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Fundamentals of Transportation Problem 
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Abstract: Transportation Problem is a linear programming 
problem. Like LPP, transportation problem has basic feasible 
solution (BFS) and then from it we obtain the optimal solution. 
Among these BFS the optimal solution is developed by constructing 
dual of the TP. By using complimentary slackness conditions the 
optimal solutions is obtained by the same iterative principle. The 
method is known as MODI (Modified Distribution) method.In this 
paper we have discussed all the aspect of  transportation problem. 

Keywords: Transportation Problem, Initial Basic Feasible 
Solution, Optimal Solution 

I. INTRODUCTION 

Transportation Problem is a special structure of Linear 

Programming Problem (LPP), that is frequently encountered in 
the Operation Research literature. The model was first 
presented by F.L. Hitchcock in 1941[28]. In 1950's simplex-
based solution techniques were developed for the transportation 
problem exploiting its special structure. In the meantime, we 
come across varieties of transportation problems such as 
bottleneck problem, minimax and maximin problem, time 
minimization transportation problem, volume minimization 
transportation problem, etc. The bottleneck transportation 
problem was first discussed by Fulkerson, Glickberg, and Guss 
(1953) and subsequently by Guss in 1959[25]. Later on, 
varieties of new theoretical and methodological development 
were made by Hammer in 1969. Edmond and Fulkerson 1970, 
Garfinkle and Rao 1979 and 1976, Kaplan 1976 and Poisner 
and Wu 1981,[23] etc. Bottleneck models were mathematically 
formulated with a special type of objective function in which 
the maximal cost coefficient of any variable with strictly 
positive value is minimized concerning a given set of 
constraints.  

   As an example: suppose that the origin represents a 
military depot in which certain supplies, say ammunitions are 
stored and let the destination represent a combat zone at which 
there is specified demand for ammunition. To every depot 
combat zone pair, a coefficient cij is assigned indicating the 
amount of time required to ship any number of units ith origin to 
jth destination. A military operation will start in all combat zone 
simultaneously at the earliest possible instance, it is necessary 
that the requested amount of ammunition must be available at 
all combat zones. In other words, the operation cannot start 
before the last shipment of goods arrives and the problem is to 
schedule the shipment so that the operation can start as soon as 
possible. 
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1.1.  Mathematical Formulation  

Throughout the thesis we will assume that the following 
structure is given: Let a company own "m" warehouses in 
which each of which there is a given amount of certain 
commodity in stock, and let there also be "n" consumer is 
with a given demand for this commodity. The "m" 
warehouses of the company are sources and "n" consumers 
are known as destinations. Moreover the unit transportation 
cost between each warehouse -consumer pair is known. The 
objective of the company is to transport units from the 
warehouses to the consumers, such that  

i)   no more units leave a warehouse than there are in 
stocks,  

ii)  the demands of the consumers  are satisfied, and  
iii) the total transportation cost is minimize 
Formally the model can be described as follows: let N1 

be a set of "m" location called origins so that there is a 
supply of si at the ithorigin, i = 1,2.....m and let N2 be a set of 
n locations called destinations so that there is demand dj at 
the jth destination, j= 1,2....n. In the above example, the 
origin corresponds to the warehouses whereas the retailers 
are represented by the destinations. we assume that the total 

demand equal to the total supply i.e
1 1

m n

i j
i j

s d
 

  . If 

total supply exceeds total demands exactly one dummy 
destination is created to absorb the excess supply; its 

demand equals
1 1

m n

i j
i j

s d
 

  . The case of excess demand is 

handed similarly using exactly one dummy origin. 
Finally, it is assumed that exists exactly one connection 

between each origin-destination pair, that, detours are not 
allowed and that each of these connections has infinite 
capacity. The cost for shipping one quantity unit from the ith 
origin to the jthdestination is given by cij. All unit 
transportation costs from a dummy origin or to a dummy 
destination are assumed to be equal. Usually, we will set 
them equal to zero but sometimes, due to the specific nature 
of the problem considered, they will be assigned some other 
value. If the connection between ith origin and jth destination 
for some reason is forbidden, the corresponding cost is 

assigned an extremely high value, i.e. we set : 0
ij

c M 

. In these cases, the existence of feasible solutions is no 
longer guaranteed. Note that sometimes cij denotes the 
distance per quantity unit; then the objective is to minimize 
the total distance of the shipments, assuming that each unit 
is transported separately. As in all linear programming 
problems, the objective function is linear. The above 
structure may be visualized in the following figure : 
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Fig-I 

The above underlying structure is called bipartite graph; 
Defining variables xij to denote the quantity shipped, from 
the ithorigin to the jth  destination, we can formulate the 
model  

 
 
 
 
 
 

1 1

1

1

Pr : min (1)

. . , 1, 2..... ( ) (2)

, 1,2..... ( ) (3)

0, 1,2..... & 1,2.....

m n

ij ij
i j

n

ij i
j

m

ij j
j

ij

imal problem P z c x

s t x s i m supply availability

x d j n demand requirements

x i m j n

 







 

 

  







 

sometimes the supply constraints are given as 


constraints and/or the demand constraints are given as 


relations; as long as 
0 ,ijc i j 

and 1 1

m n

i j
i j

s d
 

 
the 

optimal solution remains unchanged. The above model has 

'mn' variables ijx
and m+n constraints.  

