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1 Introduction

The Tribonacci number sequence is inspired by the
Fibonacci number sequence and is a number
sequence with 3-term recurrence. It is used in many
branches, as in the Fibonacci number sequence.
Many generalizations of this number sequence such

as Padovan, Narayana, Perrin have been put forward
and studied [ 1-8, 10-12].

The term Tribonacci was first used by Feinberg in
1963 [14]. Later, many basic features were studied
[15-19].

We know that the Tribonacci numbers T, are
defined by

TTl = Tn—l + TTL—Z + Tn_3, n=3

with Ty = 0,T; =0 and T, = 1 [9].

In this study, a new Tribonacci number sequence is
obtained with the help of Riordan sequence and
Pascal matrix by bringing a new perspective to the
existing definitions of traditional number sequences.
Additionally, based on Pascal's matrix, we factor
two types of d-Tribonacci polynomials.

Also, infinite d-Tribonacci polynomial matrices and
the inverses of these polynomials are found.

It is thought that if these values are placed in the
Riordan array appropriately by working on the
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initial values, it will allow similar studies to be
made on many number sequences where a Riordan
array is given as an infinite lower triangular matrix
D=|[d ”-“]n 1o if its ith column generating function

is g(x)(f(x))' fori = 0. Note that the first column
is indexed by 0 and we accept dy, = go = 1 [13].

Throughout this paper, let p;(x) and q;(x) be
polynomials with real coefficient for i =1,...,d +

1.

Definition 1.1 d-Fibonacci polynomials are given
as:

Frp1(x) = p1 (0 F, (%) + po () Fp_1 (x) + -+ +

Pa+1(X)Fp_q(x) (1)
with F,(x)=0forn < 0and F,(x) = 1 [12].
Similarly, d-Lucas polynomials are defined by
Lpt1(x) = Fry1(0) + p2 () Fpog () + - +
Pa+1(X)Fp—q(x) 2)

with L,(x) =0forn < 0and Ly(x) =
2 and L, (x) = p,(x) [12].
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The Riordan matrices is given as a set of matrices
M=(my).i,j20  where (m;;) are complex

numbers [13].

The Riordan group is defined as a set of infinite
lower-triangular integer matrices where each matrix
is defined by pair of formal power series
g(ZJ = Z?:ngzn and f(Z) = :{::0 nz" with 9o #0

and f; = 1 [13].

In this study, we describe new generalizations of
Tribonacci  polynomials. Some combinatorial
properties of matrix representations of d-Tribonacci
polynomials are obtained with the help of Riordan
arrays. In addition, d-Tribonacci number sequence is
obtained by considering the Pascal matrix. Based on
the Pascal matrix, d-Tribonacci polynomials have
two types of factors.. Also, infinite d-Tribonacci
polynomial matrices and the inverses of these
polynomials are given.

2 Generalization of Tribonacci

Polynomials

Definition 2.1. d — Tribonacci polynomials are
given by

To(x) = q1 ()T, 1 (%) + g2 (X) T2 (x) +
q3(X)Tp—3(x) + =+ + qg41 () T—g—1 (%) 3)

with Ty(x) = 0,T;(x) = 1,T,(x) =1 and T,(x) =
0 forn < 0.

A few terms of these polynomials:

To(x) = 0,T1(x) = L,T,(x) = 1,
Ty(x) = qf(x) + g2(x)

T3(x) = q,(x),

Ts(x) = q3 (x) + 29, (x)q2 (x) + q3(x)

From equation (3), its characteristic equation are
obtained as

s —q(x)s? — g ()5 = = a1 (x) = 0.
Its roots: {87 (x), 82(x), ..., 6441 (X)}.

