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 

Abstract: In this paper a new class of open sets in a 

topological space called η-open sets is defined and the inclusive 

relationship of this set with the other existing  sets like semi 

open, pre-open, α-open, r-open sets are discussed.In addition to 

this the concept of η-interior, η-closure, η-boundary, η-exterior, 

η-derived, η-border, η-neighbourhood, η-dense, η-residual are 

also introduced. 

 

Keywords:η-open, η-closed, η-interior, η-closure, 

η-boundary, η-exterior, η-derived, η-border, η-neighbourhood, 

η-dense, η-residual.  

I. INTRODUCTION 

In recent years a number of generalizations of open sets have 

been developed by many mathematicians.  In 1963, Levine 

[3] introduced the notion of semi-open sets in topological 

spaces.  In 1984, Andrijevic [1] introduced some properties 

of the topology of α-sets. In 2016, Sayed and Mansour 

introduced[6] new near open set in Topological Spaces. 

Motivated by various open and closed sets discussed in the 

previous literature, in this paper η-open sets using the 

concept of semi open and α-open set in topological spaces are 

introduced. This paper also defines the η-interior, η-closure, 

η-boundary, η-exterior, η-derived, η-border, 

η-neighborhood, η-dense, η-residual. 

II. PRELIMINARIES 

Definition :2.1 

 

A subset A of topological space(X,τ) is called 

(i) α-open [1] if A⊆int(cl(int(A)))  

(ii) pre-open [4] if A⊆int(cl(A)) 

(iii) semi-open [3] if A⊆cl(int(A)) 

(iv) regular open [5] if A=int(cl(A)) 

(v) β-open [2] (or semi pre open) if A⊆ (cl(int(cl(A))) 

 

Proposition : 2.1 

For any two subsets A,B of a space(X,τ)the following 

statements are true : 

(i) scl(A)= A∪ int(cl(A)),sint(A)= A∩ cl(int(A)) 

(ii) αcl(A) = A∪cl(int(cl(A))), αint(A) = A∩ int( cl(int(A))) 

(iii) pcl(A)= A∪cl(int(A)),pint(A)= A∩int(cl(A)) 

(iv) spcl(A) = A∪ int(cl(int(A))), spint(A) = A∩cl(int(cl(A))) 

(v) X \ (int(A)) = cl(X \ (A)), int(X \A) = X \ cl(A). 
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III.  MAIN RESULTS 

Definition: 3.1 

Let (X,τ) be a topological space. Then a subset A of X is said 

to be 

 (i). an η-open set if A ⊆int(cl(int(A)))∪  cl(int(A)). 

(ii).an η-closed set if A ⊇cl(int(cl(A))) ∩ int(cl(A)). 

The family of allη-open set (resp. η-closed set) subsets of a 

space(X,τ) is denoted by η-o(X) (resp. η-c(X)).  

 

Proposition: 3.1 

(i). Every open set is an η-open set. 

(ii). Every α-open set is an η-open set. 

(iii) Every r-open set is an η-open set. 

 

Remark: 3.1 

The converse of the above results need not be true  as seen 

from the following example. 

 

Example: 3.1 

Let X={a, b, c},τ ={X, φ,{a}, {c}, {a, c}}. A = {a, b} is an 

η-open set but not open, α-open, r- open set. 

Note: 3.1 

Every semi-open set is an η-open set. 

 

Lemma: 3.1 

Intersection of two η-open sets need not be an η-open set. 

 

Example: 3.2 

Let X={a, b, c},τ ={X, φ,{a}, {c}, {a, c}}. Here the sets {a, 

b} and {b, c} are η-open sets, 

but {a, b} ∩{b, c} = {b} is not an η-open set. 

 

Lemma: 3.2 

The finite union of η-open sets is an η-open set. 

Proof : 

Let  be a family of η-open sets in a space (X ,τ), 
then 

⊂int(cl (int( )))  cl(int( )),                                  

( where   = 1, 2 …… n ) 
now, 

⊂  

=  
⊂

 
⊂

 

is also an η-open 
set. 
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Definition: 3.2 
Let (X,τ) be topological space. Then: 
(1) The union of all η-open sets of X contained in A is 
called η-interior of A and is denoted by η-int(A). 
(2) The intersection of all η-closed sets of X containing in 
A is called η-closure of A and is denoted by η-cl(A). 
Theorem: 3.1 
Let (X,τ) be a topological space and A⊂X, then the 
following statements are equivalent: 
(i) A is anη-open set, 
(ii) A=αint(A)∪sint(A) 
Proof: 
(i)→ (ii). Let Α be anη-open set.Then A ⊆int(cl(int(A))) ∪ 
cl(int(A))[ By proposition 2.1]. 
αint(A)∪sint(A)=(A∩int(cl(int(A)))∪(A∩cl(int(A))) = 
A∩(int(cl(int(A)))∪cl(int(A)))= A 
(ii)→ (i). Suppose that A = αint(A) ∪sint(A).[ By 
proposition 2.1] 
A = 
(A∩int(cl(int(A)))∪(A∩cl(int(A)))⊂int(cl(int(A)))∪cl(int
(A)). Therefore, Α is anη-open. 
 