1.2The Generalised Transportation problem (GTP) 

In this subsection, we will Generalized Transportation 
problem(GTP). In mathematical term it can be written with 
same objective function as in (1) 

1 1

1

1

: min (4)

. . , 1, 2..... (5)

, 1,2..... (6)

0, 1,2..... & 1,2.....

m n

ij ij
i j

n

ij i
j

m

ij ij j
j

ij

P z c x

s t x s i m

a x d j n

x i m j n

 







 

 

  







 

  

The difference between the standard transportation 
problem and the standard transportation problem is that the 
above problem P may have a coefficient other than zero and 
the presence of coefficient (aij) in the demand constraints 
GTP, which is not show in case of transportation problem. 
The GTP considerably more difficult to solve than the TP, 
for example, it is not easy to decide whether a dummy 
row/column has to be introduced, which may leads to non 
existence of solution. Although for the standard 
transportation problem integrality of the solution is 
guaranteed ( provided that all supplies and demands are 
integer-valued) but it is not the case. A class of problems 
that can be which perishable goods are shipped.  

 
 
 

1.3  Properties and Solution Techniques 

Let us restate the primal problem with the understanding 
that a dummy has already been added if necessary: we 
reformulated problem (P) 
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1 1

1

1

: min

. . , 1, 2.....

, 1, 2.....

0, ,

m n

ij ij
i j

n

ij i
j

m

ij j
j

ij

P z c x

s t x s i m

x d j n

x i j

 







 

 

 







 

 After having  transformed the above problem P into a 
maximization problem and multiplied all constraints by (-1), 

we assign dual variables vjto the next n primal constraints, 
and obtain the dual PD which can be written as: 

 

 

Adding dual slack variables 
* 0ijc 

to the dual 
constraints, they can be written as 

 

 

* *, , (10)i j ij ij ij ij i ju v c c i j or c c u v i j       
 

 
Then the complementary slackness condition can be 

written as  

 

 

* 0 , (11)ij ijc x i j   

The primal-dual relationship can be explained by the 
following situations: Suppose that a carrier Alpha has to 
ship supplies from origins to destinations where there is a 
pre-specified demand for the given product;  Alpha wishes 
to minimize the total transportation costs. Now a competitor, 
say Beta, who feels that he can perform the task of shipping 
these units more efficiently than Alpha, approaches Alpha 
with the following offer: For each unit which Beta ships out 
of the ith origin, he will charge Alpha uidollars and for each 
unit which Beta delivers to the jthdestination, he charges 
Alpha vj dollars; the shipment will be done by Beta who 
uses Alpha's transportation facilities. To make this offer 
interesting for Alpha, Beta determines his prices ui and vj, 
so that Alpha will never have to pay more to Beta as if he 
would have spent transporting by himself (which is 
guaranteed by dual constraints). Moreover, Beta wants to 
maximize his profit, paid to him by Alpha, which is 
expressed in the dual objective function.  

An application of the dual problem is described in the 
following situation: Let 'mn' machines Mij with capacities 
cij be given. Suppose that two types of chemicals are 
produced on these machines; the first type consists of 
chemicals A1, A2,........Am, so that Ajis produced on Mi1, 

Mi2,.....Min and the second type consists of chemicals B1, 
B2......Bn, so that Bjis produced on M1j, M2j, ...Mmj. The 
production time is one time unit on each machine per 
quantity unit of either chemical; the unit selling price for Ai 
and Bj is ui and vj,  respectively. The company may decide 
to buy a certain amount of chemicals from the competition 
rather than to produce itself. The purchase price is identical 
to the company's selling price and the objective is to 
maximize the total profit of the company. 

The solution of transportation problems is usually done 
with a two-phase method, very similar to the one described 
for the general simplex method. In phase 1 we find a primal 
basic feasible solution and in phase 2 the current primal 
solution is examined. If it is dual feasible and fulfills the 
complementary slackness condition, then it is optimal we 
stop; if this is not the case we perform one iteration and 
generate a new primal feasible basic solution which again 
becomes the input in phase 2. Before procedures for phase 1 
or 2 are described, we will focus on the properties of the 
basic solutions. Since the primal problem consists of m+n 
constraints, each basic solution should consist of m +n basic 
variables.   

Consider, however , the k-th supply constraint  1

n

kj k
j

x s



                      (12) 

and the remaining supply constraints     1

n

kj i
j

x s i k


  
   (13) 
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as well as the demand constraints 1

m

kj j
i

x d j


 
  (14) 

 
Then the supply-demand balance equation can be written 

1 1 1 1

m n n m

k i j k j i
i j j i
i k i k

s s d or s d s
   
 

          (15) 

Summing of all constraints in (17) results in 1 1 1

m n n

ij j
i j j

x d
  

 
   (16) 

and summing up all constraints in (16) results in  
1 1 1

m n m

ij i
i j i
i k i k

x s
  
 

 
  (17) 

 
Subtracting (17) from (16) yields 

 

1 1 1 1 1 1 1 1 1

m n m n n m n n m

ij ij j i kj j i
i j i j j i j j i

i k i k i k

x x d s or x d s
        

  

          
    (18) 

Using (6) we obtain
1

n

kj k
j

x s


  which is identical to (12) above. 