Theorem 2.3. Generating function of d-Tribonacci
polynomials T, (x) is
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T(x,s)
- Z T, (x)s"
n=0
52
- (1= q,(x0)s = q(x)s%2 — -+ = qg41 (X)s4+1)’

Proof. We have

T(x,s) = To(x) + Ty (x)s + T, (x)s? + T3(x)s> +
T, (x)s* + -+ (4)

Multiply Eq. (4) by

a1 (X)S, q> (x)SZ’ L) Qd+1(x)5d+1,
The following equations are obtained.

respectively.

41 (ST (x,5) = g1 (x)sTo (x) + q1 (x)s*Ty (x) + -+

Qa+1()sTT(x,5)
= Qd+1(x)5d+1To(x)
+ Qa1 (O)s¥2Ty (x) + -

If the necessary calculations are made, we get

T(x,9)[1 = q,(x)s — g (x)s? — -+ —
Qa+1(0)s?] = To(x) + S(Tl(x) - CI1(X)T0(X)) +
s2(Ty(x) — 1 ()T (x) — g2 (X)To(x)) + 0 + -+,

SZ

(1-01(x)5=q2(x)s2=+~qg4+1 (X)s 1)’

T(x,s) =

Its Binet formula has the following form

a+1

Ta() = ) K()(G()"
i=1

We get the following equation for each value of n.

a+1

To() = ) Ki(x)
i=1

da+1

TG = ) KOG
i=1
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d+1 Multiplying both sides of above equations by
T,(x) = Z K; (x)(6; x)™ s,s2,...,s™, respectively, we have:
at+l1 The sum of the left-hand side of the equations:
Ty() = Y K@)
i=1 s?
di1 (1 —q1(0)s — q2(0)s? — -+ = ga41 (D)s 1)
- 1
sTy(x) = Z Ki(x)(6;(x))"s The sum of the right-hand side of the equations:
d+1
D K@+ @G + -+ (800"
d+1 = a1
S0 = ) K () (B ()" z 00 ()
x
i=1 i) 6 ((X)s

so, we get

a+1

s? B Z ( K;(x) )
(1= q10)s = q2()s? =+ = qap1 (s L\ =i (x)s/
Theorem 2.4. We have the following equation for n = 0.

n1 + nz + A + nd+1

et n2 Ng+1 2
Ny, Ny, v, Mg )q1 (x)g2"2 (%) - qa41 "1 (x) | 5%

To(x) = z (

ny+2n,++(d+1)ngy=n+2

Proof. Generating function for d —Tribonacci polynomials

2

N
T, (x)sn =
7;) " (1=q,(x)s — g, (x)s% — -+ — g4, (x)s%*1)
= Z(Ch(x)s + qz(x)sz + .+ qd+1(x)sd+1)n+2
n=0
3 N n+ 2
= Z Z [(n n n ) qlnl (X)qznz (x) qd+1nd+1(x)] Sn1+2n2+"'+(d+1)nd+1
n=0 \ni{+ny+-+ ngp=n+2 1, N2, o, Ngyq

N ny+n,+--+ ny
2 z ( ' n .,Zl ng +1) g™ (%) ;"2 (%) ... qgiqMF1(x) | sTF2
= 1, N, ..,y +1

ny+2ny,+-+(d+1)ng1=n+2

as desired.
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Theorem 2.5. The sum of the d —Tribonacci
polynomials:

STn(x)
= iT () = &
) n=0 O q1(x) — q2(x) — = — qay1 (x)

Proof. We have

STa(9) = ) Ty
n=0
=To(x) +Ty(x) + -+ T (x) + -
Multiplying the last equation by q; (x), ..., @g+1(x),
respectively then we obtain

ST, (x)
- iT () = :
B n=0 mE TS q1(x) = q2(x) = — Qa1 ()

From [12], the d — Fibonacci polynomials matrix
Q4 has the following form

Bahar Kuloglu, Engin Ozkan

0 (0) ST () = Ty () + 4 (T ()
oty COT, () + -

Ga+1(0)ST (%) = qa41(X)To(x) + qg41 () Ty (%)
+ -+ qaer ()T (%) + -

From here, we have
ST, () (1=q1 (x) = g2 (x) = - — gg41(x)) = 1.

