
International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue- 9S2, July 2019

438

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: I10930789S219/19©BEIESP

DOI : 10.35940/ijitee.I1093.0789S219

Abstract— The objective of HTTP Rule Base Intrusion

Detection and Prevention System (IDPS) is to provide security for

one of the application layer protocols namely HTTP (Hyper-Text

Transfer Protocol). Such an HTTP based Intrusion Detection

System (IDS) detects header attacks and attacks in payload

(includes HTML and scripting). Misuse detection uses signature

based approach where predefined patterns are defined. The input

text or pattern is compared with the predefined signatures to

detect malicious activity. Furthermore new types of attacks are

continuously created. The new attacks created by attacker are

also detected by these IDS, only if attacks are in the form of

signatures. Signatures are defined either in a single-line or by

complex script languages and are used in rule base to detect

attacks. These signatures and rules have to be updated

periodically as the attacks are continuously changing its nature

of attacks.

Keywords — IDS, HTTP, Rule Base

I. INTRODUCTION

Application layer IDPS, blocks the HTTP Attacks that

occur in application layer. The network layer intrusion

detection system cannot block the application layer attacks.

Firewalls in the network layer IDPS blocks the attacks

entering through the unauthorized port [3]. Some complex

threats can enter through authorized port (HTTP 80) and but

goes undetected [1,2]. Those types of attacks can be

detected by the application layer IDS. Misuse detection uses

the signature based approach where attacks are identified by

comparing with the predefined patterns. New type of attacks

cannot be detected by the misuse based IDS. In the proposed

system, the IDS are updated with the rules and attack

patterns to detect the new types of attacks.

II. ARCHITECTURE OF HTTP RULE-BASED IDPS

The architecture of the HTTP Rule-Based Intrusion

Detection and Prevention System is shown in Fig.1. The

block diagram shows the overall architecture of HTTP Rule

Based IDPs (RIDS) [4] and tells how various modules

process the incoming data. Different modules involved in

Intrusion Detection are Proxy Server, RIDS, Prevention [13,

15].

Revised Manuscript Received on July 18, 2019.

D.Sathya, Assistant Professor II, Dept. of CSE, Kumaraguru College

of Technology, Coimbatore. T.N, India.

S.Sangeetha, Assistant Professor, Dept. of CSE, SNS College of

Technology, Coimbatore. T.N, India.

Fig.1 Architecture of HTTP Rule-Based IDPS

Various modules in this proposed system are Proxy

Server, Rule-Based Intrusion Detection System and

Prevention System [11, 12].

A. Proxy Server

An HTTP Proxy collects the HTTP traffic at application-

layer from the network [10]. The proxy server gets the

request from the browser and forwards the same to the

service provider. The response obtained from the web server

is also captured by the proxy before being forwarded to the

browser.

B. Rule Based Intrusion Detection System

The data captured by the proxy server is separated into

header and payload parts in RIDS. The Header Analyzer

examines the header and compares it with the list of rules in

the rule-base. Similarly the Payload Analyzer parses the

HTML data and searches for misappropriate usage of tags

and attributes and also checks for JavaScript based attacks

injected in the HTTP by comparing with the rules in the rule

base.

C. Prevention System

The intrusive patterns that are detected by the Rule-Base

Intrusion Detection System are given as input to the

prevention block. The requests / responses that are intrusive

are blocked [5,7]. So the server / client doesn’t know about

that attack. The patterns that are blocked by the prevention

block are stored in a database. These data can be used for

analysis process.

The Network Intrusion Detection System detects the

attacks which come through network layer protocol [8,9].

Some of the attacks which come through the application

layer are not detected by the Network Intrusion Detection

Http Rule Base Intrusion Detection and

Prevention System

D.Sathya, S.Sangeetha

HTTP RULE BASE INTRUSION DETECTION AND PREVENTION SYSTEM

439

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I10930789S219/19©BEIESP

DOI : 10.35940/ijitee.I1093.0789S219

System. To detect application layer attacks this system is

proposed. Some of the header and payload based attacks are

as follows.