In other words, the k-th supply constraint can be derived 
from all other constraints. In general, any of the primal 
constraints can be expressed as a linear combination of the 
others. By the same token, no basis of transportation 
problem can include more than (m+n-1) basic variables, 
because if it did, it would be linearly dependant which is 
impossible by the definition of a basis. 

 In the following, we will continue a technique that 
leads to a basic feasible solution. i.e. which perform the task 
of phase 1. Although for the time being it will be assumed 
that all problems are non-degenerate (primal as well as 
dual), we will describe later in the chapter how to deal with 
any kind of degeneracy. Set up an[m × n] dimensional 
transportation table where the i-th row corresponds to the i-
th origin and the j-th column represents the j-th destination 
so that the element (i,j) denotes the value of xij. Suppose 
now that any element is selected, say the entry in the i-th 
row and the s-th column, and set xrs:=min {sr,,ds}. Assume 
that xrs=sr<ds, then the supplies and  demands are redefined 
as 

,0
: :

j r

i j
i j

d s if j sif i r
s and d

s otherwise d otherwise

  
 
 

 

 
In other words, since sr units are shipped out of the r-th 

origin, no more units are left there and the current supply is 
zero; since these sr units are shipped to the s-th destination 
the demand in this destination is satisfied in parts, the 
remaining demand is ds - sr. All other supplies and demands 
are unaffected by this shipment since there is no more 
supply in the r-th origin, so that all elements xrj, j s  can 

be set equal to zero. We proceed similarly if xrs=ds; in this 

case, set : 0 .isx i r      

After going through this procedure once, we have 
assigned values to all elements in either one row or one 
column, i.e. the [m×n]- the dimensional problem has been 
reduced to a [(m-1)×n] or to a [m×(n-1)]- dimensional 
problem. This process can be repeated until values have 
been assigned to all 'mn' variables. This task requires exactly 
(m+n-1) steps such as the above (note that in the last step 
the remaining supply equals the remaining demand since

 1 1

m n

i j
i j

s d
 

 
.) Moreover, since in each of these 

(m+n-1) steps exactly one of the assigned values is positive: 
the corresponding variable is basic in the current solution, 
i.e. the number of resulting basic variables complies with 
their required number. The open question at this point 
concerning the above procedure is how to select a specific 
element among all those to which values have not yet been 
assigned. In the above description, we choose any element, 
although specific rules can be designed to find an initial 
solution that is as good, i.e. close to the optimal solution, as 
possible.                                                  

Before describing any of the many possible rules, we 
should note that  

(a) none of the rules assures that the initial solution is 
optimal. 

(b) none of the rules, no matter how sophisticated, has 
been proved superior to any other rule, no matter how 
elementary. In other words, it is always possible to construct 
examples, for which simple rules find better initial solutions 
than the rules which are generally considered good.  
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On average, however, extensive test series indicated that 
certain rules are much more effective than others. Some of 
these rules will be presented at the end of this chapter in 
algorithmic form. A more complete survey can be found in 
Eiselt and von Frajer (1977).  

At this stage, we enter phase 2 and determine if the 
current primal feasible solution is also dual feasible, i.e. 
optimal. The procedure to be described in the following is 
called the MODI or Modified Distribution method. Recall 
that the dual constraints are  

*    ij ij i jc c u v  
where 

*
ijc

 are the dual slacks, 
*, , 0 ,i j iju v i j and c i j   

 
and that the complementary slackness condition can be 

written as
* 0 ,ij ijc x i j 

. To fulfil the complementary 

slackness condition, we set 
* 0 ,ijc i j 

such that xij>0. 
Note that the values of all primal and dual variables can be 
found in a corresponding primal simplex tableau in the 
positions indicated below. 

 
Table-I 

 

The above complementary slackness condition assures 
that under each xij>0, which accordingly has to be a basic 

variable, a zero is found 
* 0ijc 

 in the objective function 
row. Since (any) one of the primal constraints is redundant, 
(any) one of the dual variables ui or vj can assume an 
arbitrary value; for reasons of simplicity set v1:=0. Since v1 
belongs to the first destination and since d1>0, there must be 

at least one index i, such that xi1>0  and thus
*
1 0ic 

. Using 
this information in (1), we obtain ui + v1= cij, where u1 is 
the only unknown in this equation. We solve for ui and then 

proceed in exactly the same way, taking one
* 0klc 

 at a 
time, where either ukor vl has already been calculated and 
solve relation (1) for the unknown dual variable. After 
(m+n-1)  calculations of this type, all dual variables ui and 
vj have been determined. After this task has been 
accomplished, relations (1) are used again, i.e. for all non-

basic variables xij for which the corresponding 
*
ijc

values 

are still unknown, we use
*
ij ij i jc c u v  

 where 
*
ijc

is the 
only unknown.  