So, we get

where detQy = (—1)%qg41(%).

Matrix representation for Tj,(x) is given in
following theorem.

Theorem 2.7. The representation for T,, (x) is as
follows:

q1(x) q(x) - qg41(x)
1 0 0
Qa = o -
0 0 1 0
(%)
Thy2(x) G2 T (X) + -+ qap1 ()T g—_s (x) qa+1(0)Th41(x)
n_ Thy1 (%) q2 ()T (x) + -+ + qas1 () Th—g-5(x) Ga+1(0)The1(x)
Qq : : : (6)
Th-g+2(x) 420 Ty_gi1(X) + -+ a1 () Tr_2q42(x) Ga+1()Th_g41(x)

Proof. Let’s apply the induction over n to prove it.

Forn=1,

T3(x)  qz()Ty(x) + -+ + qa41 ()T—g—3(x)
04! = T (x) 42T () + -+ Gasa () T-a-4 (%)

T3—¢.1(X)
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G2(OT—a(X) + ++ + Qa1 (T30 (x)

qa+1 ()T (x)
qd+1(x)T1(x).

qd+1(x)T2_d(x.)
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1 (x) q2(x) - qar1(x)
1 0 0
0 .
= (7
0 0 1 0
From the definition of T, (x), the matrices in (5) and (7) are equal.
Suppose that the result satisfies for n. So, we obtain
Thi2(x) G200 Tpg1 () + -+ qap1 () Tr_g-a(x) Ga+1(0)The1(x)
Q" = Tn+1(.35) g2 ()T (x) + - + Qd+1.(x)Tn—d—5(x) qd+1(x)Tn+1.(x)
Th—a+2(x) G20 Tr_qe1(X) + -+ Gas1 () Tr_2q42(x) Ga+1()Th_gs1(x)
Let’s prove it for n + 1. So, we get
2= ROy
Tha2(x) G2 () Ty () + 4 qae1 () Tr_g-a(x) Ga+1 ()T (x)
The1(x) G2 ()T (x) + - + qa41 () Ty—q-5(x) Ga+1(0)Thy1(x)
Tn-a+2(x) 420 Tr_qs1(X) + -+ qa41 () T_2q42(x) Ga+1()Th_gs1(x)
1 (0) q2(x) - qae1(x)
1 0 0
0o -~
K |
0 0 1 0 /
Thy3(x) G2 () Tny2(X) + -+ qay1 () Tp—q-3(x) Ga+1(0) T2 (x)
Thi2(x) q2 () Ty () + -+ qa41 () Tp_g -4 (x) Ga+1(0)Thy2(x)
Tn—a+3(x) G2 () Tr_qr2(X) + -+ qa41 () T_2q43(x) Ga+1()Tr_g+2(x)
Corollary 2.8. For n,m > 0, we have The first row and column of matrix Q™™ is the

Tn+m(x) = Tn+2(x)Tm+2(x)
+ (@20 Ty 1 () Ty () T 1 ()
+ e
+ qa+1() T q12(0) T4 (%))
+ o+ Qa1 ()T ()T g2 (X)

Proof. We know

QzQd' = Qa™™.
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result.

Lemma 2.9. Forn > 1,

T (%) = Fp_1(x).

Proof. For n = 2 equality is true
T,(x) =F(x) =1

Let the equality be true for n = k. For n = k + 1,
we show that the equation is true.
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T41(x) = g1 ()T (x) + g2 () Tje—1 (x) + - + Fre(x) = q1 () Fe—1(x) + 2 (X) Fe—(x) + - +
qa+1 () Tp—q(x), Ga+1(X)Th—g—1(x).

