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Abstract— Migration of Legacy applications into modern 

Cloud, IOT architecture are challenging tasks and many 

researchers are showing interest to build modern Real time cloud 

and IOT based applications like smart cities, Video mining, 

Health care, Industrial event monitoring and many more for 

modern human life. Such applications should require efficient 

online data streaming techniques to process large amount of 

unstructured  online data streams instead of offline. Modern 

customer centric applications with different verticals are looking 

for distributed and horizontal data streaming approaches. Many 

real time streaming approaches are emerging to utilize or process 

large real-time data by replacing legacy centralized scenarios 

which are causing more memory utilization, delay and fault 

tolerance. In this paper we present common models and 

architectures for real time utilization of cloud and IoT based 

application stream processing. Utilization of the real-time data of 

IoT/Cloud applications are possible with collective streaming 

techniques of network, data processing. In this paper we are 

focusing on improving stream processing techniques, limitations 

and future research directions for real-time stream processing. 

 

Keywords— Big Data, Big Data Processing, Stream  

Processing, IoT. 

I. INTRODUCTION 

Big Data has become a popular term which is used to 

describe the exponential growth and availability of data. As 

a reason there is a demand for large-scale data processing 

and data analysis applications to handle large amount of 

data. NIST defines big data as “The inability of traditional 

data architectures to efficiently handle the new datasets”.  

The Characteristics of Big Data according to NIST  are 

defined as   

• Volume (the size of the dataset)  

• Variety (data from multiple repositories, domains) 

• Velocity (rate of flow)  

• Variability (the change in other characteristics) 

Big data is classified  on five aspects 

• Data sources : The generation of data from 

different sources. 

• Content format : Format of data like image, text, 

mp3 etc 

• Data stores: The storage of data in different file 

systems 

• Data staging:  An intermediate stage for processing 

data. 

• Data Processing: where data is processing for 

further usage. 
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The rest of the research survey paper organized into three 

sections, Section II explains the background and survey 

work of the  research topic in detail. The Survey summary 

and performance evaluation in III. The Proposed 

architecture in IV. The conclusion and future directions of 

the work in section V. 

II. BACKGROUND AND SURVEY  

Big data is of different types basically dependent on how 

they are generated and how they are used. The processing 

types can  be as [3]  

I. Batch processing 

II. Stream processing 

III. Graph processing 

IV. Machine learning processing 

Difference between batch and stream processing can be 

given as follows[8] 

                            queries                       results 

                                            
                          fig:1.1 Batch processing system 

 

                                  data        results 

    

                    fig:1.2  Stream processing system      

                        

• In batch processing data is stored and indexed and 

then processed but stream processing takes inbound data 

while it is in flight.  

• Stream processing is designed to analyze and act 

on real-time data . 

• In batch data is collected stored and analyzed. In 

this users are in active state and data analytics and 

processing systems is in passive state.  

• In stream the users are passive and processing 

systems are active. 

Data streams  can differ across domains, but in general, it 

is  commonly considered as input data that arrives at a high 

rate, and continuously at different speeds. As a result there 

is a great demand for communication and computing 

infrastructure. The data types  in a stream may vary 

according to the applications, including discrete signals,  
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event logs, monitoring information, time series data, audio, 

video, among others. It is also important to distinguish 

between streaming data when it arrives at the processing 

system for instance, a log or queuing system, and 

intermediate streams of tuples resulting from the processing 

by system elements. 

Data stream is a collection of unbounded data elements 

(data packets) generated in time. Modern society are 

monitored or manage by various devices like sensors, 

actuator, cameras which generates real time high volume of 

environmental data and send as data streams to Cloud / IoT 

Platforms. Once the data received by stream processing 

system the streaming system then do the validations like[9]: 

 What type of data received by stream ex: .CSV, 

JSON, HDFS, …? 

 How to process the stream valuable data? 

 How to utilize the real-time data for multiple 

applications through various channels. 

Robust streaming techniques has to process real time data 

without delay and  should be able to forecast at application 

layer. IoT applications like the business specific and content 

curation will vary application to application. Designing and 

implementation of such streaming engine should have 

capabilities  like stream partitioning, Query mobility, 

availability, storage. In this paper we discussed about the 

various existing steaming platforms and their capabilities. 

 A stream  processing architecture can comprise multiple 

tiers of collecting and processing data, with the connection 

between these tiers. The following architecture [6]is a 

modern stream processing architecture  with different layers 

like data collection from different layers and analysis at top 

layer. 

fig: 2.1 Framework of stream processing system 

 

The  generations of stream processing engines are 

summarized as follows. At present the fourth generation 

techniques are following[8]. 