 The above relation is used (mn - m - n +1) times 

after which all
*
ijc

values are determined. Therefore all-right 
hand side values and all objective function coefficients in 
the simplex tableau corresponding to the current solution 
have been determined. This enables us to evaluate the 
current solution concerning optimality. Recall that the 

solution is primal feasible and setting 
* 0ijc 

for all basic 
variables xij assures that the complementary slackness 

condition is fulfilled. Hence if 
* 0 , .ijc i j 

we can 
conclude that the current solution is also dual feasible and 
thus optimal, in which case we would stop here. If however, 

there exists at least one
* 0ijc 

, optimality has not yet been 
established and at least one more iteration is necessary, i.e. 
the current basis has to be changed. In a simplex tableau 
such as the one displayed previously, we would select any 

negative 

*
ijc

and introduce the corresponding variable xij 
into the basis. Note that in general more than one negative 

* 0ijc 
element is given so that we have the choice of 

which variable enter the basis. Using an equivalent of the 
steepest unit ascent method, we would select the variable 

with the smallest
* 0ijc 

 value. Note, however, that all 

variables with negative

*
ijc

 values are eligible for 
introduction into the basis.  

 Suppose that the current primal solution is 
displayed in a transportation table T, with 'm' rows and 'n' 
columns; so that the value in the i-th row and the j-th 
column is the current value of the variable xij. Introducing a 
variable xij into the basis in a non-degenerate simplex 
tableau means increasing its value from zero to some 

positive number say 0 . Suppose that xij will be 
introduced into the basis and that we indicate this by 
labelling the corresponding element in the T table by 
" " or  " + " for short.   If, however, we increase the 
value of xij by some positive number without making any 
other adjustments, we use more of the supply in the i-th 
origin than is available and at the same time more than 
required is shipped to the j-th destination. Considering the 
origin only, we have to subtract the same amount ∈  from 
some other element in the  

i-th row, say ix  , which will receive the label "-∈ " or "-
". Now the amount, shipped out of the i-th origin equals si 

but the 
th destination receives less than its demand, 

whereas the j-th destination receives more than its demand.  
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Hence an element it the 
th column will receive a " +" 

label, say kx   , then an additional "_" label is required in 
the k-th row and so on. It should be pointed out here that 
except for the first "+" label, which was assigned to a non-
basic entry, all other labels,  "+" or   " _ " can only be 
assigned to basic variables. Labels assigned to additional 
non-basic variables would indicate the simultaneous 
introduction of multiple variables into the basis (block 
pivoting). Note that the above labelling procedure stops as 
soon as each row and column includes the same number of 
"+" and " _"  labels or, equivalently, that an alternating cycle 
of "+"  and " _ " labels is formed. The figures below display 
three possible(+, -) cycles: 

 
Fig -II(a) 

 

 
Fig -II(b) 

 

 
Fig -II(c) 

 

Before the question of existence of (+,-)  cycles is 
addressed, we will discuss the change in the solution which 
results from the cycle determined above. Let M be set  
consisting of all elements, which have received a "_" label 

above. Determine
: min{ | ( , ) }ijx i j M 

  i.e. ∈  is the 
minimum value among all those xij, that will be reduced in 
the next solution. We now add ∈  to all elements with a "+" 
label, subtract ∈  from all elements in M and leave the 
remaining elements unchanged. It is easy to show that the 
new solution, generated by this procedure, is primal 
feasible: since in all rows and columns the same amounts 
are added as well as subtracted, the supply and demand 
constraints remain fulfilled. Furthermore the rule for the 
determination of ∈  ensures that the non-negativity 
constraints for all variables xij are still fulfilled, and hence 
the new transportation plan is again primal feasible. 
Moreover, it has already been stated that the element, where 
the (+, -) cycle started, is introduced in the basis; one 
variable is reduced to zero, namely the one which 
determined the value of ∈ ; this is the variable that leaves the 
basis. As a result, the new solution is not only primal 
feasible but it is also a basic solution. Note also the effects 

of changing the values on the (+, -) cycle by a value 

.If   , then at least one xij< 0 ( the one which 

determined ∈ ); If , then no variable is reduced to zero 
which means that due to the fact that one variable enters the 
basis, too many variables have values greater than zero, i.e. 
the resulting solution is no longer a basic solution. If more 
than one variable determines ∈ , we face a case of primal 
degeneracy, and we will explain below how these cases can 
be handled. 

    Now a new solution, i.e. a new transportation plan, 
has been determined and we start again with phase 2, 
examining if the current solution is optimal or not. This 
procedure is repeated until the stop criterion is fulfilled, i.e. 

until 
* 0 ,ijc i j 

 
Before discussing degeneracy, we outline certain 

properties of basic solutions in transportation problems. We 
will say that a given set of elements (variables) form a cycle. 
If we could assign "+" and "_" labels to these elements, so 
that a (+, -) cycle, including all elements in the above set, 
will result. Then we can state the following   

Lemma I. The variables in any basis do not form a cycle. 

