
 International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-11S, September 2019

826

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: K114709811S19/2019©BEIESP

DOI: 10.35940/ijitee.K1147.09811S19

Abstract— Migration of Legacy applications into modern

Cloud, IOT architecture are challenging tasks and many

researchers are showing interest to build modern Real time cloud

and IOT based applications like smart cities, Video mining,

Health care, Industrial event monitoring and many more for

modern human life. Such applications should require efficient

online data streaming techniques to process large amount of

unstructured online data streams instead of offline. Modern

customer centric applications with different verticals are looking

for distributed and horizontal data streaming approaches. Many

real time streaming approaches are emerging to utilize or process

large real-time data by replacing legacy centralized scenarios

which are causing more memory utilization, delay and fault

tolerance. In this paper we present common models and

architectures for real time utilization of cloud and IoT based

application stream processing. Utilization of the real-time data of

IoT/Cloud applications are possible with collective streaming

techniques of network, data processing. In this paper we are

focusing on improving stream processing techniques, limitations

and future research directions for real-time stream processing.

Keywords— Big Data, Big Data Processing, Stream

Processing, IoT.

I. INTRODUCTION

Big Data has become a popular term which is used to

describe the exponential growth and availability of data. As

a reason there is a demand for large-scale data processing

and data analysis applications to handle large amount of

data. NIST defines big data as “The inability of traditional

data architectures to efficiently handle the new datasets”.

The Characteristics of Big Data according to NIST are

defined as

• Volume (the size of the dataset)

• Variety (data from multiple repositories, domains)

• Velocity (rate of flow)

• Variability (the change in other characteristics)

Big data is classified on five aspects

• Data sources : The generation of data from

different sources.

• Content format : Format of data like image, text,

mp3 etc

• Data stores: The storage of data in different file

systems

• Data staging: An intermediate stage for processing

data.

• Data Processing: where data is processing for

further usage.

Revised Manuscript Received on September 10, 2019.

T.Swathi, Assistant Professor, CSE Dept., G Pulla Reddy Engineering

College, Kurnool, Andhra Pradesh, India.

(E-mail: swa1041@gmail.com)
N.Kasiviswanath, Assistant Professor, CSE Dept., G Pulla Reddy

Engineering College, Kurnool, Andhra Pradesh, India.

(E-mail: hodcse@gprec.ac.in)
M.Padma, Professor & HOD, CSE Dept., G Pulla Reddy Engineering

College, Kurnool, Andhra Pradesh, India.

(E-mail: padma.gprec@gmail.com)

The rest of the research survey paper organized into three

sections, Section II explains the background and survey

work of the research topic in detail. The Survey summary

and performance evaluation in III. The Proposed

architecture in IV. The conclusion and future directions of

the work in section V.

II. BACKGROUND AND SURVEY

Big data is of different types basically dependent on how

they are generated and how they are used. The processing

types can be as [3]

I. Batch processing

II. Stream processing

III. Graph processing

IV. Machine learning processing

Difference between batch and stream processing can be

given as follows[8]

 queries results

 fig:1.1 Batch processing system

 data results

 fig:1.2 Stream processing system

• In batch processing data is stored and indexed and

then processed but stream processing takes inbound data

while it is in flight.

• Stream processing is designed to analyze and act

on real-time data .

• In batch data is collected stored and analyzed. In

this users are in active state and data analytics and

processing systems is in passive state.

• In stream the users are passive and processing

systems are active.

Data streams can differ across domains, but in general, it

is commonly considered as input data that arrives at a high

rate, and continuously at different speeds. As a result there

is a great demand for communication and computing

infrastructure. The data types in a stream may vary

according to the applications, including discrete signals,

An Improved Stream Processing Access

T.Swathi, N.Kasiviswanath, M.Padma 

queries

data

An Improved Stream Processing Access

827

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: K114709811S19/2019©BEIESP

DOI: 10.35940/ijitee.K1147.09811S19

event logs, monitoring information, time series data, audio,

video, among others. It is also important to distinguish

between streaming data when it arrives at the processing

system for instance, a log or queuing system, and

intermediate streams of tuples resulting from the processing

by system elements.

Data stream is a collection of unbounded data elements

(data packets) generated in time. Modern society are

monitored or manage by various devices like sensors,

actuator, cameras which generates real time high volume of

environmental data and send as data streams to Cloud / IoT

Platforms. Once the data received by stream processing

system the streaming system then do the validations like[9]:

 What type of data received by stream ex: .CSV,

JSON, HDFS, …?

 How to process the stream valuable data?

 How to utilize the real-time data for multiple

applications through various channels.

Robust streaming techniques has to process real time data

without delay and should be able to forecast at application

layer. IoT applications like the business specific and content

curation will vary application to application. Designing and

implementation of such streaming engine should have

capabilities like stream partitioning, Query mobility,

availability, storage. In this paper we discussed about the

various existing steaming platforms and their capabilities.