Theorem 2.10. Ford = 2,n = 0,

n1 + n2 + te + nd+1
( ) 0™ 0™ () - Qa5 () Tz sy sngey ()

Ny et ny,Nny, o, N4

(d+1)nq+dny+--+ngy=n+2

= Tha+1)(x) ®)
Proof. For n = 1, we have Let us show the right-hand side of (8) by RH.
Tar1(x) = q1)Ta(x) + g, )Ty (x) + -+ + For n > 0, we have
qa+1(X)To (x).

RH

d+1
(nl + nz + b + nd+1

) 41" (X) . a1 " () | ) K; (x)(5i(x))”+2_("1+"2+"'+"d+1)]

Ny, N,y ey Ng41

nq,N2,..,Ng41 =1

(d+1)nq+dny+-+ngy=n+2

n+n;+--+n
_ (M ) 400 g™ ()

d+1
K:(3)(8: () @ni+(d=—1nz++ng41)
R Mg PRISICTE

=1

NNz, Nd+1
(d+1)nq+dny+--+ngp=n+2

n1 + nz + i + nd+1

Ki() > ( ) (680 09)™ (38 ()4 (0)™ - (A0 00)™"

NNz, Nd+1
(d+1)n1+dn2 +"'+Tld+1=n+2

Ny, Ny, e, Ngy1

nl + nz + -+ nd+1
+ o Ky () (

) (680 (0)"™ (8871 (02 (1)) ™ - (dasa (0)"

NNz, aNdse1 N1, N2, e Na g

(d+1)nq+dny+--+ngp=n+2

= K;(x) [6{1 () qq (%) + 6371 (x) gp (x) + -+ from characteristic equation, we obtain
n
+qap ()] + - 41
=YK () (6;(x0)F ) =T, x).
+ Kd+1(X)[5f(X)q1(X) Zl—l l( )( l( ) ) n(d+1)( )
+ 88710 q () + -+ qar ()] as desired.
Lemma2.11. Forn > 1, =Ly 1(x) — (@2 () Fp_p(x) + -+

+ qa+1(X)Fp—q-1(x))
To(x) = Ly_1(x) — Ey (%) + q1 (x)Fp_1 (x).

= Lp_1(x) — F,(x) + q1 (x)Fr—1 (x)
Proof. From (2) we get n-1 n 41 n—-1

Tp(x) = Fpoq(x) = L1 (%) — q2(x) F_2(x) —
= qa+1(X)Fp—q-1(x)
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3 The Infinite Tribonacci Polynomials
Matrix

The d —Tribonacci polynomials matrix is showed
by

T(x) = [qu,qz,...,qd+1,i,j(x)]

and defined as follows

1 0
/ q1(x) 1
T(x) = k 312(x) + q(x) a1 (x)

s1(x) sp(x)
= (gT(x) (s), fT(x) (s)),

where s1(x) = g,3(x) + 2¢1 (x)q2 (%) + q3(x)
s3(x) = qq(x)

$;(x) = q12(x) + q,(x) and

This Tribonacci polynomial matrix can also be
written as,

T(x)
T,(x) Ti(x) To(x) O 0

T3(x) To(x) Ti(x) To(x) O
Th(x) T3(x) To(x) Ti(x) To(x)
Note that 7' (x) is a Riordan matrix.
Theorem 3.1. The first column of matrix 7" (x) is
(1,41(%), q12() + g2 (x), ..

From the Riordan group theory, we get the
generator function of the first column as follows:

1
T A= q1(0)s — g% — - — qap1 (0)s9HLY’

Proof. Generating functions of the first column of
matrix T (x) is

1+ q(0s + (42200 + g2(0)) + .

If we do operations like the proof of Theorem 2.4,
then

E-ISSN: 2224-2880

210

Bahar Kuloglu, Engin Ozkan

1
(1—q1(x)s—q2(x)52—~-~—qd+1(x)sd+1)‘

97 (%) (s) =
The desired expression is obtained.

From the Riordan matrix, fr(s) =s.