Proof: Suppose they do. Then there exists a sequence of 
basic variables xj0 j1, xj1 j2, xj2 j3 , .....,xjr-1jr, xjr j0 . 
Since each row and column includes an even number of 
variables in the cycle, the total number of variables in the 

cycle is even, and thus 'r' is odd. Let . j jka   the column of 

coefficients associated with the variable j jkx  , so that  

. j jka   [0,......0.1,0, ......, .....,0,1,0,.......,0]T  is the vector 

with elements equal to one in the j th  and jk-th position 
and zeros otherwise, i.e. 

 
 
 



International Journal of Engineering and Advanced Technology (IJEAT) 
 ISSN: 2249-8958 (Online), Volume-10 Issue-5, June 2021 

96 

Published By: 
Blue Eyes Intelligence Engineering 
and Sciences Publication 
© Copyright: All rights reserved. 
 

Retrieval Number: 100.1/ijeat.E26540610521 
DOI:10.35940/ijeat.E2654.0610521  
Journal Website: www.ijeat.org 
 

. j jk j jka e e   , where ej is the j-th unit vector. By 
assumption we can form a (+, -) cycle with the above 
variables, such that 

0 1 1 2 2 3 3 4 1 0. . . . . ........
r r rj j j j j j j j j j j ja a a a a a


      
 

2 2 1 2 1 2 2 0

1 3

2 2

. . .
0 0

r

r r

j j j j j ja a a
   

 
  

 

 

   
      
   
      

   

0 0 0

0 0 0

. . .

. . .

. . .

1 1 0

. . .

. . .

1 1 0

0 0 0

. . .

. . .

. . .

0 0 0

r r r

j j j

j j j

     
     
     
     
     
     
       
     
     
      
     
       

     
     
     
     
     
     
     
          

 

The columns of the basis are linearly dependent, which 
is a contradiction. This proves the lemma.  

In graph-theoretical terms, every basic solution of a 
transportation problem forms a tree in a bipartite graph. The 
addition of one more variable is in a tree (introduction of a 
variable into the basis) results in the creation of exactly one 
cycle, which is the  (+,-)cycle used in phase 2. Since this 
concept is closely related to the case of primal degeneracy, 
we will use such a degenerate example to explain the above. 
Let a transportation problem with three origins and three 
destinations be given, for which the supplies are 50, 10, and 
40, respectively and the demands are 20,40, and 40 
respectively. We will use a technique called the Northwest 
Corner Rule (formally described later ) to set up the initial 
transportation plan, the following five tables may explain 
the dynamics of the procedure, and the * indicates the 
element selected in the respective northwest corner. Note 
that the supplies and the demands are adjusted as soon as a 
value has been assigned to the selected element. 

 
Table-II 

dj 

si 

20    40    40 

50 

10 

40      

* 

min {50,20}=20 

Table-III 

 
min{30,40}=30 

 
Table-IV 

 
min{10,10}=10 

Table-V 

 
min{40,40}=40 

 
Table-VI 
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In the third of the above tables, the (reduced ) supply 
equals the (reduced) demand for the selected element. Hence 
after assigning the value to the corresponding variable, both 
row and column have to be filled up with zeros since neither 
supply nor demand is left. ( Note that this phenomenon 
always occurs when the last assignment is made - table 4 
above - since total supply equals total demand). A result is 
that not all basic variables in the initial transportation plan 
can be identified. In the above example m = n = 3, and 
although (m+n-1) =5 basic variables are needed, only four, 
namely  x11 =20, x12 =30, x22 = 10, x33=40 can be 
identified. It is now necessary to locate the remaining basic 
variable. This will become clear when we try to set up the 

matrix of dual slack 
* *( )ijC c

called opportunity cost 
matrix or shadow price matrix (due to reasons which will be 
explained later ). Setting 

*
10 0 0ij ijc x as well v   

 we obtain 
 

Table-VII 
vj 

ui 

0    √ 

√ 

√ 

 

0   0 

     0 

             0 

Using c*11 = 0 and v1 = 0, we determine u1, using u1  

and 
*
12 0c 

 we determine v2 and using 
*
22 0c 

 we 
determine u2. At this point, it is no longer possible to 
calculate any additional dual variable u1 or vj. The most 
general rule to overcome this problem is to assign a "basic - 
zero", denoted by bv0, to any element, which helps to 
calculate an additional dual variable uior vj. In the above 
example, a basic zero in position (1, 3) would make it 
possible to calculate v3 (using u1 and c*33 =0), in position 
(2,3) we could calculate v3 ( using u2 and c*23=0), in 
position (3, 2) we could calculate u3 (using v2 and c*32=0) 
and in position (3,1) calculate u3, using v1 and c*31 =0. 
Any of the above positions for an additional basic zero is 
acceptable. We can, however, not assign a basic zero  (2,1), 
as this would not help to calculate any additional variables 
u1 or vj since u2 as well as v1  have already been 
determined. The initial solution for our small example can 
also be displayed as follows: 

 
Fig –III 

It can be seen in Fig-III that an additional basic variable 
x21 would introduce an additional connection between 
origin 2 and destination 1 ( with the shipped amount of zero) 
and would thus create a cycle in the above graph, which is 
forbidden in basis. Every other additional connection does 
not create a cycle and is hence possible.  