Remark: 3.2 
Let (X,τ) be topological space and A⊂X, then the 
following statement are equivalent: 
(i) Α is an η-closed set, 
(ii) A=αcl(A)∩scl(A). 
 
Theorem: 3.2 
Let A be a subset of a space (X,τ). Then 
ηcl(A)=αcl(A)∩scl(A) 
Proof: 
Let A ⊂ X. Where (X, τ ) is a topological spaces.Since 
ηcl(A) is an η-closed set 
ηcl(A) ⊃ cl(int(cl(ηcl(A)))) ∩ int(cl(ηcl(A))) ⊃ 
cl(int(cl(A)) ∩ int(cl(A))     [By definition 3.1] 
A∪ηcl(A) ⊃A∪(cl(int(cl(A))) ∩ 

int(cl(A))) ηcl(A)⊃(A∪(cl(int(cl(A))) 
∩(A∪int(cl(A)))) 
⊃ αcl(A) ∩ scl(A) ----I [By proposition 2.1] alsoηcl(A) ⊂ 
αcl(A) and ηcl(A)⊂scl(A) then 
ηcl(A)⊂αcl(A)∩ scl(A) ----II. From I and II  ηcl(A)= αcl(A) 
∩ scl(A). 
 
Remark: 3.3 
Let A be a subset of a space (X,τ). Then 
ηint(A)=αint(A)∪sint(A). 
 
Theorem :3.3 
Let A be a subset of a space (X,τ). Then 
(i) A is an η-open set if and only if A =η-int(A) 
(ii) A is an η-closed set if and only if A=η-cl(A) 
Proof: 
(i) Let A be an η-open set. Then by theorem (3.1), 
A=αint(A)∪sint(A) and by theorem (3.2), we have A 
=η-int(A). Conversely, let A =η-int(A) Then by 
theorem(3.2),A= αint(A)∪sint(A) and by theorem (3.1), 
A is an η-open A= αint(A)∪sint(A). 
(ii) Let A be an η-closed set. Then by theorem (3.1 ), A = 
αcl(A) ∩ scl(A) and by theorem (3.2), we have A = 
η-cl(A). Conversely, let A= η-cl (A) Then by theorem 

(3.2), A=αcl(A)∩scl(A) and by theorem (3.1), A is an 
η-closed set. 
 
