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Abstract: This paper implements unscented Kalman filter 

(UKF) for output voltage estimation of RC low pass filter (LPF) 

and high pass filter (HPF). At first, the state space model has been 

obtained using Kirchhoff’s current law (KCL). The performance 

of UKF has been compared with extended Kalman filter (EKF). 

The simulation results validate the superiority of UKF over EKF 

as the estimation error is smaller using UKF as compared to the 

EKF method. As the UKF uses unscented transform (UT) and 

EKF uses Taylor series expansion for linearization purpose, 

linearization error is smaller in UKF as compared to EKF method. 

Also, UKF implementation has the advantage that it does not 

require Jacobian computation of nonlinear system model. 

Keywords: Extended Kalman filter, RC filter, state space model, 

unscented Kalman filter.  

I. INTRODUCTION 

Estimation is fundamental research topic for control 

system and signal processing. Fast dynamic state estimators 

are important for proper circuit monitoring. Various state 

estimation methods have been used in literature. State 

estimation methods estimate and predict the desired state 

variables of a dynamic system using noisy measurements. 

State estimation is helpful for suppression of physical process 

where states cannot be measured directly or the disturbance 

have significant role. The Kalman filter (KF), particle filter 

(PF) and H-infinity filter are some of the state estimation 

methods in which KF is the most popular method. KF 

versions have been applied in various areas such as control 

system, robotics, etc. [1]. 

The KF is suitable for linear systems. The variations of KF 

that can be used for nonlinear systems are: - EKF, Iterated 

extended Kalman filter (IEKF), UKF, PF and H-infinity filter 

[2]. These filters use different approaches to handle the 

nonlinearity. The EKF uses the linearization of both, the 

transition and measurement functions of the nonlinear 

system, which involves computation of Jacobian matrices. 

But, EKF has two important shortcomings. The shortcomings 

are:-1) Difficulty in determining the Jacobian, 2) These 

linearization can lead to filter instability, when sufficient 

small time step intervals are not used. Also, EKF has 

limitation in prorogating the constraints through the state and 

covariance calculation. To remove these shortcomings of 

EKF, Julier et al. [3] and Simon [4] proposed UKF which is 

based on the fact that it is easier to approximate a probability 

density function than a nonlinear function.  
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UKF uses more accurate approximations to compute 

multidimensional integral as compared to EKF.  

UKF is an advance of KF. A set of sample points called 

sigma points are used for state distribution in UKF. These 

sigma points capture the posterior mean and variance of the 

state distribution. Using a selected set of points, the UKF 

accurately map the probability distribution of the 

measurement model. It utilizes the statistical properties of 

Gaussian variables having nonlinear transformation. The 

mean and variance are computed using the UT, which avoids 

the computation of Jacobians. In [5], Ahmeid et al. 

introduced a new method based on KF for real time 

estimation to converter. The KF performance is improved 

using adaptive tuning methods. Hoffmann et al. [6] used EKF 

for grid impendence and voltage estimation of power 

converter of electric network. The noise presented at the 

connection point has been taken into account. This work also 

considered the use of EKF in distorted voltage waveform 

environment. In [7], Nadarajan et al. used EKF for state and 

parameter estimation of stator winding fault in brushless 

synchronous generator. The model based method is used and 

simplified the model for online implementation. In [8], 

Yazdanian et al. used EKF for parameter estimation of 

ringdown signal. The method can be implemented for both 

constant and time varying parameters.  In [9], Bogdanski et 

al. presented identification of vehicle handling dynamics and 

presented review of UKF, EKF, and PF and showed that all 

three filters are suitable in real time for online estimation. For 

this, the paper used simple and efficient model to obtain the 

independent parameters. Tian et al. [10] proposed UKF based 

estimation for battery system which uses modified equivalent 

circuit model. The method presents the low computational 

cost and improved estimation simultaneously. In [11], 

Ghahremani et al. implemented UKF in synchronous 

machine. Simple and effective propagation of probability 

density function in UKF improved the estimation purpose. 

Filters are useful building blocks of various analog 

integrated circuits. RC filters are useful for various 

applications. It is used in mixer, samplers and path filters 

[12]. It is used in chebyshev tracking low pass filter 

implemented in digital TV tuner integrated circuit. Polyphase 

RC filter is used for millimeter wave image reject receivers 

[13] and in vector sum phase shifter [14]. The active RC 

filters are useful for various applications. Various realization 

techniques have been also proposed in literature for active 

RC filter. Various approaches are used for continuous line 

filters topology. The RC active filters have found many 

applications. In [15],  
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Huang et al. proposed power efficient active RC filters for 

wireless receivers. Active RC filters are also used in current 

model transconductance amplifier [16]. It is also used in all 

pole filters [17]. Active RC filters are also useful for audio 

frequency bandpass filter [18]. It is also utilized in telephony 

data communication system, wireless and wireline 

applications [19]. Conventional LC passive filters are also 

replaced by active RC filters in various applications 

[20]-[22].  

