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Abstract 

A normalized version of the ubiquitous two-by-two contingency matrix is associated with a variety of marginal, 

conjunctive, and conditional probabilities that serve as appropriate indicators in diagnostic testing. If this matrix is 

enhanced by being interpreted as a probabilistic Universe of Discourse, it still suffers from two inter-related 

shortcomings, arising from lack of length/area proportionality and a potential misconception concerning a false 

assumption of independence between the two underlying events. This paper remedies these two shortcomings by 

modifying this matrix into a new Karnaugh-map-like diagram that resembles an eikosogram. Furthermore, the paper 

suggests the use of a pair of functionally complementary versions of this diagram to handle any ternary problem of 

conditional probability. The two diagrams split the unknowns and equations between themselves in a fashion that 

allows the use of a divide-and-conquer strategy to handle such a problem. The method of solution is demonstrated via 

four examples, in which the solution might be arithmetic or algebraic, and independently might be numerical or 

symbolic. In particular, we provide a symbolic arithmetic derivation of the well-known formulas that express the 

predictive values in terms of prevalence, sensitivity and specificity. Moreover, we prove a virtually unknown 

interdependence among the two predictive values, sensitivity, and specificity. In fact, we employ a method of symbolic 

algebraic derivation to express any one of these four indicators in terms of the other three. The contribution of this 

paper to the diagnostic testing aspects of mathematical epidemiology culminates in a timely application to the 

estimation of the true prevalence of the contemporary world-wide COVID-19 pandemic. It turns out that this estimation 

is hindered more by the lack of global testing world-wide rather than by the unavoidable imperfection of the available 

testing methods. 

 

Keywords- Ternary problem, Conditional probability, Length/area proportionality, Probabilistic dependence, Divide 

and conquer, Imperfect testing, Mathematical epidemiology, COVID-19. 

 

 

 

1. Introduction 
A ubiquitous tool of scientific analysis and research is the two-by-two contingency matrix 

(known also by a variety of other names such as the confusion table, the frequency matrix, the 

agreement table, or (even as) a truth table). This table arises in many diverse applications such as 

clinical testing, criminal investigations, judicial trials, lie detection, null-hypothesis 

acceptance/rejection, recommender systems, quality control, industrial management, satellite 

mapping, text and pattern classification, signal communications, DNA identification, forensic 

reasoning and machine classification (Amin et al., 2019; Rushdi and Talmees, 2019). Despite the 
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inherent simplicity of this matrix, it is the source of a surprisingly huge number of indicators and 

somewhat complex relations. Its mathematical analysis has been the subject of many papers and 

books hitherto (see, e.g. Fienberg and Gilbert, 1970; Good and Mittal, 1987; Anderson and Finn, 

1996; Johnson, 1999; Fawcett, 2006; Lesaffre et al., 2007; Parikh et al., 2008; Powers, 2011; 

Shindo et al., 2012; Johnson and Johnson, 2014; Costello and Watts, 2016; Kent and Hancock, 

2016; Johnson, 2017). A notable attempt to simplify the analysis of a contingency matrix is to 

employ a normalized version of it, in which both its four entries and four indexes are interpreted 

as probabilities (Rushdi and Rushdi, 2018b, 2019), thereby reducing the analysis of this matrix to 

a ternary problem of conditional probability, which is a problem of probability involving some 

conditional probability, with exactly three given quantities (Carles and Huerta, 2007; Cerdán and 

Huerta, 2007; Edo et al., 2011; Huerta, 2009, 2014; Huerta, et al., 2011; Rushdi et al., 2018; 

Rushdi and Rushdi, 2019). 

 

This paper is a further improvement of the aforementioned normalized contingency matrix, which 

converts it into a length/area-proportional diagram that explicitly shows whether the two 

underlying events are mutually supporting (favoring), mutually independent, or mutually 

weakening (disfavoring). Two different (albeit functionally complementary) versions of this 

diagram are used in unison through their sharing of the same four entries, which represent the 

four relevant conjunctive probabilities. In contrast to the conventional normalized matrix, which 

has just four indexes representing the four pertinent marginal probabilities, our two novel 

diagrams have six indexes each, allowing them together to explicitly represent not only these four 

marginal probabilities, but the eight concerned conditional probabilities as well. The combined 

employment of these two novel diagrams constitutes a divide-and-conquer methodology for 

handling a ternary problem of conditional probability, as such an employment allows the splitting 

of the unknowns and equations almost evenly (with a minimal overlapping) between the two 

diagrams. 