Theorem: 3.4 
Let A and B be a subsets of a space(X,τ). Then the 
following are true 
(i) η-cl(X\ A) = X \η-int(A). 
(ii) η-int(X\ A) = X \η-cl(A). 
(iii) If A ⊆B, then η-cl (A)⊆η-cl (B) 
(iv) x∈η-cl(A)if and only if there exists anη-open set U 
and x∈U such that U ∩ A ≠ϕ. 
(v) x∈η-int(A) if and only if there exists anη-open set G 
and x∈G such that x∈G⊆A 
(vi) η-cl(η-cl(A))=η-cl(A)and η-int(η-int(A))=η-int(A). 
(vii) η-cl(A)∪η-cl(B)⊆η-cl(A∪B)and 
η-int(A)∪η-int(B)⊆ηint(A∪B) 
(viii) η-int(A∩B)⊆η-int(A)∩η-int(B), 
η-cl(A∩B)⊆η-cl(A)∩η-cl(B) 
Proof: 
(i) Since (X\A) ⊆X, [By theorem 3.3] η-cl (X\A) = αcl (X \ 
A)∩scl( X\ A) [By proposition 1.1] 
η-cl(X \ A) = ( X \ αint(A)) ∩ (X \ sint(A)) = X \ (αint(A) 
∪sint(A)) [ By theorem 3.3], 
ηcl( X \A) = X \ηint(A). 
(ii) Since (X\A)⊆X, [By theorem 3.3] η-int(X\A)= αint(X 
\ A) ∪ sint(X\A) [By proposition 1.1] 
η-int(X \ A) = (X \ αcl(A)) ∪ ( X \ scl(A)) = X \ (αcl(A) ∩ 
scl(A))  [By theorem 3.3]  
η-int(X \ A)= X \ η-cl(A). 
(iii) Since, η-cl(A)= αcl(A)∩scl(A) and A ⊆B, η-cl(A)= 
αcl(A)∩scl(A)⊆αcl(B)∩scl(B)=η-cl(B) 
(iv) Let x∉η-cl(A)then x∉∩F where F is η-closed with A 
⊂F, so x ∉X\∩F and X\∩F is a η-open set containing x 
and hence(X\∩F)∩A⊆(X\∩F)∩(∩F)= φ. Conversely, 
suppose that exists anη-open set containing x with A ∩ 
U=ϕ. Then A⊆X\ U and X \ U is an η-closed. Hence 
x∉η-cl(A). 
(v) Necessity: Let x∈η-int(A). Then x ∈∪{G:G is η-open G 
⊆A} and hence there exists an η-open set G such that 
x∈G⊆A 
Sufficiency: Let G be an η-open set such that x∈G⊆A. 
Then A=∪{G: x∈G} which is the union of η-open set. 
Therefore, x∉η-cl(A). 
(vi) Since η-cl(η-cl(A)) = αcl(ηcl(A))∩scl(ηcl(A)). [ By 
theorem 3.3] 
αcl(αcl(A)∩ scl(A))∩scl(αcl(A)∩scl(A))⊆(αcl(A)∩ 
αcl(scl(A)))∩scl(αcl(A)∩scl(A))= αcl(A)∩ scl(A)=ηcl(A). 
Hence η-cl(η-cl(A))⊆η-cl(A). But, η-cl(A)⊆η-cl(η-cl(A)). 
Therefore, η-cl(η-cl(A))=η-cl(A). 
(vii) Since A⊆A∪B and B⊆A∪B.we have η-cl (A) 
⊆η-cl(A∪B) and η-cl (B) ⊆η-cl(A∪B). Therefore,η-cl (A) 
∪η-cl (B)⊆η-cl(A∪B). A ⊆(A∪B)and B⊆(A∪B).we have 
η-int(A) ⊆ 
η-int(A∪B) and η-int(B) ⊆η-int(A∪B). Therefore,η-int(A) 
∪η-int(B) ⊆η-int(A∪B). 
(viii) Since A ⊇A∩B and B ⊇A∩B we have η-cl (A) 
⊇η-cl(A∩B) and η-cl (B) ⊇η-cl(A∩B), 
η-cl(B) ⊇η-cl ((A∩B).Therefore, η-cl (A) ∩ η-cl 
(B)⊇ηcl(A∩B) and A⊇(A∩B) and B⊇(A∩B). We have 
η-int(A) ⊇η-int(A∩B) and 
η-int(B) 
⊇η-int(A∩B).Therefore 
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η-int(A)∩η-int(B) ⊇η-int(A∩B). 
 
Remark:3.4 
The inclusion relation in part (vii),(viii) of the above 
theorem cannot be replaced by equality as shown by the 
following example. 
 
Example: 3.3 
Let X={a,b,c,d} with topology τ={X,Φ, {a}, {b},{a, b}, 
{a,b,c}}. 
(i) If A={a,b},B={d} and (A∪B)={a,b,d}, then η-int(A)= {a, 
b},η-int(B)=ϕ and η-int(A∪B)={a,b, d}. So, 

η-int(A∪B) η-int(A) ∪η-int(B) 
(ii) If C={a}, D ={b} and (C∪D)= {a, b} then η-cl(C)={a}, 
η-cl(D)= {b}and η-cl(C∪D)= X, therefore, η-cl (C) ∪η-cl 

(D) η-cl(C∪D). 
 
Example: 3.4 
Let X={a,b,c,d} with topology τ={X,Φ, {b},{c, d},{b, c, d}} 
then 
(i) If A={a, b}, B={b, c} and(A∩B)={b}, then η-cl (A)= {a, 
b}, η-cl (B)= Xand η-cl(A∩ B)= {b}. So, 

η-cl(A∩B) η-cl(A) ∩ η-cl(B) 
(ii) If C={a, b}, D={a, c, d} and (C∩D)={a}, then 
η-int(C)={a, b}, η-int(D)= {a, c, d}and η-int(C∩D)=ϕ. 

