Skip to main content

Advertisement

Log in

A MATLAB toolbox for the efficient estimation of the psychometric function using the updated maximum-likelihood adaptive procedure

  • Published:
Behavior Research Methods Aims and scope Submit manuscript

Abstract

A MATLAB toolbox for the efficient estimation of the threshold, slope, and lapse rate of the psychometric function is described. The toolbox enables the efficient implementation of the updated maximum-likelihood (UML) procedure. The toolbox uses an object-oriented architecture for organizing the experimental variables and computational algorithms, which provides experimenters with flexibility in experimental design and data management. Descriptions of the UML procedure and the UML Toolbox are provided, followed by toolbox use examples. Finally, guidelines and recommendations of parameter configurations are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. A well-organized list of software available for the analysis of psychophysical functions, as well libraries/toolboxes for the collection of psychophysical data is available at http://visionscience.com/documents/strasburger/strasburger.html.

  2. Although the current toolbox was developed for the MATLAB environment, all source codes are contained in the toolbox and can be modified into other programing environments or languages.

Reference

  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. doi:10.1163/156856897X00357

    Article  PubMed  Google Scholar 

  • Brand, T., & Kollmeier, B. (2002). Efficient adaptive procedures for threshold and concurrent slope estimates for psychophysics and speech intelligibility tests. Journal of the Acoustical Society of America, 111, 2801–2810.

    Article  PubMed  Google Scholar 

  • Derman, C. (1957). Non-parametric up-and-down experimentation. Annals of Mathematical Statistics, 28, 795–798. doi:10.1214/aoms/1177706895

    Article  Google Scholar 

  • Durham, S. D., & Flournoy, N. (1995). Up-and-down designs I: Stationary treatment distributions. In N. Flournoy & W. F. Rosenberger (Eds.), Adaptive designs: Papers from the Joint AMS–IMS–SIAM Summer Conference held at Mt. Holyoke College, South Hadley, MA, July 1992 (pp. 139–157). Hayward, CA: Institute of Mathematical Statistics.

    Chapter  Google Scholar 

  • Emerson, P. L. (1986a). Observations on maximum likelihood and Bayesian methods of forced choice sequential threshold estimation. Perception & Psychophysics, 39, 151–153.

    Article  Google Scholar 

  • Emerson, P. L. (1986b). A quadrature method for Bayesian sequential threshold estimation. Perception & Psychophysics, 39, 381–383.

    Article  Google Scholar 

  • Fründ, I., Haenel, N. V., & Wichmann, F. A. (2011). Inference for psychometric functions in the presence of non-stationary behavior. Journal of Vision, 11(6), 16. doi:10.1167/11.6.16

    Article  PubMed  Google Scholar 

  • Garcia-Perez, M. A. (1998). Forced-choice staircases with fixed step sizes: Asymptotic and small-sample properties. Vision Research, 38, 1861–1881.

    Article  PubMed  Google Scholar 

  • Grassi, M., & Soranzo, A. (2009). MLP: A MATLAB toolbox for rapid and reliable auditory threshold estimation. Behavior Research Methods, 41, 20–28. doi:10.3758/BRM.41.1.20

    Article  PubMed  Google Scholar 

  • Green, D. M. (1990). Stimulus selection in adaptive psychophysical procedures. Journal of the Acoustical Society of America, 87, 2662–2674.

    Article  PubMed  Google Scholar 

  • Gu, X., & Green, D. M. (1994). Further studies of a maximum-likelihood yes–no procedure. Journal of the Acoustical Society of America, 96, 93–101.

    Article  PubMed  Google Scholar 

  • Hall, J. L. (1968). Maximum-likelihood sequential procedure for estimation of psychometric functions [Abstract]. Journal of the Acoustical Society of America, 44, 370. doi:10.1121/1.1970490

    Article  Google Scholar 

  • Hall, J. L. (1981). Hybrid adaptive procedures for the estimation of psychometric functions. Journal of the Acoustical Society of America, 69, 1763–1769.