 A stream processing architecture can comprise multiple

tiers of collecting and processing data, with the connection

between these tiers. The following architecture [6]is a

modern stream processing architecture with different layers

like data collection from different layers and analysis at top

layer.

fig: 2.1 Framework of stream processing system

The generations of stream processing engines are

summarized as follows. At present the fourth generation

techniques are following[8].

Generations of stream processing engines

 First: Extension to traditional DBMS

 Second: Distributed execution

 Third: User defined functions

 Fourth : Distributed computing

MapReduce [16] process the larger data sets and also

works like a programming model by itself. Lagging

distributed space to main scalability of the connected

devices is one of the demerits of this system. MIT and

Brown University jointly implemented Aurora [17] handles

single site location data streaming, whereas Aurora

seamlessly working with medusa to fulfill distributed

streaming capabilities. SPADE [14] fulfill the stream

scheduling and synchronization process for distributed

systems. StreamIt [16] is programming language provides

robust API (Filters, Connecting Filters, re-initialization,

latency) to increase programmer productivity towards

efficient streaming. Borealis [20] is the enhance version of

Aurora supports distributed stream processing with core

modules of both medusa and aurora. It allows to generate

dynamic query results and make modifications. Modern

distributed streaming systems supports internet-based cloud

/ IoT applications, Apache S4, Apache Storm [11], Apache

Samza [14], Spark Streaming [13], Twitter’s Heron [14],

Neptune [15]. Some of the Commercial stream engines are

developed by Microsoft and Amazon, such as Google

Millwheel [16], Azure Stream Analytics [17], The typical

architecture of modern distributed streaming engines

illustrated in following figure[20].

fig:2.2 Distributed stream engine.

Figure.1. Architecture of Distributed Real time Stream

Processing Engines

 International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-11S, September 2019

828

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: K114709811S19/2019©BEIESP

DOI: 10.35940/ijitee.K1147.09811S19

III PERFORMANCE EVALUATION OF STREAM

TECHNOLOGIES

We evaluated these modern distributed streaming

technologies with various performance metrics and

presented their presence and non-presence of activities.

Table .1. illustrates the detailed performance evaluation of

the streaming technologies as follows:

Feature /

Functions

Storm Spark Flink Samza SGD(Stochastic

Gradient

Decent)

AWS-

AML

Jubatus

Programming Clojure Scala Java Scala -- --

Event Size Mini-

Batch

Micro

Batch

Single Single Batch

Reliability Medium

but

High in

Strom+

Trident

 High High Medium High High

Stream File JSON

Primitives

State Record

ACK’s

Check

Points

Distributed

Snapshots

 Local and

Distributed

Snapshots

(Fault

Tolerance)

Messaging

Resource YARN

Mesos

YARN

Mesos

YARN

YARN YARN

Fault

Tolerance

Yes Yes Yes Yes Yes Yes Yes

Back-Pressure Low Low Yes Yes

Latency Very

Low

Medium Low

(Configurable)

Low Low

An Improved Stream Processing Access

829

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: K114709811S19/2019©BEIESP

DOI: 10.35940/ijitee.K1147.09811S19

IV DISCUSSION & RESULTS

The proposed system mainly contains 3 parts, namely

Connected devices (Non-TCP devices), Standard devices

(Laptops, gateways, etc.,), Cloud environment. Once the

stream data entered in to the Cloud environment data is

processed in 5 steps, likely ingest, pipelines, Storage and

application & presentation layers. Cloud Pub/Sub or

commercial messaging system (Kafka) will publish and

subscribe the information along with monitoring and

logging services. In Pipelines stage cloud dataflow service

will be used to process the data, GCP (Google Cloud

Platform) offers Cloud Dataflow which is a custom

implementation with open source Apache Beam. In the

process the next stage is sub categorized as storage and

analytics. Cloud storage have 3 services, Cloud storage

(Amazon s3) offers BLOB storage type data and Bigtable

offer HIVE based data. Bigtable allows to run basic SQL

queries. Cloud data store is a SQL system allows to store

small amount of information. Stream data analytics is used

to visualize the data by Cloud DataProc (library designed by

MapReduce and Apache spark). Cloud data lab adopts

machine learning approach useful for data analysis which is

the last and final stage. Application and presentation engine

and Container engine are two different services useful to

perform high-end computations for container application

offered by Google Cloud Functions.

Fig.4.1 A new stream processing system

V CONCLUSION & OPEN RESEARCH

CHALLENGES

 In this paper we identified, understand and examined the

modern distributed stream processing technologies for

processing real-time streams of Cloud and IoT based

applications. We examined message system, how seamlessly

work with streaming technologies/platforms. The legacy or

offline streaming techniques can't able to handle massive

data generated by trillions of devices connect with large

scale IoT Cloud based applications. On designing and

developing a new stream processing technique is useful to

save the delay in processing, rollback, scheduling,

portioning, etc. Novel distributed stream processing

techniques are capable to achieve good throughput, i.e.

around 1.2 million of messages per second /node with 75%

of average utilization of CPU Cost. From the survey we

identified that the existing streaming platform are not

offering full-fledged API to survey better for data driven

society in terms of real time data utilization. Some of the

API’s are lagging in terms of backpressure, flow control

and time stamps, fault tolerance, state and memory

utilization, stream partitioning and so on. Implementation of

such API are interesting to build modern enterprise

landscapes.

