared to pixels with large values
(usually signal). As a result, the large amplitude signal
stays large while small amplitude signal tends to dimin-
ish; therefore a higher SNR is obtained. Figure 4(d)
shows L-1 norm of reconstructed A-scans under different
noise levels. Results obtained with µ = 1 have smaller L-
1 norm, which is as anticipated because of larger weight
on L-1 norm minimization.

The effectiveness of our algorithm was further evalu-
ated using OCT data obtained experimentally. The OCT
system used is similar to the one used in Refs. [8,9]. A
broadband source was used in an OCT system with a
spectrum shown as Fig. 5(a). Three superluminescent
diodes (SLD) were combined together coherently to serve
as a light source. To achieve a large bandwidth, SLDs
with large differences in central wavelengths are selected;
this resulted in three peaks and two valleys in the com-
bined spectrum and generates a PSF similar to Fig. 2(b)
which has narrow main-lobe but has side-lobes with large
amplitude. Using a broadband source with spectrum
shown in Fig. 5(a), we obtained an OCT image of onion
cells. Results obtained from our iterative sparse recon-
struction and direct iFFT approach are shown in Figs.
5(b) and (c) using logarithm scale with the same dynamic
range for fair comparison. Clearly, Fig. 5(b) has much
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Fig. 5. (a) Spectrum of broadband source with spectral fluc-
tuation; (b) OCT image of onion cells obtained from iterative
sparse reconstruction; (c) OCT image of onion cells obtained
from iFFT; (d) comparison of A-scans obtained from different
approaches.

better defined cell boundaries compared to Fig. 5(c),
this is because our iterative sparse reconstruction decon-
volves the true image from the non-Gaussian point spread
function. Moreover, L-1 norm minimization inherently
reduces noise and therefore Fig. 5(b) appears to have
better SNR and contrast. A-scans are selected from the
same position in Figs. 5(b) and (c) (location indicated by
the red arrow in Fig. 5(b)) are shown in Fig. 5(d) as red
and black curves which clearly demonstrate the advan-
tage of our iterative sparse reconstruction: suppressed
side-lobe amplitude and noise level.

In conclusion, results obtained from numerical simu-
lations and experimental OCT imaging show that the
proposed iterative sparse reconstruction effectively de-
convolves the axial PSF from the blurred image dur-
ing reconstruction and simultaneously preserves the sig-
nal to noise ratio of an OCT image. Due to the non-

linear nature of our algorithm, when data sparsity is
over-emphasized with a large value of µ, small signals
might diminish to 0. However, choosing appropriate µ
will allow us to reconstruct signal close to the noise floor.
Our iterative reconstruction is advantageous compared
to other deconvolution methods such as inverse filtering,
because our method works robustly with noisy signal and
preserves SNR after deconvolution. It takes 0.3 s for the
computation of one A-scan using our iterative algorithm
with Matlab and it takes 0.0003 s to obtain and A-scan
using iFFT with the same computer. However, the iter-
ative algorithm can be accelerated to be real-time using
graphic processing unit (GPU)[10]. The algorithm used in
Ref. [10] is similar to our iterative sparse reconstruction
algorithm.
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