 Primal degeneracy can, of course, also occur during 
phase 2. Suppose that for some solution a (+, -)  cycle has 
been found and let the value of ∈  be determined by two or 
more elements, i.e. various elements with "_" labels have the 
same minimum value. Since only one element can leave the 
basis in one iteration, we select any of these elements (the 
selection is arbitrary, additional criteria e.g. the one with the 
highest original cost coefficient cij or any other rule can be 
used) to leave the basis. Any other element which could 
have been selected for leaving the basis will have a zero 
value in the next solution, and we will indicate the fact that 
it is still in the basis by the superscript " by" ( hence, in the 
next C* matrix, there c*ij coefficients will be set equal to 
zero right away). 

 Finally, the case of dual degeneracy will be 
described. Suppose that for any solution, the dual variables 
uiand vjhave already been determined and in the process of 
calculating the c*ij coefficients for the non-basic variables 
using relation (1), it turns out that at least one of the c*ij 
values equals zero. This is the case of dual degeneracy. 
From a procedural point of view, we may ignore it as long 
as it occurs in an intermediate, i.e. non-optimal, solution. If 
dual degeneracy occurs, however, is an optimal solution, it 
indicates - according to simplex theory  the existence of 
alternative optimal solutions. They can be generated by 
starting a (+,-) cycle with a non-basic variable for which c*ij 
= 0 and then using the regular procedure. The above 
discussion about degeneracy is summarized in the following 
: 

Table-VIII 
Case Occurrence Treatment 

Primal 
degeneracy, 

Phase  1 

si=dj for the 
selected  

element xij 

Introduce a basic 
variable 

xij=0 wherever it 
helps to calculate  

one more dual 
variable ui or vj 

Primal 
degeneracy 

Phase  2 

∈ is 
determined 
by more  

than one 
element  

Select as leaving 
variables one 

 Which determined 
∈ , indicate that  

other elements 
remain on the basis. 
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Dual 
degeneracy 

* 0ijc   

for a non-
basic 
variable xij 

In the final tableau, 
generate 

 alternative optimal 
solutions by 

  starting a (+,-) on 
any of the 

 non-basic variables 

with 
* 0ijc   

 

One final note before the above algorithm is described 
formally is concerned with maximization rather than 
minimization problems. There are various ways to handle 
maximization problems, three of which are : 

(1) Transform the maximization problem into a 
minimization problem by multiplying all coefficients cij by 
(-1); the algorithm remains unchanged. 

(2) Find the highest unit of profit, says crs, 

,
( . max{ })rs ij

i j
i e c c

and determine pseudo costs

: ,ij rs ijc c c i j


  
. Then ( )ijC c

 

 is used together 
with the regular minimization procedure. 

(3) Change the algorithm, so that a (+,-) cycle starts with 
some xij, for which c*ij>0  and stop the procedure, 

as soon as 

* 0ijc 
 (rather than

0 ,i j 
) 

In the following, we will describe a solution technique 
for the minimization transportation problem, which includes 
three alternative procedures for phase 1 and MODI 
procedure for phase 2. To simplify the notion in phase 1, let 
Q be the set of elements (i,j), to which no value has been 
assigned yet. Initially, Q includes all 'mn' elements (i,j). 

II. METHODS  

Northwest Corner Rule (NWC) 

Start with NWC of the transportation table A allocates 
the minimum of row one or column one. If row 1 is 
satisfied, then move vertically to the next cell of column 1 
and allocate the remaining quantity cell (2,1), if the column 
is satisfied. Then move horizontally to the next cell and 
allocate the minimum of row 2 and column 2. In cell (2,2) 
we continue the movement vertically and horizontally when 
we reach the last corner of the T.P..The total movement no 
doubt generate m+n-1 cells. Then we find out the initial BFS 
and corresponding cost by multiplying the corresponding 
cost of the cell.   

Algorithm 

Step 1:  Select (r, s) such that r+s =min {i+j | (i,j) 
∈B}and set xrs = min{sr,ds} 

Step 2: Is xrs = sr? 
  If yes: Go to step 3. 
  If no: Go to step  4. 
Step 3: Set sr = sr- xrs = 0, ds : = ds - xrs, xrj :=0 

∀ (r,j)∈B an redefine 

 B: = B \∪{(r,j)|(r,j)∈  B }. Go to step 5 
Step 4: Set ds : = ds -xrs = 0, sr : = sr - xrs, xis : =0 

∀ (i,s)∈B and redefine 
  B:= B \{(i,s)|(i,s)∈  B } 
Step 5: Is B =⌀   ? 
If yes: Stop, a feasible transportation plan has been 

found. 
If no: Go to step 1. 
  Alternatively, we can use the  

Least Cost Method (LCM) 

 Step 1: Select (r,s), such that 

min{ | ( , ) }rs ijc c i j Q 
and set

min{ , }rs r sx s d
. 