 

The organization of the rest of this paper is as follows. Section 2 is a brief primer about 

conditional probability and the nature of inter-dependence (or lack thereof) between two 

probabilistic events. Section 3 is a detailed exposition of the normalized two-by-two contingency 

table and the eight most prominent indicators of diagnostic testing, which are typically used in 

association with this table. Section 4 introduces two length/area-proportional variants of this 

normalized matrix, each of which provides its own explicit visualization of event inter-

dependence. These two variants become identical if the underlying events are independent. 

Section 5 introduces and studies the nature of ternary problems of conditional probability. Section 

6 discusses how the new length/area-proportional variants of the normalized contingency matrix 

can be used to solve ternary problems of conditional probability. Section 6 demonstrates the 

method of solution via four examples. Examples 1 and 2 obtain numerical solutions via arithmetic 

and algebraic techniques, respectively. Example 3 provides a symbolic arithmetic derivation of 

the well-known formulas that express the predictive values in terms of prevalence, sensitivity and 

specificity. Example 3 also provides other prevalence-related formulas. Example 4 proves a 

virtually unknown inter-dependence among the two predictive values, sensitivity, and specificity. 

In fact, Example 4 utilizes a method of symbolic algebraic derivation to express any one of these 

four indicators in terms of the other three. As a bonus, Section 7 augments our exploration of the 

diagnostic testing aspects of mathematical epidemiology by a timely application to and a 

discussion of the contemporary world-wide COVID-19 pandemic. Section 8 concludes the paper. 
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2. On Conditional Probability 
Despite disagreement on the meaning of probability, there is some consensus on its basic axioms 

(Da Costa, 1986). Herein, we employ the empirical (frequentistic or common-sense) 

interpretation of probability, and base its concepts on a probability “Universe of Discourse” or 

“sample space” which constitutes the set of all possible (equally-likely) outcomes or primitive 

indecomposable events of an underlying conceptual random “experiment.” We define events as 

subsets of the sample space, and hence get N = 2𝑛 events for a sample space of 𝑛 outcomes or 

sample points (Rushdi and Rushdi, 2018b; 2019). Since events are sets, we can also describe 

events via elementary set operations (complementation, intersection, union, and set difference). 

Since the outcomes in a sample space are equally likely, the probability 𝑃(𝐴) of an event 𝐴 is 

defined as the number of outcomes constituting 𝐴 (favoring 𝐴) divided by the total number of 

outcomes in the sample space. The concept of conditional probability 𝑃(𝐴|𝐵) of an event 𝐴 given 

an event 𝐵 is based on the notion that conditioning on an event 𝐵 of non-zero probability means 

that 𝐵 replaces the universal set 𝑆 as a certain event (Rushdi and Rushdi, 2017). The orthodox 

way of defining conditional probability (Hájek, 2003) is as the quotient (ratio) of the conjunctive 

probability 𝑃(𝐴 ∩ 𝐵) by the probability of the conditioning event 𝐵, provided this latter 

probability is not zero, namely 

 

𝑃(𝐴|𝐵) = 𝑃 (𝐴 ∩ 𝐵) 𝑃⁄ (𝐵),           𝑃(𝐵) ≠ 0.                                                                               (1) 

 
Rushdi and Rushdi (2018b; 2019) utilized the Venn diagram and the Karnaugh map to visualize a 

conditional probability as the ratio of two areas, provided the diagram and map be interpreted as 

area-proportional ones. We stress that a conditional probability is just a probability; it satisfies the 

axioms of probability and it is a dimensionless number of a real value that belongs to the closed 

unit interval [0.0,1.0]. An Unconditional probability is simply a conditional one, in which 

conditioning is with respect to the certain event. 

 

There are three different ways in which the occurrence of an event 𝐵 affects or influences the 

occurrence of an event 𝐴 (Falk and Bar-Hillel, 1983; Krämer and Gigerenzer, 2005; Rushdi and 

Rushdi, 2019). These are: 

 

1- Positive dependence: 𝐵 favors or supports 𝐴, i.e., the occurrence of 𝐵 increases the 

probability of occurrence of 𝐴 (𝑃(𝐴|𝐵) > 𝑃(𝐴)), denoted 𝐵 ↗ 𝐴, 

 

2- Independence: 𝐵 does not affect 𝐴, i.e., the occurrence of 𝐵 leaves the probability of 

occurrence of 𝐴 unchanged (𝑃(𝐴|𝐵) = 𝑃(𝐴)), denoted 𝐵 ⊥ 𝐴, 

 

3- Negative dependence: 𝐵 disfavors or weakens 𝐴, i.e., the occurrence of 𝐵 decreases the 

probability of occurrence of 𝐴 (𝑃(𝐴|𝐵) < 𝑃(𝐴)), denoted 𝐵 ↘ 𝐴. 