η-int(C) ∩ η-int(D) η-int(C∩D) 
 

IV. SOME TOPOLOGICAL OPERATIONS 

Definition: 4.1 
Let (X,τ) be a topological space and A⊂X. Then the 
η-boundary of A (briefly, η-b(A)) is given by η-b(A))=η-cl 
(A)) ∩ η-cl(X/A). 
 
Example :4.1 
Let X={a,b,c,d} with topology τ={X,Φ, {a},{b, d},{a, b, d}}. 
For the set, A={a, b, d}. 
η-b(A))={c}. 
 
Theorem:4.1 
If A is a subset of a space (X,τ), then the following 
statement are hold: 
(i) η-b(A)) =η-b(X \ A)). 
(ii) η-b(A)) =η-cl(A)) \η-int(A). 
(iii) η-b(A))∩η-int(A)=Φ. 
(iv) η-b(A))∪η-int(A)=η-cl(A). 
Proof: 
(i) Since η-b(A)) = η-cl(A)) ∩ η-cl(X \ A) = η-b(X \ A)) = 
η-cl(X \ A))∩ η-cl(A) 
(ii) Since η-b(A)) =  η-cl(A) \ η-int(A) = η-cl(A))∩ η-cl(X 
\ A)= η-cl(A)) ∩ (X \ η-int(A))= (ηcl(A) ∩ X ) \ ( η-cl(A)∩ 
η-int(A))= η-cl(A)\ η-int(A). 
(iii) By using(2)η-b(A)) ∩ η-int(A) = ( η-cl(A) \ η-int(A)) 
∩ η-int(A)=( η-cl(A)∩ η-int(A))\(η-int(A)∩ 
η-int(A))=ηint(A)\ηint(A) = Φ. 
(iv) By using(3)η-b(A))∪ η-int(A) = ( η-cl(A)\ η-int(A))∪ 
η-int(A) = ( η-cl(A)∪ η-int(A))\(η-int(A) ∪ 
η-int(A))=η-cl(A) \ η-int(A)=ηcl(A). 
Theorem : 4.2 

If A is a subset of a space (X,τ), then the 
followingstatements are hold: 
(i) A is anη-open set if and only if A∩η-b(A)=Φ 
(ii) A is anη-closed set if and only if η-b(A) ⊂A 
(iii) A is anη-clopenset if and only if η-b(A)=Φ. 
Proof: 
(i) Let A is anη-open set.Then A= η-int(A). 
A∩η-b(A)=η-int(A)∩η-b(A)[ By theorem 4.1] 
= η-int(A)∩(η-cl(A) \ η-int(A)) =(η-int(A)∩η-cl(A)) 
\(η-int(A)∩(η-int(A)) =Φ. 
Conversely, let A∩η-b(A) = A∩(η-cl(A) \ η-int(A))[ By 
theorem 4.1]= (A∩(η-cl(A)) \ (A∩(η-int(A)) = A \ 
η-int(A)=Φ. Hence A is anη-open. 
(ii) Let A is a η-closed set.Then A = η-cl(A) [ By theorem 
4.1] but η-b(A) = ( η-cl(A) \ η-int(A)) 
= A\ η-int(A)⊂AConversely, Let η-b(A) ⊂A. [ By theorem 
4.1] η-cl(A)=η-b(A))∪η-int(A) 
⊂A∪η-int(A)= A. Thus η-cl(A) ⊂A and 
A⊂η-cl(A).Therefore, A=η-cl(A). 
(iii) Let A is anη-clopenset. Then A = η-int(A), and A = 
η-cl(A) [ By theorem 4.1]η-b(A) = 
( η-cl(A)\ η-int(A))= A\ A=Φ. Conversely, Suppose that 
η-b(A)= Φ. Then η-b(A)=(η-cl(A)\η-int(A))= Φ. HenceAis 
anη-clopenset. 
 
Definition: 4.2 
Let (X,τ) be a topological space and A⊂X.Then the 
setX\(η-cl(A)) is called the η-exterior of A and is denoted 
by η-ext(A). Each point p∈X is called anη-exterior point 
of A, if it is a η-interior point of X\A. 
 