    Article  PubMed  Google Scholar 

  • Harvey, L. O., Jr. (1986). Efficient estimation of sensory thresholds. Behavior Research Methods, Instruments, & Computers, 18, 623–632.

    Article  Google Scholar 

  • Harvey, L. O., Jr. (1997). Efficient estimation of sensory thresholds with ML-PEST. Spatial Vision, 11, 121–128. doi:10.1163/156856897X00159

    Article  PubMed  Google Scholar 

  • Kaernbach, C. (1991). Simple adaptive testing with the weighted up–down method. Perception & Psychophysics, 49, 227–229. doi:10.3758/BF03214307

    Article  Google Scholar 

  • Kaernbach, C. (2001). Slope bias of psychometric functions derived from adaptive data. Perception & Psychophysics, 63, 1389–1398.

    Article  Google Scholar 

  • King-Smith, P. E., Grigsby, S. S., Vingrys, A. J., Benes, S. C., & Supowit, A. (1994). Efficient and unbiased modifications of the QUEST threshold method: Theory, simulations, experimental evaluation and practical implementation. Vision Research, 34, 885–912.

    Article  PubMed  Google Scholar 

  • King-Smith, P. E., & Rose, D. (1997). Principles of an adaptive method for measuring the slope of the psychometric function. Vision Research, 37, 1595–1604.

    Article  PubMed  Google Scholar 

  • Klein, S. A. (2001). Measuring, estimating, and understanding the psychometric function: A commentary. Perception & Psychophysics, 63, 1421–1455.

    Article  Google Scholar 

  • Kontsevich, L. L., & Tyler, C. W. (1999). Bayesian adaptive estimation of psychometric slope and threshold. Vision Research, 39, 2729–2737.

    Article  PubMed  Google Scholar 

  • Lam, C. F., Dubno, J. R., Ahlstrom, J. B., He, N. J., & Mills, J. H. (1997). Estimating parameters for psychometric functions using the four-point sampling method. Journal of the Acoustical Society of America, 102, 3697–3703.

    Article  PubMed  Google Scholar 

  • Laming, D., & Marsh, D. (1988). Some performance tests of Quest on measurements of vibrotactile thresholds. Perception & Psychophysics, 44, 99–107.

    Article  Google Scholar 

  • Leek, M. R. (2001). Adaptive procedures in psychophysical research. Perception & Psychophysics, 63, 1279–1292.

    Article  Google Scholar 

  • Leek, M. R., Hanna, T. E., & Marshall, L. (1992). Estimation of psychometric functions from adaptive tracking procedures. Perception & Psychophysics, 51(3), 247–256.

    Google Scholar 

  • Levitt, H. (1971). Transformed up–down methods in psychoacoustics. Journal of the Acoustical Society of America, 49(2, Pt. 2), 467–477. doi:10.1121/1.1912375

    Article  PubMed  Google Scholar 

  • Lieberman, H. R., & Pentland, A. P. (1982). Microcomputer-based estimation of psychophysical thresholds: The Best PEST. Behavior Research Methods & Instrumentation, 14, 21–25. doi:10.3758/BF03202110

    Article  Google Scholar 

  • Otto, S., & Weinzierl, S. (2009). Comparative simulations of adaptive psychometric procedures. In Jahrestagung der Deutschen Gesellschaft für Akustik (pp. 1276–1279). Rotterdam, The Netherlands: Deutsche Gesellschaft für Akustik.

  • Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437–442. doi:10.1163/156856897X00366

    Article  PubMed  Google Scholar 

  • Poppe, S., Benner, P., & Elze, T. (2012). A predictive approach to nonparametric inference for adaptive sequential sampling of psychophysical experiments. Journal of Mathematical Psychology, 56, 179–195.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prins, N. (2012a). The adaptive psi method and the lapse rate. Journal of Vision, 12(9), 322. doi:10.1167/12.9.322

    Article  Google Scholar 

  • Prins, N. (2012b). The psychometric function: The lapse rate revisited. Journal of Vision, 12(6), 25. doi:10.1167/12.6.25

    Article  PubMed  Google Scholar 

  • Prins, N. (2013). The psi-marginal adaptive method: How to give nuisance parameters the attention they deserve (no more, no less). Journal of Vision, 13(7), 3. doi:10.1167/13.7.3

    Article  PubMed  Google Scholar 

  • Prins, N., & Kingdom, F. A. A. (2009). Palamedes: MATLAB routines for analyzing psychophysical data. www.palamedestoolbox.org

  • Rose, R. M., Teller, D. Y., & Rendleman, P. (1970). Statistical properties of staircase estimates. Perception & Psychophysics, 8, 199–204.

    Article  Google Scholar 

  • Shen, Y. (2013). Comparing adaptive procedures for estimating the psychometric function for an auditory gap detection task. Attention, Perception, & Psychophysics, 75, 771–780. doi:10.3758/s13414-013-0438-9

    Article  Google Scholar 

  • Shen, Y., & Richards, V. M. (2012). A maximum-likelihood procedure for estimating psychometric functions: Thresholds, slopes, and lapses of attention. Journal of the Acoustical Society of America, 132, 957–967.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor, M. M. (1971). On the efficiency of psychophysical measurement. Journal of the Acoustical Society of America, 49, 505–508.

    Article  PubMed  Google Scholar 

  • Taylor, M. M., & Creelman, C. D. (1967). PEST: Efficient estimates on probability functions. Journal of the Acoustical Society of America, 41, 782–787.

    Article  Google Scholar 

  • Treutwein, B. (1995). Adaptive psychophysical procedures. Vision Research, 17, 2503–2522.

    Article  Google Scholar 

  • Treutwein, B. (1997). YAAP: Yet another adaptive procedure. Spatial Vision, 11, 129–134.

    PubMed  Google Scholar 

  • Treutwein, B., & Strasburger, H. (1999). Fitting the psychometric function. Perception & Psychophysics, 61, 87–106.

    Article  Google Scholar 

  • Urban, F. M. (1910). The method of constant stimuli and its generalizations. Psychological Review, 17, 229–259.

    Article  Google Scholar 

  • Watson, A. B., & Pelli, D. (1983). QUEST: A Bayesian adaptive psychometric method. Perception & Psychophysics, 33, 113–120. doi:10.3758/BF03202828

    Article  Google Scholar 

  • Watson, A. B., & Solomon, J. A. (1998). Psychophysica: Mathematica notebooks for psychophysical experiments. Spatial Vision, 10, 447–466.

    Article  Google Scholar 

  • Wetherill, G. B., & Levitt, H. (1965). Sequential estimation of points on a psychometric function. British Journal of Mathematical and Statistical Psychology, 18, 1–10.

    Article  PubMed  Google Scholar 

  • Wichmann, F. A., & Hill, N. J. (2001a). The psychometric function: I. Fitting, sampling, and goodness of fit. Perception & Psychophysics, 63, 1297–1313. doi:10.3758/BF03194544

    Google Scholar 

  • Wichmann, F. A., & Hill, N. J. (2001b). The psychometric function: II. Bootstrap-based confidence intervals and sampling. Perception & Psychophysics, 63, 1314–1329. doi:10.3758/BF03194545

    Article  Google Scholar 

  • Zchaluk, K., & Foster, D. H. (2009). Model-free estimation of the psychometric function. Attention, Perception, & Psychophysics, 71, 1414–1425. doi:10.3758/APP.71.6.1414

    Article  Google Scholar 

Download references

Author note

This work was supported by NIH NIDCD Grant No. R21 DC010058, awarded to the third author. We acknowledge Sierra N. Broussard’s assistance in running several computer simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y., Dai, W. & Richards, V.M. A MATLAB toolbox for the efficient estimation of the psychometric function using the updated maximum-likelihood adaptive procedure. Behav Res 47, 13–26 (2015). https://doi.org/10.3758/s13428-014-0450-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13428-014-0450-6

Keywords

Navigation