The following sections of the paper are as follows: Theory 

of EKF and UKF has been given in section II. Section III 

introduces state space representation of second order LPF 

and HPF circuit using Kirchhoff's current law. Simulation 

result is given in section IV. Conclusion is given in section V. 

II. ALGORITHM OF EKF AND UKF FOR 

NONLINEAR SYSTEM 

A nonlinear system is described in discrete time by 

following equations: 

1 1 1 1( , )k k k k kx f x u w      (1) 

( )k k k ky h x v   (2) 

kx  and ky denote as  state and measurement vector at 

time step k  respectively. ku  is a known input vector. (.)kf  

and (.)kh  are nonlinear state and measurement functions 

respectively. kv  and kw are the measurement and system 

noise having zero mean covariance kR and kQ respectively. 

Consider all assumptions as below:- 

[ ] 0,kE w  [ ] 0,kE v  [ , ] 0 ,T

k jE w w k j  
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0

T ] = 0 " k,  

0[ , ] 0 ,T

kE w x k  [ , ] 0 & .T

k jE w v k j 
 

A. Extended Kalman Filter 

EKF uses the linearization of the nonlinear function via 

Taylor's series as: 

 
Higher order terms 
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The following are the EKF steps: 

1) Initialization: Initialize 0x̂ , 0P , kQ  and kR . 

2) Prediction of states: Compute state prediction and 

covariance as: 

| 1 1 1| 1 1
ˆ ˆ( , )k k k k k kx f x u      (5) 

| 1 1| 1 1

T

k k k k k k kP F P F Q      (6) 

3) Measurement update:  

a) Calculate  Kalman gain as: 

1

| 1 | 1( )T T

k k k k k k k k kK P H H P H R 

    (7) 

b) Compute updated state as: 

| | 1 | 1
ˆ ˆ ˆ( ( ))k k k k k k k k kx x K y h x     (8) 

c) Compute update covariance as: 

| | 1( )k k k k k kP I K H P    (9) 

where | 1k k  and |k k are a prior and a post state 

estimation. 

B. Unscented Kalman Filter 

The UKF is based on statistical approach, which 

overcomes the limitations of EKF. These are:- 1) poor 

approximation approach of the first order linearization, and 

2) To avoid Jacobian computation. The mean and variance 

are computed using UT. The steps for UKF algorithm are as 

follows: 

 

1) Prediction Step:- 

a) Initialize 0x̂  and 0P .  

b) Calculate sigma points for 2 1i n   as:- 

 , 1 1 1 1 1 1
ˆ ˆ ˆ( ) , ( ),

i k k k k i k k i
X x x P x P 

     
    

 

(10) 

where n   . n  and  denote state number and 

scaling constant. 

c) Update time propagation using transformed sigma 

points as:- 

, | 1 , 1 1( , )i k k i k kf u        (11) 

d) Calculate priori state and covariance error as:- 
2

( )
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(14) 

Here,  and   indicate tuning parameter and positive 

weighing parameter 

2) Measurement Update:- It consist of following steps:- 

a) Update sigma points to predict the output using 

, | 1 , | 1( , )i k k i k k kY h u    (15) 

2
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(16) 

b) Kalman gain kK  is as:  
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(17) 

c) Posteriori state and covariance error are calculated 

as:- 
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(19) 

III. MATHEMATICAL MODELING OF HIGHER 

ORDER RC CIRCUIT 

Second order RC LPF shown in Fig. 1. It consists of series 

parallel combination of resistor (R) and capacitor (C). Input 

sinusoidal voltage 
1( )u t  is applied to the circuit. Capacitor 

voltages across 
1C and

2C are 
1c

V and 
2cV respectively.  

 

 

Fig. 1. Circuit diagram of RC LPF. 

 
 

Fig. 2. Circuit diagram of RC HPF. 

The state space model for the RC LPF circuit is obtained 

using KCL as: 

1 1 2 11
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1 2
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Representing (20)-(21) as state space model, we have 
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Y is the measurement model given as:- 

 

 Y = HX +V  (23) 

 

where  H  denotes the measurement vector as:-  
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1 0

0 1
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ê

ù
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 and 0D  . 