III. HEADER BASED ATTACKS

There are numerous HTTP Attacks that can bring a

system to a compromised state. The following part will give

an overview of the various HTTP attacks and the extent to

which the intruders can compromise the systems or gain

information about the system. As the HTTP is a stateless

protocol any intrusion that is possible to occur can be caused

by adding the command to the standard HTTP request.

Some of the header based attacks are as follows.

i) " * " Requests

Rule Description

Format : *

Hexadecimal Equivalent : \%2A

Description: wild-card character attack.

Attack explanation

The attackers use an asterisk as an argument to a system

command. Asterisk is a wild-card character which is

normally used for representing zero or more characters. If it

is used in a request then it may represent any possible string

of text. So an intruder may use * to substitute for zero or

more characters without explicitly giving a text.

Attack Detection

The attacker can create a HTTP request that contains '/*'

in the URI which will match all possible combinations of

characters that may come after the ‘/’. So if the objects

representing ‘/’ and ‘*’ occur one after the other, then this

attack is detected and is shown in Fig.2.

Fig.2 Wild character attempt

ii) “~” Requests

Rule Description

Format: \~

Hexadecimal Equivalent: \%7E

Description : attempt to find the valid user.

Attack explanation

http://host/~userids

The ~ character is used by attackers to determine who is a

valid user. This request looks for a user named "userids" on

the remote system. Often users will have web space and if

the attacker manages to visit a web page, or get a 403 error

(Denied error) then a user exists. Once an attacker has a

valid user name, they may try guessing passwords, or brute

forcing until they get a valid password

Attack Detection

The attacker can create a HTTP request that contains '/~'

in the URI which will match the users with user name

specified after the ‘~’ character. So if the objects

representing ‘/’ and ‘~’ occur one after the other, then this

attack is detected.

iii) “chsh” command attempt

Rule Description

Format: /(chsh\%20)|

Hexadecimal Equivalent : (\%63\%68\%73\%68\%20)

Description: Attempt to change the user shell.

Attempt explanation

Using this command, an attacker may change the shell of

a user to outfit their own needs. By changing the shell an

attacker may further compromise a machine by specifying a

shell that could contain a Trojan horse component or that

could contain embedded commands specially crafted by an

attacker.

Attempt Detection

The attacker can make a standard HTTP request that

contains '/bin/chsh' in the URI which can then change the

shell of a user present on the host. So preceding to this

object, an object with ‘/bin’ should be matched so that false

alarms can be reduced.

iv) “gcc” command attempt

Rule Description

Format: /(gcc\%20)

Hexadecimal Equivalent: (\%67\%63\%63\%20)

Description : Attempt to compile C or C++ program.

Attempt explanation

This is an attempt to compile a C or C++ source on a host.

The gcc command is the GNU project's C and C++ compiler

used to compile C and C++ source files into executable

binary files. The attacker could possibly compile a program

needed for other attacks on the system or install a binary

program.

v) “ps” command attempt

Rule Description

Format: /(ps\%20)

Hexadecimal Equivalent: (\%70\%73\%20)

Description : Attempt to gain intelligence of the

processes run in the web server.

vi) “uname” command attempt

Rule Description

Format: /(uname\%20a)

Hexadecimal Equivalent: (\%75\%6e\%61\%

6d\%65\%20\%2d\%61\%20)

Description : Attempt to gain intelligence about the

operating system used.

vii) “chown” command attempt

Rule Description

Format: /(chown\%20

Hexadecimal Equivalent:

(\%63\%68\%6f\%77\%6e\%20)

Description: Attempt to change the ownership

permissions on a machine.

Attempt explanation

This is an attempt to change the file ownership

permissions on a machine.

International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue- 9S2, July 2019

440

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: I10930789S219/19©BEIESP

DOI : 10.35940/ijitee.I1093.0789S219

viii) “kill” command attempt

Rule Description

Format: /(kill\%20)

Hexadecimal Equivalent:(\%2b\%69\%6c\%6c\%20)

Description: Attempt to send a destructive signal to a

specified process.

Attempt explanation

This is an attempt to send the specified signal to a

specified process on a machine. Using this command, an

attacker may send a destructive signal to a specified process

running in the server which can make the system process to

be critical.

ix) “chgrp” command attempt

Rule Description

Format: /(chgrp\%20)

Hexadecimal Equivalent:

(\%63\%68\%67\%72\%70\%20)

Description: Attempt to change ownership permission of

files.