Example : 4.2 
Let X={a,b,c,d} with topology τ={X,Φ, {a},{b, c},{a,b, c}}. If 
A={a}, B={a, b}, C={ a, c} then we haveη-ext(A)={ b,c,d}, 
η-ext(B)=Φ and η-ext(C)=Φ 
Theorem : 4.3 
If A and B are two subsets of a topological space (X,τ), 
then the following statements are true 
(i) η-ext(A)=η-int( X \ A). 
(ii) η-ext(A) is η-open 
(iii) η-ext(A)∩η-int(A)=Φ. 
(iv) η-ext(A)∩η-b(A)=Φ. 
(v) η-ext(A)∪η-b(A)=η-cl(X \A). 
(vi) {η-int(A),η-b(A)and η-ext(A)} from apartition of X. 
(vii) If A ⊆B, then η-ext(B)⊆η-ext(A) 
(viii) η-ext(A∪B)⊆η-ext(A)∪η-ext(B). 
(ix) η-ext(A∩B)⊇η-ext(A)∩η-ext(B). 
(x) η-ext(X) =Φand η-ext(φ ) = X. 
Proof: 
(i) by Definition (4.2) η-ext(A) = X \ η-cl(A) = η-int(X \ 
A). 
(ii) From (1) η-ext(A) = η-int(X \ A).Since η-int(A) is the 
union of all η-open sets of X contained in A. Thus 
η-ext(A) is anη-open. 
(iii) Since η-ext(A) ∩ η-int(A)= X \ η-cl(A)∩ η-int(A)= 
η-int(X \ A)∩ η-int(A)=φ 
(iv) By theorem (4.1), η-ext(A) ∩ η-b(A) =η-int( X \ A) ∩ 
η-b(X \ A)= Φ. 
(v) By theorem (4.1). η-ext(A)∪η-b(A)=η-int(X 
\A)∪η-b(X \A)=η-cl(X \A). 
(vi) From (iii), (iv) we have 
η-ext(A) ∩ η-int(A) = Φ and 
η-ext(A) ∩ η-b(A) = Φ. Then by 
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theorem (4.1) then η-b(A))∩ 
η-int(A)=Φ.η-int(A)∪η-b(A)∪η-ext(A)= X. Hence from(v) 
η-ext(A)∪η-b(A)=η-cl(X \ A)then η-int(A)∪η-cl(X \ 
A)=η-int(A)∪X \η-int(A)= X. 
(vii) Let A ⊆B then (η-cl(A))⊆(η-cl(B)) and hence X \ 
(η-cl(B))⊆X \ (η-cl(A)). So η-ext(B)⊆η-ext(A). 
(viii) η-ext(A∪B)= X \(η-cl(A∪B))⊆X 
\(η-cl(A)∪(η-cl(B))⊆(X \(η-cl(A)))∪(X\(η-cl(B))) 
⊆η-ext(A)∪η-ext(B)⊆η-ext(A)∪η-ext(B). 
(ix) η-ext(A∩B)= X \(η-cl(A∩B))⊇X 
\(η-cl(A)∩(η-cl(B))⊇(X \(η-cl(A)))∩(X \(η-cl(B))) 
⊇η-ext(A)∩η-ext(B)⊇η-ext(A)∩η-ext(B). 
(x) η-ext(X ) = X \ (η-cl(X ))= X \ X=φand η-ext(φ) = X \ 
(η-cl(φ))= X \φ= X. 
 
Remark : 4.1 
The inclusion relation in part (v),(vi) of the above 
theorem cannot by replaced by equality as is shown by 
the following example. 
 
Example : 4.3 
Let X={a,b,c,d} with topology τ={X,Φ, {a}, {b}, {a, b}, {a, b, 
c}}. A={a,c}andB={c, d} then η-ext(A)={b, d},η-ext(B)= {a, 
b} but η-ext(A∪B) = {b}. 

Therefore,η-ext(A)∪η-ext(B) η-ext(A∪B). Also 
η-ext(A∩B) ={a,b, d}, hence 

η-ext(A∩B) η-ext(A)∩η-ext(B). 
Definition : 4.3 If A is a subset of a topological space 
(X,τ), then a point p∈X is called a η-limit point of a set A 
⊂X if every η-open set G⊂X containing p, contains a 
point of A other than p. The set of all η-limit point of A is 
called an η-derived set of A and is denoted by η-d(A) 
 
Example : 4.4 
Let X={a,b, c} with topology τ={X,Φ, {a}}. A={a, c}, 
thenη-d(A))= {c}. 
 