Open Research Challenges

Each distributed stream processing has unique

capabilities, early and modern distributed systems fulfil the

requirement such as scheduling, synchronization, clustering,

partitioning, mobility, State, Stream formats, Latency, etc.

Samza, Flink, Millwheel and Lambda resolves many issue

and some of the open challenges are:

 International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-11S, September 2019

830

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: K114709811S19/2019©BEIESP

DOI: 10.35940/ijitee.K1147.09811S19

1. Handling massive site(Sources) along with Parallel

processing

2. CPU Cost and Resource allocation/Utilization.

3. Design and implementation of On-Demand

Profiling(ODP) to increase service capability.

4. Asynchronous Processing and Multithreading.

5. Event based CDC (Change data capture) to address

Resource contention.

Optimizing Reprocessing overhead

VI. REFERENCES

1. Wu, Dongyao, et al. "HDM: A Composable Framework

for Big Data Processing." IEEE Transactions on Big Data

4.2 (2018): 150-163.

2. de Assuncao, Marcos Dias, Alexandre da Silva Veith,

and Rajkumar Buyya. "Distributed data stream

processing and edge computing: A survey on resource

elasticity and future directions." Journal of Network and

Computer Applications103 (2018): 1-17.

3. Sarnovsky, Martin, Peter Bednar, and Miroslav Smatana.

"Big Data Processing and Analytics Platform

Architecture for Process Industry Factories." Big Data

and Cognitive Computing 2.1 (2018): 3.

4. Gao, Kun, and Yiwei Zhu. "Deep Data Stream Analysis

Model and Algorithm With Memory Mechanism." IEEE

Access 5 (2017): 84-93.

5. Yu, Weiren, et al. "Ring: Real-time emerging anomaly

monitoring system over text streams." IEEE Transactions

on Big Data (2017).

6. Ounacer, Soumaya, et al. "A New Architecture for Real

Time Data Stream Processing." INTERNATIONAL

JOURNAL OF ADVANCED COMPUTER SCIENCE

AND APPLICATIONS8.11 (2017): 44-51.

7. Krawczyk, Bartosz, et al. "Ensemble learning for data

stream analysis: A survey." Information Fusion 37

(2017): 132-156.

8. Batyuk, Anatoliy, and Volodymyr Voityshyn. "Apache

storm based on topology for real-time processing of

streaming data from social networks." Data Stream

Mining & Processing (DSMP), IEEE First International

Conference on. IEEE, 2016.

9. Ishizuka, Yuji, Wuhui Chen, and Incheon Paik.

"Workflow Transformation for Real-Time Big Data

Processing." Big Data (BigData Congress), 2016 IEEE

International Congress on. IEEE, 2016.

10. Namiot, Dmitry. "On big data stream processing."

International Journal of Open Information Technologies

3.8 (2015).

11. Zheng, Zhigao, et al. "Real-time big data processing

framework: challenges and solutions." Applied

Mathematics & Information Sciences 9.6 (2015): 3169.

12. Ranjitha, P. "Streaming analytics over real-time big

data." Global Journal of Computer Science and

Technology (2015).

13. Krempl, Georg, et al. "Open challenges for data stream

mining research." ACM SIGKDD explorations

newsletter 16.1 (2014): 1-10.

14. Abadi, Daniel J., et al. "The design of the borealis stream

processing engine." Cidr. Vol. 5. No. 2005. 2005.

15. Arasu, Arvind, et al. "STREAM: the stanford stream data

manager (demonstration description)." Proceedings of

the 2003 ACM SIGMOD international conference on

Management of data. ACM, 2003.

16. Chandrasekaran, Sirish, et al. "TelegraphCQ: continuous

dataflow processing." Proceedings of the 2003 ACM

SIGMOD international conference on Management of

data. ACM, 2003.

17. Abadi, Daniel J., et al. "Aurora: a new model and

architecture for data stream management." the VLDB

Journal 12.2 (2003): 120-139.

18. Hashem, Ibrahim Abaker Targio, Ibrar Yaqoob, Nor

Badrul Anuar, Salimah Mokhtar, Abdullah Gani, and

Samee Ullah Khan. "The rise of “big data” on cloud

computing: Review and open research issues."

Information Systems47 (2015): 98-115.

19. Yadranjiaghdam, Babak, Nathan Pool, and Nasseh

Tabrizi. "A Survey on Real-Time Big Data Analytics:

Applications and Tools." Computational Science and

Computational Intelligence (CSCI), 2016 International

Conference on. IEEE, 2016.

20. Zheng, Zhigao, et al. "Real-time big data processing

framework: challenges and solutions." Applied

Mathematics & Information Sciences 9.6 (2015): 3169.