Generations of stream processing engines 

 

                                First: Extension to traditional  DBMS 

                                 

                              Second: Distributed execution 

                      

                              Third: User defined functions 

                        

                             Fourth : Distributed computing 

 

                           

 

MapReduce [16] process the larger data sets and also 

works like a programming model by itself. Lagging 

distributed space to main scalability of the connected 

devices is one of the demerits of this system. MIT and 

Brown University jointly implemented Aurora [17] handles 

single site location data streaming, whereas Aurora 

seamlessly working with medusa to fulfill distributed 

streaming capabilities. SPADE [14] fulfill the stream 

scheduling and synchronization process for distributed 

systems. StreamIt [16] is programming language provides 

robust API (Filters, Connecting Filters, re-initialization, 

latency) to increase programmer productivity towards 

efficient streaming. Borealis [20] is the enhance version of 

Aurora supports distributed stream processing with core 

modules of both medusa and aurora. It allows to generate 

dynamic query results and make modifications. Modern 

distributed streaming systems supports internet-based cloud 

/ IoT applications, Apache S4, Apache Storm [11], Apache 

Samza [14], Spark Streaming [13], Twitter’s Heron [14], 

Neptune [15]. Some of the Commercial stream engines are 

developed by Microsoft and Amazon, such as Google 

Millwheel [16], Azure Stream Analytics [17], The typical 

architecture of modern distributed streaming engines 

illustrated in following figure[20]. 

 

 
fig:2.2 Distributed stream engine. 

Figure.1. Architecture of Distributed Real time Stream 

Processing Engines 
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III PERFORMANCE EVALUATION OF STREAM 

TECHNOLOGIES 

We evaluated these modern distributed streaming 

technologies with various performance metrics and 

presented their presence and non-presence of activities. 

Table .1. illustrates the detailed performance evaluation of 

the streaming technologies as follows: 

 

 

 

 

 

 

 

Feature / 

Functions 

Storm Spark Flink Samza SGD(Stochastic 

Gradient 

Decent) 

AWS-

AML 

Jubatus 

Programming  Clojure Scala Java Scala -- --  

Event Size Mini-

Batch 

Micro 

Batch 

Single Single   Batch 

Reliability Medium 

but 

High in 

Strom+ 

Trident 

 High High Medium High High 

Stream File       JSON 

Primitives        

State Record 

ACK’s 

Check 

Points 

Distributed  

Snapshots 

 Local and 

Distributed 

Snapshots 

(Fault 

Tolerance) 

   

Messaging        

Resource YARN 

Mesos 

YARN 

Mesos 

YARN 

  

YARN   YARN 

Fault 

Tolerance 

Yes Yes Yes Yes Yes Yes Yes 

Back-Pressure Low Low Yes Yes    

Latency Very 

Low 

Medium Low 

(Configurable) 

Low   Low 
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IV DISCUSSION & RESULTS 

The proposed system  mainly contains 3 parts, namely 

Connected devices (Non-TCP devices), Standard devices 

(Laptops, gateways, etc.,), Cloud environment. Once the 

stream data entered in to the Cloud environment data is 

processed in 5 steps, likely ingest, pipelines, Storage and 

application & presentation layers. Cloud Pub/Sub or 

commercial messaging system (Kafka) will publish and 

subscribe the information along with monitoring and 

logging services. In Pipelines stage cloud dataflow service 

will be used to process the data, GCP (Google Cloud 

Platform) offers Cloud Dataflow which is a custom  

implementation with open source Apache Beam. In the 

process the next stage is sub categorized as storage and 

analytics. Cloud storage have 3 services, Cloud storage 

(Amazon s3) offers BLOB storage type data and Bigtable 

offer HIVE based data. Bigtable allows to run basic SQL 

queries. Cloud data store is a SQL system allows to store 

small amount of information. Stream data analytics is used 

to visualize the data by Cloud DataProc (library designed by 

MapReduce and Apache spark). Cloud data lab adopts 

machine learning approach useful for data analysis which is 

the last and final stage. Application and presentation engine 

and Container engine are two different services useful to 

perform high-end computations for container application 

offered by Google Cloud Functions.  

Fig.4.1 A new stream processing system 

V CONCLUSION  & OPEN RESEARCH 

CHALLENGES 

 In this paper we identified, understand and examined the 

modern distributed stream processing technologies for 

processing real-time streams of Cloud and IoT based 

applications. We examined message system, how seamlessly 

work with streaming technologies/platforms. The legacy or 

offline streaming techniques can't able to  handle massive 

data generated by trillions of devices connect with large 

scale IoT Cloud based applications.  On designing and 

developing a new stream processing technique is useful to 

save the delay in processing, rollback, scheduling, 

portioning, etc. Novel distributed stream processing 

techniques are capable to achieve good throughput, i.e. 

around 1.2 million of messages per second /node with 75% 

of average utilization of CPU Cost. From the survey we 

identified that the existing streaming platform are not 

offering full-fledged API to survey better for data driven 

society in terms of real time data utilization. Some of the  

 

 

 

API’s  are lagging in terms of backpressure, flow control 

and time stamps, fault tolerance, state and memory 

utilization, stream partitioning and so on. Implementation of 

such API are interesting to build modern enterprise 

landscapes. 

Open Research Challenges 

Each distributed stream processing has unique 

capabilities, early and modern distributed systems fulfil the 

requirement such as scheduling, synchronization, clustering, 

partitioning, mobility, State, Stream formats, Latency, etc. 

Samza, Flink, Millwheel and Lambda resolves many issue 

and some of the open challenges are:  
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1. Handling massive site(Sources) along with Parallel 

processing 

2. CPU Cost and Resource allocation/Utilization. 

3. Design and implementation of On-Demand 

Profiling(ODP) to increase service capability. 

4. Asynchronous Processing and Multithreading. 

5. Event based CDC (Change data capture) to address 

Resource contention. 

Optimizing Reprocessing overhead 
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