Attempt explanation

This is an attempt to change the group of ownership of

each given files to the named group on a machine.

Attempt detection

For the attacks from iv through ix, when the objects ‘/’ ,

‘bin/’ and the corresponding commands occur, rules written

for these command attempts will detect and report to the

administrator.

x) Directory Traversal Attack

Rule Description

Format: \.\.\/

Hexadecimal Equivalent: \%2e\%2e\%2f

Description: Attempt to traverse the directories.

Attempt explanation

This is an attempt to traverse through the directory levels

and reach the root directory by issuing ‘cd../’ or by

explicitly specifying ‘../’ preceding a unix command.

Attempt detection

This attempt can be detected by matching the pattern ‘../’

in the URI field of the HTTP request. Mostly, this attempt

will be in its morphed form i.e. in ASCII form.

IV. PAYLOAD BASED ATTACKS

When a server is purposely overloaded with lots of

requests from an intruder, it causes a denial of access to

legitimate users. This attack can also be in the form of an

infinite loop that gets executed in the client’s browser.

Examples

1. A JavaScript that loads cached images. Load this

script on popular pages on compromised popular web

servers.

2. Have the JavaScript loop a hundred times or so, each

time requesting a random graphic or page name from

the site targeted by the attack. If more number of users

request the graphics at target site will deny the

service.

The real source of attack is pretty much untraceable until

you can track down at least one of the "users" taking part.

Code example

for(;;);

while(1);

do

{ -- -- }while(1); while(!0);

An infinite loop can either be a single loop with many

iteration or multiple loops with less number of iterations to

achieve the same purpose.

for (i=0;i<100000;i++);

for(i=0;i<100;i++) for(j=0;j<100;j++)

Regular expressions are therefore written that will look

for traces of infinite loops. Following are examples of

resource-consuming malicious scripts.

for (;;);

for (;;) document.write("foobar");

The above script is obviously an infinite loop. When a

user is browsing a web page, if this script is made to

execute, it causes the browser to become irresponsible.

Rule Formulated

The presence of an infinite loop needs to be identified. An

infinite loop can be written in various ways. Either a for, a

while or a do while can be used. for(;;); is obviously an

infinite loop but it need not be the only way. Consider the

following case:

for(i=0;i<500;i++)

{ for(j=0;j<500;j++)

{ for(k=0;k<500;k++){}

} }

The above loop will be executed 500*500*500 times. So,

a limited range loop can be nested inside another loop of the

same kind to act more or less an infinite loop. There is no

need to give infinite for loop or while loop, the attacker can

also try some other patterns to intrude the server. Though an

exhaustive solution is not possible, a comprehensive

solution was made by including the above scenarios is

shown in Fig.3.

Fig.3 DoS Attack

V. EXPERIMENTS AND RESULTS

The Proxy server stores the header and payload

information in separate files.

The output of the regular misuse detection module is non-

intrusive for few attacks. In Denial of Service attack, the

intruder makes the server busy and this denies access to the

legitimate user. The intruder makes server busy by having

infinite loops in the HTML payload. Sometimes the intruder

executes the loop for larger number of times instead of

executing infinite times. The attack which does not have a

clear rule entry can also be detected. The detected attacks

are stored in a file along with the date and time of detection

as shown in the Fig.4.

HTTP RULE BASE INTRUSION DETECTION AND PREVENTION SYSTEM

441

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: I10930789S219/19©BEIESP

DOI : 10.35940/ijitee.I1093.0789S219

Fig.4 Detail of the attacks detected

The proposed system detects almost all possible attacks

which are given in the rule base. The rule base is updated by

the administrator whenever a new attack is encountered.

This produces good results in detecting the malicious

content. The table.1 shows the attack detection time of the

proposed system over Header and Payload attacks.