Theorem : 4.4 
If A and B are two subsets of aspace (X,τ), then the 
following statements are hold: 
(i) IfA⊂B,then η-d(A)⊂η-d(B). 
(ii) A is anη-closed set if and only if it contains each of its 
η-limit point. 
(iii) η-cl(A)= A∪η-d(A). 
(iv)η-d(A∪B)⊃η-d(A)∪η-d(B) 
(v) η-d(A∩B)⊂η-d(A)∩η-d(B) 
Proof: 
(i) By definition (4.3), we have p ∈η-d(A) if and only if G 
∩ (A\{P}) ≠ ϕ, for every η-open set G containing p. But A 
⊂B, then G ∩ (B \{P}) ≠ ϕ, for every η-open set G 
containing p. Hence, so p ∈η-d(B). Therefore η-d(A) 
⊂η-d(B). 
(ii) Let A be an η-closed set and p∉A then p∈(X \ A) 
which is an η-open, hence there exists η-open(X\A) such 
that(X \ A)∩A=ϕ.So p∉η-d(A), 
thereforeη-d(A)⊂A.Conversely, suppose that η-d(A)⊂A 
and p∉A. Then p∉η-d(A), hence there exists η-open setG 
containing p such that G ∩ A=ϕ and hence X \ A = 

. Therefore, A is anη-closed. 
(iii)Since, η-d(A)⊂ η-cl(A) and A ⊂ η-cl(A). η-d(A)∪A⊂ 
η-cl(A). Conversely, Suppose that  

p∉η-d(A)∪A. Then p∉η-d(A), p∉A and hence there exists 
η-open set G containing p such that G ∩ A=ϕ. Thus 
p∉η-cl(A) which implies that η-cl(A)⊂η-d(A)∪A , 
therefore, η-cl(A)=η-d(A)∪A. 

(iv)Since A A∪B and B A ∪B.We have η-d(A)  

η-d(A∪B)and η-d(B)  η-d(A∪B). 

Thereforeη-d(A)∪ η-d(B) η-d(A∪B). 
(v)Since A ⊇ A∩ B and B ⊇ A ∩ B. We have η-d(A) ⊇ 
η-d(A∩B)and η-d(B)⊇ η-d(A∩B). 
Thereforeη-d(A)∩ η-d(B)⊇ η-d(A∩B). 
 
Definition : 4.4 
Let (X,τ)be a topological space and A⊆X. Then the 
η-border of A (briefly, η-Bd(A)) is given by 
η-Bd(A))=A\η-int(A). 
 
Example : 4.5 
Let X={a,b,c} with topology τ={X,Φ,{a},{b},{a, b}}. If 
A={a,c}, B={c} then η-Bd(A)=Φ, η-Bd(B)= {c}. 
 
Theorem : 4.5 
For a subset A of a space and X, the following statements 
are hold: 
(i) A=η-int(A)∪η-Bd(A)) 
(ii)η-int(A)∩η-Bd(A))=φ 
(iii) η-Bd(X )) = η-Bd(φ)) =φ 
(iv) η-Bd(η-int(A)) = φ 
(v) η-int(η-Bd(A)) =φ 
(vi) η-Bd(η-Bd(A)) = η-Bd(A)) 
(vii) η-Bd(A)) = A∩η-cl(X \ A) 
(viii) η-Bd(A)) =η-d(X \A) 
Proof: 
(i) η-int(A) ∪ η-Bd(A)) =η-int(A) ∪(A\η-int(A)) = 
(η-int(A) ∪A) \ (η-int(A) ∪η-int(A)) 
= A\η-int(A) = A 
(ii) η-int(A)∩η-Bd(A)) = η-int(A)∩(A\η-int(A) = 
(η-int(A)∩A ) \ (η-int(A)∩η-int(A)) 
= η-int(A) \η-int(A) = φ 
(iii) η-Bd(X)) = X \ η-int(X)=X \X=φand η-Bd(φ))=φ 
\η-int(φ) = φ \φ=φ . 
(iv) η-Bd(η-int(A))=η-int(A)\η-int(A)=φ . 
(v)Since, 
η-int(η-Bd(A))=η-int(A\η-int(A))=η-int(A)\η-int(η-int(A
))=η-int(A)\η-int(A)=φ 
(vi) Since, 
η-Bd(η-Bd(A))=η-Bd(A)\η-int(η-Bd(A))=η-Bd(A)\φ=η-
Bd(A)  
(vii) η-Bd(A)) = A\η-int(A))= A\ (X \η-cl(A))= A∩η-cl(X 
\ A) 
(viii) η-Bd(A)) = A\η-int(A))= A\ (A\η-d(A))=η-d(X \A). 
 
Theorem : 4.6 
For a subset A of a space(X,τ), the following statements 
are equivalent 
(i) A is an η-open, 
(ii) A=η-int(A), 
(iii) η-Bd(A)=ϕ. 
Proof: 
(i)→(ii) Obvious from 
Theorem (4.4). 
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(ii)→(iii).Suppose that A=η-int(A). Then by Definition 
(4.4),η-Bd(A)=η-int(A)\η-int(A)=ϕ 
(iii)→(i). Let η-Bd(A)=ϕ. Then by Definition (4.4), 
A\η-int(A)=ϕ and hence A=η-int(A). 
 