Steps 2 through 5 are identical to the ones in the Northwest 
Corner Rule. If in step 5 the answer is "no", one simply 
returns to step 1 rather than the one in NWC.  

A third possibility is  

Vogel's Approximation Method (VAM) 

Step 1: for each row (column ), containing at least two 
unassigned elements, calculate penalties pi (qi), so that pi 
(qi) is the absolute value of the difference between the value 
of the minimal and the second minimal original cost 
coefficient, belonging to unassigned elements in the i-th row 
(j-th column ). Determine the row or column with the 
maximal penalty. If this is row r, determine (r ,s) , so that 
crs= min {crj|(r,j)∈  B }; if this column s , determine (r , s), 

so that crs= min {cis|(i,s)∈B}.  Set 
min{ , }rs r sx s d

 
From this point on we can again use Steps 2 through 5 

described above under the Northwest Corner Rule. It can 
easily be seen that the only difference between these 
procedures is the selection of the element (r,s). Whereas we 
pay no attention whatsoever to the cost if the Northwest 
Corner Rule is used (in fact, the NWC rule will find 
identical solutions for transportation problems with the same 
supplies and demands, no matter what the costs are ), the 
cost structure is considered in different ways in other two 
methods. Whereas it is considered worthwhile to assigned as 
many units as possible to the element with the lowest unit 
cost in the LCM,  we consider the relative magnitude of the 
unit costs in VAM. The penalties can be seen as an 
approximation of the additional costs which are incurred per 
quantity unit if the lowest cost element in a row or column is 
not selected, in which case the next best choice would be the 
element with the second-lowest-cost). Accordingly, the row 
or column with the highest penalty is one in which it seems 
most important to assign units to the lowest cost element 
because otherwise, the (high) penalty comes into effect. For 
the LCM and VAM methods, it is important what costs are 
assigned to the entries in the dummy row or column. If these 
costs are consumed to be zero, then the corresponding 
entries are undoubtedly attractive for minimization 
purposes; with LCM for example we will start assigning 
values to one of the dummy connections. At first sight, it 
might appear that it would not make any real difference 
what xijvalues are assigned to dummy connections. The 
situation is quite the opposite.  

 
 
 
 
 

https://www.openaccess.nl/en/open-publications


 
Fundamentals of Transportation Problem 

99 

Published By: 
Blue Eyes Intelligence Engineering 
and Sciences Publication 
© Copyright: All rights reserved. 
 

Retrieval Number: 100.1/ijeat.E26540610521 
DOI:10.35940/ijeat.E2654.0610521  
Journal Website: www.ijeat.org 
 

One can easily show that in many cases it is beneficial 
either to assign high costs to dummy connections or, 
equivalently, to disregard their cost coefficients for the 
selection of xrs.  After any basic feasible solution has been 
found ( e.g. with one of the above methods ),  

** We solve one example of transportation problem by 
NWC and VAM and see which one is better 

North West Corner rule: 

 6 
20 

10 
5 

15 20 25 si 

 32 8 
30 

12 16 30  

 4 14 
5 

11 
30 

30 
15 

50  

dj 20 40 30 15 105  

       

Z=(6*20)+(10*5)+(8*30)+(14*5)+(11*30)+(30*15)=1260 

Vogel's Approximation Method (VAM): 

 6 
 

10 
25 

15 20 25 si 

 32 8 
15 

12 16 
15 

30  

 4 
20 

14 
0 

11 
30 

30 
 

50  

dj 20 40 30 15 105  

       

Z=(10*25)+(8*15)+(16*15)+(4*20)+(14*0)+(11*30)=1020 
 
It is found that VAM is better than NWC 
we proceed with the MODI method, which can be 
summarized as follows:  

Modified Distribution Method (MODI) 

Step1:Set 
* 0 , , var .ij ijc i j for which x is abasic iable 

 
Step 2 :Set v1=0 and calculate ui , i=1,2,....m and vj, 
j=1,2,...n, so that  

 

*( , ) | 0i j ij iju v c i j c   
 

Step  3: Determine
*
ijc

 for all non-basic variables xij , so 

that

*
ij ij i jc c u v  

. 

Step 4: Does there exist at least one

* 0ijc 
? 

    If yes: Go to step 5  
    If no: Stop, the current transportation plan is 
optimal. 

Step5: Select any element (r,s) for which 

* 0rsc 
 e.g. 