T@) = (976 fren ()

1
B <(1 — q1(x)s — qp(x)s2 — -+ — Qd+1(x)5d+1)'s>.

If the d —Tribonacci polynomials matrix 7 (x) is
finite, then the matrix is

Tr(x)
T, (x) 0 0 00
0 0

T3(x) 1 0
To(x) Tpoy(®) Tpn(®) T, (x)

and
detT;(x) = |T:(x)| = (D™ = 1.

We give two factorizations of Pascal Matrix with
the d —Tribonacci polynomials matrix. Now, we
give a matrix M (x) = (m; ;(x)),

(a7

~aea@ (' 007)

So, we get
1 0 0
1-q,(x) 1 0 \

= 1—q1(x) — q2(x) 2-q:(x) 1
1—q,(x) - qz(X) —q(x) 3- qu(x_) —q:(x) 3- ql(X)

M(x)

Thus we can introduce the first factorization of
the infinite Pascal matrix.

Theorem 3.2. The factorization of the infinite
Pascal matrix is

P(x) =T (x)M(x).

Proof. The generating function from the first
column of matrix M (x) is

Iue () =1+ (1—q.(0))s + (1 — q1(x)
— qa(x))s%) + -
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=(Q+s+s?+-)—q()(s+s>+s3+-)
—_ qz(x)(sz —+ 53 =+ ...) =+ .-
+ qd+1(sd+1 + Sd+2 + ___)

2 d+1
_ 1 a5 st qawS
1-s 1—s 1-s 1-s
— 1-q15—qp8%——qg415%"1
1-s

From the Riordan matrix, we get fyx)(s) as
follows

fueo () =5+ (2 — g, (x))s?
+(3-2q:(x0) — q2(x))s% + -

=(s+2s2+3s3+-)
—q1S(s+2s2+3s3 + ) — -
— qas15* (s + 252 + 353 + )

__S (1—015—‘2252—"'—Qd+15d+1)
1-s 1-s ’

From definition of the Riordan array, i th column
generating function is g (x)(f(x))"
S
fue () = —.

Thus, M (x) has the following form

M) = (gueo (), fue ()

(1= q15—q25% — = qqas?T s
B 1-—s "1—5s)/)

From the definitions of infinite Pascal matrix and
the infinite d —Tribonacci polynomials matrix, the
Riordan representations:

T(x) = (

1
(1-a1(0)s=q2(x)s2~=qa+1 (x)s9+1)’ S)'
From the matrix multiplication, the proof is ok.

Secondly, we introduce other factorization of the
Pascal matrix with the d —Tribonacci polynomials
matrix. Let’s give an infinitive N(x) = (n;;(x)) as
follows.

E-ISSN: 2224-2880
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miy = (71) - 000 (7) — ) (7) -
o= qge1(x) (;(11)

We give the infinite N (x) by

N(x)
1 0 0
1—q(x) 1 0
= 1—2q,(x) — q2(%) 2-q1(x) 1
1-3q:(x) - ?qz(X) —qz(x) 3-2q (9{) —q.(x) 3- ql(x)

m o oo

Now, we introduce the final factorization of the
infinite Pascal matrix.

Theorem 3.3. The factorization of the infinite
Pascal matrix:

P(x) = T(x)N(x).
Proof. The proof is similar to Theorem 3.2.

Now, we can give the inverse of d —Tribonacci
polynomials matrix by helping the definition of the
reverse element of the Riordan group in [11].

Corollary 3.4 The inverse of d — Tribonacci
polynomial:

T7'(x) = (1—q15 — o5 =+ —

d+1
danst,s).

4 Conclusion

In this study, new generalized Tribonacci
polynomials have been introduced and studied.
Some combinatorial properties of the d —Tribonacci

polynomials matrix representations are obtained
with the help of Riordan arrays. In addition, d-
Tribonacci number sequence has been obtained by
considering the Pascal matrix. Based on the Pascal
matrix, two kinds of factors of d-Tribonacci
polynomials were found.  Also, infinite d —

Tribonacci polynomial matrices and the inverses of
these polynomials were found.
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