Definition : 4.5 
A subset N of a  topological space (X,τ) is called a 
η-neighbourhood (briefly, η-nbd.) of a point p∈X if there 
exists an η-open set G such thatp∈G ⊆N. The class of all 
η-neighbourhood  of p∈X is called the η-neighbourhood 
system of p and denoted by η-Np. 
 
Example :4.6 
Let X={a,b,c,d} with topology τ={X,Φ,{a}, {b, d},{a,b, d}}, 
then η-Nc={a,c}. 
Remark : 4.2 
For any topological space (X,τ) and for each x∈X we have 
Nx⊆p-Nx⊆η-Nx. 
 
Example : 4.7 
Let X={a,b,c,d} with topology τ={X,Φ,{a}, {b, d},{a,b, d}}. 
We have {a,c}∈η-Nc but it is not in p-Nc and not in Nc. 
 
Theorem : 4.7 
A subset G of a topological space (X,τ) is anη-open if and 
only if it is an η-neighbourhood, for every point p∈G. 
Proof: 
Necessity: Let G be an η-open set. Then G is an 
η-neighbourhood for each p∈G. 
Sufficiency: Let G be anη-neighbourhood, for each p∈G. 
Then there exists anη-open set W containing p such that 
p∈W⊆G, so G=∪{p:p∈W}. Therefore, G is an η-open. 
 
Theorem : 4.8 
For a topological space (X,τ). If η-Np is an 
η-neighbourhood  systems of a point p∈X, then the 
following statements are hold: 
(i) η-Np is not empty and p belongs to each member of 
η-Np 
(ii) Each superset of the members of η-Np belongs to 
η-Np, 
(iii) Each member N∈η-Np is a superset of the member 
W∈η-Np, where W is anη-neighbourhoodof each point 
p∈W. 
Proof: 
(i) Since X is anη-open set containing p, then X∈η-Np. So, 
η-Np≠ϕ. Also, if Nη-Np, then there exists anη-open set G 
such that p∈G⊆N.Therefore, p belongs to each member 
of η-Np. 
(ii) Let Mbe a superset of N∈η-Np, then there exists a 
η-open set G such that p∈G⊆N⊆M which implies p∈G⊆M 
and hence, M is a η-neighbourhoodof p. Therefore, 
M∈η-Np 
(iii) Let N be anη-neighbourhoodof p∈X, then there 
exists anη-open set W such that p∈W⊆N. Then by 
Theorem 3.4.1, W is anη-neighbourhoodof each of its 
points. 
 
Definition : 4.6 
For a topological space (X,τ), a subset A of X is said to be 
η-dense in X if and only if η-cl (A)=X. The family of all 
η-dense sets in (X,τ) will be denoted by η-D(X,τ). 
 

Example : 4.8 
Let X={a,b,c} with topology τ={X, Φ, {a}}.If A={a,b}, and 
η-cl (A)=X then η-dense in X. 
 
Remark : 4.3 
Every η-dense set in a space (X,τ) is dense in (X,τ) by the 
fact that η-cl (A) ⊆cl (A), while the converse may not be 
true. 
 
Example : 4.9 
Let X={a,b,c,d} with topology τ={X,φ, {a},{ b,d},{a, b,d}}. 
If A= {d}, then cl(A)=X  but  η-cl(A)={b,d}. Therefore, A is 
dense inX but not η-dense in X. 
 
Theorem : 4.9 
For a space (X,τ) and E ⊆X, the following statements are 
equivalent: 
(i) E is anη-dense in X 
(ii) If F is an η-closed set in X containing E, then, F=X 
(iii) η-int(X \ E)=ϕ. 
Proof: 
(i)→(ii). Let Ebe anη-dense set of X. Then η-Cl(E)=X. But 
F is an η-closed set contains E, then η-Cl(E)⊆F and 
therefore F=X. 
(ii)→ (iii). Since η-Cl(E) is an η-closed set contains E, By 
(2) we have η-Cl(E)=X. 
Hence φ = X \ η-cl(E) = η-int(X \ E) . 
(iii)→ (i). Since η-int(X \ E)=ϕ. Then η-Cl(E)=X. Hence E 
is anη-dense in X. 
 