Table 1 Time taken to detect the attacks by HTTP Rule-

Based Intrusion Detection and Prevention System

Number of Rules Time taken(ms)

10 0.2

20 0.4

50 1.0

Fig. 4 Memory consumption for the rules

The proposed system uses less amount of memory, (i.e)

memory consumption is based on the number of rules in the

rule base and the content which are retrieved from the web

browser are deleted after processing has been finished. The

table 2 shows the amount of memory used for the number of

rules.

VI. CONCLUSION

Thus, Intrusion Detection and Prevention System focuses

on identifying possible malicious behavior that occur on

application layer and block the detected maliciousness and

finally it reports to the server. Rule-Based Misuse Detection

follows a signature match approach which makes the system

more efficient. Because of the continuously changing nature

of attacks, the proposed system will update the signatures

and rules. The system has been tested in a web environment

and the results are presented. The results show the detection

rate and time taken to detect an intrusion of the proposed

system is better than regular instrusion detection existing

techniques.

REFERENCES

1. T.Abbes,A. Bouhoula and M. Rusinowitch (2004), ‘Protocol
Analysis in Intrusion Detection Using Decision Tree’, In the
Proceedings of International Conference on Information
Technology, Coding and Computing (ITCC’ 04), IEEE.

2. E. Amoroso and R.Kwapniewski, (1998) ‘ A Selection
Criteria for Intrusion Detection Systems’, Proc. 14th Ann.
Computer Security Applications Conf, IEEE Computer Soc.
Press, Los Alamitos, Calif, pp. 280-288.

3. Andrew S. Tanenbaum, ‘Computer Networks’, 2nd Edition,
Prentice Hall of India.

4. A.Anitha and V. Vaidehi ‘Content based Application Level
Intrusion Detection System’.

5. D.E. Denning, (1987) ‘An Intrusion Detection Model’, IEEE
Trans. Software Eng., Vol. SE-13, No. 2, pp. 222-232.

6. R. Durst et al,(1999) ‘Testing and Evaluating Computer
Intrusion Detection Systems’, Comm. ACM, Vol. 42, No.7,

pp.53-61.
7. John McHugh, Alan Christie and Julia Allen (2000),

‘Defending Yourself: The Role Intrusion Detection Systems’,
IEEE SOFTWARE pp. 42-51.

8. Karen Scarfone and Peter Mell, ‘Guide to Intrusion Detection
and Prevention Systems(IDPS)’.

9. C.Krugel and T.Toth (2003), ‘Using decision trees to improve
signature-based Intrusion Detection’ in the proceedings of the
6th International Workshop on the recent advanced in

Intrusion Detection(RAID’2003), LNCS v.2820, pages 173-
191.

10. J. Mogul, R. Fielding, J. Gettys, H. Frystyk, L. Masinter, P.
Leach and T. Bemers-Lee June 1999.RFC2616: Hypertext
Transfer Protocol - HTTP/1.1.

11. Nick Ierace, Cesar Urrutia and Richard Bassett ‘Intrusion
Prevention Systems’.

12. S. Northcutt,(1999) ‘Network Intrusion Detection’, New

Riders, Indianapolis.
13. V. Paxson, (1998) ‘Bro: A System for Detecting Network

Intruders in Real-Time’, Computer Networks (Amsterdam,
Netherlands: 1999), vol. 31, no. 23-24, pp. 2435– 2463.

14. M.V.Ramana Murthy, P.Ram Kumar, E.Devender Rao, A C
Sharma, S.Rajender and S.Rambabu, ‘ Performance of the
Network Intrusion Detection Systems’, IJCSNS International
Journal of Computer Science and Network Security, VOL.9

No.10.
15. M. Roesch, (2003) ‘Snort: the Open Source Network Intrusion

Detection System’, Development Paper at www.snort.org.
16. Duraisamy Sathya, Pugalendhi Ganesh Kumar, “Secured

remote health monitoring system”, Healthcare Technology
Letters, pp. 1–5.

17. Sathya.D, Krishneswari.K, "Cross Layer Intrusion Detection
System for Wireless Sensor Networks”,Journal of Scientific

and Industrial Research, Vol.75, pp.213-220, 2016.

Memory consumption for the rules

0

500

1000

1500

2000

2500

3000

1 2 3

No. of Rules

M
e
m

o
ry

 U
s
e
d

 (
B

y
te

s
)