* * *min { | 0}rs ij ijc c c 
. Label xrs with "+" and 

determine a (+,-) cycle in the current transportation plan 
with labels  on basic entries only (except(r,s)). 
Step 6: Let M be the set of elements with a "-" label, then 
determine   ∈=min {xij|(i,j)∈M} and determine the 
improved transportation plan by     setting 

( , ) " "

( , )

ij

ij ij

ij

x if i j has a label

x x if i j M

x oterwise

  


  

  

Delete all labels and go to step 1. 
We illustrate the MODI method for finding an optimal 
solution using the above algorithm taken the above problem 
solved by NWC and VAM  method  
 
 V1=0 V2= 10 V3=7 V4=18 si  

U1=0 6 
+ 

10 
25 

15 
+ 

20 
+ 

25  

U2=-2 32 
+ 

8 
15 

12 
+ 

16 
15 

30  

U3=4 4 
20 

14 
0 

11 
30 

30 
+ 
 

50  

dj 20 40 30 15 105  

       

i j iju v c   

1 2 1 2

2 2 2 2

2 4 2 4

3 2 2 3

3 1 3 1

3 3 3 3

10 0 10

8 10 2

16 2 8

14 10 4

4 4 0

11 4 7

u v u v

u v v u

u v u v

u v v u

u v u v

u v u v

    

     

     

    

    

    

 

W1=(10*25)+(8*15)+(16*15)+(4*20)+(14*0)+(11*30)=10
20 
Evaluation of non-basic variables  
Basis are B={(1,2)(2,2)(2,4)(3,1)(3,2)(3,3)} 
The rest are non-basic variables . 

( , )i j iju v c i j B  
 

The solution by VAM is the optimal solution. 

1.4 The capacitated Transportation Problem  

In this subsection, we return to the original 
transportation structure with origins and destinations but 
without any transhipment nodes. Again, no two origins or 
destinations are connected, only connections from origins to 
destinations exist, but not all origin-destination pairs need to 
be connected. In addition to the unit transportation cost cij, 
capacities kij are assigned to all arcs in the transportation 
network. The objective is to determine a cost-minimal 
transportation plan, where all supplies are shipped out of the 
origins, all demands are satisfied and the flows from origins 
to destinations do not exceed the given capacities. This 
problem can be stated in a mathematical term as: 
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1 1

1

1

: min

. . , 1,..., (22)

, 1,..., (23)

, 1,..., , 1,..., (24)
0

m n

ij ij
i j

n

ij i
j

m

ij j
i

ij ij

ij

P z c x

s t x s i m

x d j n

x k
i m j n

x

 







 

 

 
 

 





  

Introducing slack variables sij, i=1,2,.....,m and 
j=1,2,.......,n for all constraints in (24), the capacity 
constraints can be written as  

, , (25)ij ij ij ij ij ijx S k i j or x k S i j     
 

summing  up all equalities in (25) over j, we obtain 

1 1 1

, 1,2,.......
n n n

ij ij ij
j j j

x k s j m
  

    
 

using (15),(16) can be written as 

1 1

, 1,2,.......
n n

ij ij i
j j

k s s i m
 

   
 

or, since all kij are given constant, as 

1 1

, 1,2,.......
n n

ij ij i
j j

s k s i m
 

   
 

Now the capacitated transportation problem can be 
written in terms of 2mn variables xij and sij with the above 
objective function and constraints (26), (23), and  (24)as 
well as the non-negativity constraints for all variables. 

1 1

: min
m n

ij ij
i j

P z c x
 


 

1 1

, 1,2,....... (26)
n n

ij ij i
j j

s k s i m
 

   
 

,
1

1,2,... (23)
m

ij j
i

x d j n


 
 

  

(24)
, 0.

ij ij ij

ij ij

x s k

x s

  


   
 
The above problem P' is now an ordinary transportation 

problem. If all variables xijand sij are in the positions 
indicated above, then the rows assume that constraints (14) 
are fulfilled, the first n columns guarantee that constraints 
(12) are fulfilled and the last m columns guaranteed that 
constraints (19) are fulfilled. To ensure that all variables 
have values other than zero in the prescribed positions, we 
define costs given below, 

, var

0, var

, .

ij ij

ij ij

c if thecorresponding entry in T belongs to a iable x

c if thecorresponding entry in T belongs to a iable s

M otherwise




 





 

III. CONCLUSION 

At the beginning of chapter-I, we are given a brief 
account of the transportation problem. Most of the 
operations research papers are aware of the transportation 
problem. Since the transportation problem is a linear 
programming problem, the simplex method is applicable to 
solve the transportation problem. But the simplex method 
takes a lot of time to solve the transportation problem. It is 
found that when TP is put into the format of LP. The 
Transportation matrix is an unitary matrix whose 

determinants
1I  

. The dimension of this matrix is 
(m+n-1). Where 'm' number of production centers 
(warehouses) and 'n' number of destinations. It has a basic 
feasible solution(BFS). And from the BFS the optimal 
solution is found out. There are several methods available 
for BFS, we briefly quote NWC rule, matrix minima 
method, Row/Column minima method, and penalty or 
Vogel's approximation method. We only give two 
algorithms, one is NWC rule and the other is Vogel's 
Approximation Method (VAM). Since TP is LPP we found 
out dual of TP and a dual variable. We used the MODI 
method to find the optimal solution. Numerical problems are 
quoted for the solution.    
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