The state model in (22) and (23) can be discretized using first 

order exponential method. In general, the discretized state 

space model are represented as 
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Here, the discrete parameters 
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, B
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and 
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have been 

obtained using Euler-Maruyama method and using
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Similarly, state space model for RC HPF shown in Fig. 2 

can be represented as 
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where the matrices 
  
A

k
, B

k
and 

 
H

k
 for RC HPF are 

obtained by discretizing equations (27)-(28). They are: 
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IV. SIMULATION RESULTS 

The estimation of output voltage of RC LPF and HPF have 

been performed in MATLAB software. The estimation have 

been performed for two different cases:- (i) noiseless input 

and (ii) noisy input. The applied sinusoidal input with 

maximum amplitude of 10 V and frequency 0.04 Hz is shown 

in Fig. 3. The white Gaussian noise of zero mean and 

different variances has been used as noisy input for 

estimation purpose. The PSPICE simulated values have been 

taken as actual value. The output voltages of LPF and HPF 

circuit using UKF and EKF under different noisy inputs have 

been shown in Fig. 4 to 9. Fig. 10 to 15 presents the error 

comparison of EKF and UKF for different noise values. 

Table I and II show the comparison of root mean square error 

(RMSE) and signal to noise ratio (SNR) for both circuit using 

EKF and UKF methods. 
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Fig. 3. Input sinusoidal voltage. 

 
Fig. 4. Output voltage estimation of LPF using EKF and 

UKF methods for Gaussian noisy input ( s
2 = 0.1)  

 

Fig. 5. Output voltage estimation of LPF using EKF and 

UKF methods for Gaussian noisy input ( s
2 = 0.5)

 

Fig. 6. Output voltage estimation of LPF using EKF and 

UKF methods for Gaussian noisy input ( s
2 = 1.0) 

 
Fig. 7. Output voltage estimation of HPF using EKF and 

UKF methods for Gaussian noisy input ( s
2 = 0.1) 
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Fig. 8. Output voltage estimation of HPF using EKF and 

UKF methods for Gaussian noisy input ( s
2 = 0.5)  

 
Fig. 9. Output voltage estimation of HPF using EKF and 

UKF methods for Gaussian noisy input ( s
2 = 1.0) 

 
Fig. 10. RMSE of LPF using EKF and UKF methods for 

Gaussian noisy input ( s
2 = 0.1)  

 
Fig. 11. RMSE of LPF using EKF and UKF methods for 

Gaussian noisy input ( s
2 = 0.5) 

 

Fig. 12. RMSE of LPF using EKF and UKF methods for 

Gaussian noisy input ( s
2 = 1.0) 

 
Fig. 13. RMSE of HPF using EKF and UKF methods for 

Gaussian noisy input ( s
2 = 0.1)  

 
Fig. 14. RMSE of HPF using EKF and UKF methods for 

Gaussian noisy input ( s
2 = 0.5) 

 

Fig. 15. RMSE of HPF using EKF and UKF methods for 

Gaussian noisy input ( s
2 = 1.0) 

 

 

 

 

 



 

State Estimation of RC Filters using Unscented Kalman Filter    

96 

Published By: 

Blue Eyes Intelligence Engineering 
& Sciences Publication  

Retrieval Number: I7512079920/2020©BEIESP 

DOI: 10.35940/ijitee.I7512.079920 

 

thor-1 

Pho  to 

or-2 

Photo 

 

Table I: Performance of different methods for LPF 
Signal Parameter EKF UKF 

Noisy input 

signal 

( 2 0.1  ) 

 
SNR(dB) 

 
24.44 

 

40.55 

 

RMSE 

 

0.2842 

 

0.0402 

Noisy input 

signal 

( 2 0.5  ) 

 
SNR(dB) 

 
11.17 

 

31.56 

 
RMSE 

 
0.5803 

 
0.0991 

Noisy input 
signal 

( 2 1.0  ) 

 

SNR(dB) 

 

7.57 
 

23.66 

 
RMSE 

 
1.4794 

 
1.2746 

 

Table II: Performance of different methods for HPF 
Signal Parameter EKF UKF 

Noisy input 

signal 

( 2 0.1  ) 

 
SNR(dB) 

 
28.57 

 

40.12 

 

RMSE 

 

0.1588 

 

0.0457 

Noisy input 

signal 

( 2 0.5  ) 

 

SNR(dB) 

 

14.46 
 

26.15 

 

RMSE 

 

1.0521 

 

0.1867 

Noisy input 

signal 

( 2 1.0  ) 

 

SNR(dB) 

 

8.96 
 

20.99 

 

RMSE 

 

1.810 

 

0.2175 

V. CONCLUSIONS 

The state estimation of RC LPF and HPF using UKF is 

presented in this paper and compared with EKF method. 

Simulation results show the better closeness of estimated 

capacitor voltage and diode current with PSPICE simulated 

values as compared to the EKF method due to smaller 

linearization error of UKF. Also, the SNR value of UKF is 

better than EKF. UKF presents smaller RMSE as compared 

to EKF as UKF is accurate to the third order for any 

nonlinearity. 
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