Skip to main content
Log in

Tachistoscopic exposure and masking of real three-dimensional scenes

  • Published:
Behavior Research Methods Aims and scope Submit manuscript

Abstract

Although there are many well-known forms of visual cues specifying absolute and relative distance, little is known about how visual space perception develops at small temporal scales. How much time does the visual system require to extract the information in the various absolute and relative distance cues? In this article, we describe a system that may be used to address this issue by presenting brief exposures of real, three-dimensional scenes, followed by a masking stimulus. The system is composed of an electronic shutter (a liquid crystal smart window) for exposing the stimulus scene, and a liquid crystal projector coupled with an electromechanical shutter for presenting the masking stimulus. This system can be used in both full- and reduced-cue viewing conditions, under monocular and binocular viewing, and at distances limited only by the testing space. We describe a configuration that may be used for studying the microgenesis of visual space perception in the context of visually directed walking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, M. J. (1979). Models of word recognition. Cognitive Psychology, 11, 133–176. doi:10.1016/0010-0285%2879%2990008-2

    Article  Google Scholar 

  • Breitmeyer, B. G., & Öğmen, H. (2000). Recent models and findings in visual backward masking: A comparison, review, and update. Perception & Psychophysics, 62, 1572–1595.

    Article  Google Scholar 

  • Breitmeyer, B. G., & Öğmen, H. (2006). Visual masking: Time slices through conscious and unconscious vision. New York: Oxford University Press.

    Book  Google Scholar 

  • Fikes, T. G., Klatzky, R. L., Pellegrino, J., Hebert, C., & Murdock, L. (1990). Tachistoscopic exposure of real objects for measurement of reaction time and movement time. Behavior Research Methods, Instruments, & Computers, 22, 290–296.

    Article  Google Scholar 

  • Foley, J. M. (1978). Primary distance perception. In R. Held, H. W. Leibowitz, & H.-L. Teuber (Eds.), Handbook of sensory physiology: Vol. VIII. Perception (pp. 181–213). Berlin: Springer.

    Google Scholar 

  • Foley, J. M., & Richards, W. (1972). Effects of voluntary eye movement and convergence on the binocular appreciation of depth. Perception & Psychophysics, 11, 423–427.

    Article  Google Scholar 

  • Gegenfurtner, K. R., & Sperling, G. (1993). Information transfer in iconic memory experiments. Journal of Experimental Psychology: Human Perception & Performance, 19, 845–866. doi:10.1037/0096-1523.19.4.845

    Google Scholar 

  • Irwin, D. E., & Yeomans, J. M. (1986). Sensory registration and informational persistence. Journal of Experimental Psychology: Human Perception & Performance, 12, 343–360. doi:10.1037/0096-1523.12.3.343

    Google Scholar 

  • Klatzky, R. L., Lederman, S. J., & Matula, D. E. (1993). Haptic exploration in the presence of vision. Journal of Experimental Psychology: Human Perception & Performance, 4, 726–743. doi:10.1037/0096-1523.19.4.726

    Google Scholar 

  • Lehmkuhle, S., & Fox, R. (1980). Effect of depth separation on metacontrast masking. Journal of Experimental Psychology: Human Perception & Performance, 6, 605–621. doi:10.1037/0096-1523.6.4.605

    Google Scholar 

  • Loomis, J. M., Da Silva, J. A., Fujita, N., & Fukusima, S. S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology: Human Perception & Performance, 18, 906–921. doi:10.1037/0096-1523.18.4.906

    Google Scholar 

  • Loomis, J. M., Da Silva, J. A., Philbeck, J. W., & Fukusima, S. S. (1996). Visual perception of location and distance. Current Directions in Psychological Science, 5, 72–77. doi:10.1111/1467-8721.ep10772783

    Article  Google Scholar 

  • Philbeck, J. W. (2000). Visually directed walking to briefly glimpsed targets is not biased toward fixation location. Perception, 29, 259–272.

    PubMed  Google Scholar 

  • Philbeck, J. W., Loomis, J. M., & Beall, A. C. (1997). Visually perceived location is an invariant in the control of action. Perception & Psychophysics, 59, 601–612.

    Article  Google Scholar 

  • Potter, M. C. (1976). Short-term conceptual memory for pictures. Journal of Experimental Psychology: Human Learning & Memory, 2, 509–522. doi:10.1037/0278-7393.2.5.509

    Google Scholar 

  • Ryan, T. A., & Schwartz, C. B. (1956). Speed of perception as a function of mode of representation. American Journal of Psychology, 69, 60–69. doi:10.2307/1418115

    Article  PubMed  Google Scholar 

  • Sedgwick, H. A. (1986). Space perception. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of perception and human performance: Vol. 1. Sensory processes and perception (pp. 21.1–21.57). New York: Wiley.

    Google Scholar 

  • Thomson, J. A. (1980). How do we use visual information to control locomotion? Trends in Neurosciences, 3, 247–250.

    Article  Google Scholar 

  • Thomson, J. A. (1983). Is continuous visual monitoring necessary in visually guided locomotion? Journal of Experimental Psychology: Human Perception & Performance, 9, 427–443. doi:10.1037/0096-1523.9.3.427

    Google Scholar 

  • Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception & Performance, 32, 1436–1451. doi:10.1037/0096-1523.32.6.1436

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Pothier.

Additional information

This work was supported in part by NIH Grant RO1 NS052137 to J.P.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pothier, S., Philbeck, J., Chichka, D. et al. Tachistoscopic exposure and masking of real three-dimensional scenes. Behavior Research Methods 41, 107–112 (2009). https://doi.org/10.3758/BRM.41.1.107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/BRM.41.1.107

Keywords

Navigation