Proposition : 4.1 
For a topological space (X,τ), if E∈η-D(X,τ), then the 
following statements are hold: 
(i) η-b(E) = η-cl(X \ E) , 
(ii) η-ext(E) =φ. 
Proof: 
(i) From Definition (4.1), we have η-b(E)=η-cl(E)∩η-cl(X 
\E) and since E∈η-D(X,τ), then η-b(E) = η-cl(X \ E) 
(ii) Also, by From Definition (4.2), η-ext(E)= X\η-cl(E) 
but E∈η-D(X,τ), then η-ext(E)=ϕ. 
 
Definition : 4.7 
For a space (X,τ), A⊆X is called: 
(i) η-nowhere dense if int(A)⊆η-int(η-cl(A))=ϕ 
(ii) η-residual if η-cl(X\A)=X or η-int (A)=ϕ 
η-nowhere dense is η-residual from the fact that 
η-int(A)⊆η-int(η-cl(A)) for every A⊆X. 
 
Example : 4.10 
Let X={a,b,c}with topology τ={X,Φ,{a}, {b}, {a,b}} and 
A={c} than η-int(η-cl(A))=ϕ. and η-int (A)=ϕ so A is 
η-nowhere dense andη-residual. 
 
Proposition : 4.2 
A subset A of a topological space (X,τ), A⊆X is an 
η-nowhere dense of X if A⊆η-Cl(X \ η-cl (A)). 
Proof: 
Let A is an η-nowhere dense then 
η-int(η-cl(A))=ϕ.HenceX \ η-int(η-cl(A))) = η-cl(X \ 
η-cl(A)) = η-cl(η-int(X \ A)) = X ⊇A. 
 
Theorem : 4.10 
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The η-boundary of each η-open (resp. η-closed) set is 
η-nowhere dense. 
Proof: 
Let A∈η-o(X) then 
η-int(η-cl(η-b(A)) = η-int(η-cl(η-cl (A)) ∩ η-cl(X \ A)) = 
η-int(η-cl(η-cl (A)) ∩ (X \ η-int(A)) 
⊆η-int(η-cl (A)) ∩η-int(X \ η-int(A)) ⊆η-int(η-cl 
(η-int(A))) ∩ (X \ η-cl(η-int(A)))⊆η-cl (η-int(A))∩ (X \ 
η-cl(η-int(A)) = ϕ. 
Also if A∈η-c(X) Then 
η-int(η-cl(η-b(A)) = η-int(η-cl(η-cl (A)) ∩ η-cl(X \ A)) = 
η-int(η-cl (A)) ∩η-int(X \ η-int(A)) 
= η-int(η-cl (A)) ∩ (X \η-cl(η-int(A))) ⊆η-int(η-cl (A)) ∩ 
(X \η-cl(η-int(η-cl(A))))⊆sη-int(η-cl (A)) ∩ (X 
\η-int(η-cl(A))) = ϕ. 
 
Proposition : 4.3 
For a space (X,τ), A ⊆X, then the sets A∩ η-cl(X\A) and 
η-cl(A)∩ (X\A) are η-residual. 
Proof: 
Sinceη-int(A∩η-cl(X\A)) ⊆η-int(A) ∩η-int(η-cl(X\A))) 
⊆η-int(A) ∩η-cl(X\A) 
= η-int(A) ∩ ( X \ η-int(A))= ϕ.Then A∩η-cl(X\A) is 
residual.Similarly, η-int(η-cl(A)∩(X \ 
A))⊆η-int(η-cl(A))∩η-int(X \ A)=η-cl(A)∩(X \η-cl(A))= 
φ,and hence η-cl(A)∩(X\A) is η-residual. 
 
Theorem : 4.11 
The η-boundary of any set contains the union of two 
η-residual sets. 
Proof: 
Let (X,τ) be a space and A⊆X. Then by Proposition (4.3), 
we have 
(A∩η-cl(X\A)) ∪ ( η-cl(A) ∩ (X\A)) = (A∩η-cl(X\A) 
∪η-cl(A)) ∩ (A∩η-cl(X\A))∪(X\A) = (A∪η-cl(A))∩ 
(η-cl(X\A)∪η-cl(A))∩ ((A∪(X\A)∩η-cl(X\A) ∪(X\A) 
=η-cl(A)∩ (η-cl(A))∩(η-cl(X\A)∩ (η-cl(X\A))) ⊆η-cl(A) 
∩ (η-cl(A∩(X\A)))∩ (η-cl(X\A))) =η-cl(A)∩ (η-cl(X\A)) 
=η-b(A). 

V. CONCLUSION 

In this paper we found η-open set and η-closed sets in 

topological spaces and deals properties of η-open set. 
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