 

The three relations 𝐵 ↗ 𝐴, 𝐵 ⊥ 𝐴, and 𝐵 ↘ 𝐴 are symmetric, and hence we should speak about 

mutual (in)dependence rather than about unilateral (in)dependence. None of the three relations is 

transitive. Generally, we note that the relations 𝐵 ⊥ 𝐴, and 𝐵 ↘ 𝐴 are not reflexive, while the 

relation 𝐵 ↗ 𝐴 is. The relation 𝐵 ↗ 𝐴 is equivalent to each of the relations 𝐵 ↘ 𝐴̅ and 𝐵 ↗ 𝐴. A 

common fallacy is to attribute to probabilistic support ↗ (between events), the properties of the 

logical relationship of implication (between propositions), which is denoted 𝐴 → 𝐵 (Falk and 

Bar-Hillel, 1983; Rushdi and Rushdi, 2019). 
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3. The Normalized Two-by-Two Contingency Table 
A prominent and ubiquities domain in which conditional probabilities naturally arise is that of a 

normalized contingency matrix (Rushdi, et al., 2018; Rushdi and Rushdi, 2018b; 2019). Figure 1 

demonstrates a two-by-two contingency matrix for metric or test 𝑖 with respect to metric or test  𝑗. 

Two dichotomous variables are involved, each of which is of a value belonging to the set 

{+1, −1} of indices. The metric or test 𝑖 (typically a new test to be assessed) is reporting positive 

cases (of the value +1), in which the (usually adverse) attribute, trait, or condition is present, or 

reporting negative cases (of the value −1), in which this condition is absent. This test or metric is 

judged or evaluated by a reference or standard metric 𝑗 (typically a gold standard or the best test 

available), which has its own labeling of cases, again as positive or negative. If the reference 

metric 𝑗 agrees with the assessed metric 𝑖 then 𝑗 designates the case of  𝑖  as “true”, and 

if  𝑗 disagrees with 𝑖 then the reference metric designates the case of the assessed one as “false.” 

Therefore, the matrix four entries are called True Positives (𝑇𝑃𝑖𝑗),  False Positives (𝐹𝑃𝑖𝑗), False 

Negatives (𝐹𝑁𝑖𝑗 ,), and True Negatives (𝑇𝑁𝑖𝑗). The sum of these entries is the size of the reported 

population or total number of cases N. The subscripts 𝑖𝑗 assert the notion that 𝑖 is assessed or 

measured relative to 𝑗. 

 

 
 

    𝒋 

𝒊   
+𝟏 −𝟏 

+𝟏 
𝑻𝑷𝒊𝒋 

(True Positives) 

𝑭𝑷𝒊𝒋 

(False Positives) 

(Type I Error) 

−𝟏 

𝑭𝑵𝒊𝒋 

(False Negatives) 

(Type II Error) 

𝑻𝑵𝒊𝒋 

(True Negatives) 

 

Figure 1. The two-by-two contingency matrix of test or metric 𝑖 with respect to test or metric 𝑗. This matrix 

has integer entries that add to the total number of cases 𝑁. (Typically, 𝑗 represents reality as a gold standard 

while 𝑖 is a measure to be assessed) 

 

 

As Rushdi and Rushdi (2018a) point out, the afore-mentioned four elements of the standard 

contingency matrix represent non-normalized conjunctive probabilities. When we divide each of 

these entries by the total number of cases, we obtain the normalized contingency matrix in Figure 

2, whose entries are true conjunctive probabilities. Here, we use the symbols 𝐴 = {𝑗 = +1} and 

𝐵 = {𝑖 = +1} to denote the events of positive cases (disease presence) according to the true or 

gold standard, and according to the new or assessed test, respectively. There are eight conditional 
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probabilities concerning these two events and their complements, as shown in Figure 3. These can 

be identified as the eight most prominent measures or indicators used in diagnostic testing. These 

are the Sensitivity (𝑆𝑒𝑛𝑠𝑖𝑗) or True Positive Rate (𝑇𝑃𝑅𝑖𝑗), the Specificity (𝑆𝑝𝑒𝑐𝑖𝑗) or True 

Negative Rate (𝑇𝑁𝑅𝑖𝑗), the Positive and Negative Predictive Values (𝑃𝑃𝑉𝑖𝑗 and 𝑁𝑃𝑉𝑖𝑗), together 

with their respective complements (to 1.0), namely the False Negative Rate (𝐹𝑁𝑅𝑖𝑗), False 

Positive Rate (𝐹𝑃𝑅𝑖𝑗), False Discovery rate (𝐹𝐷𝑅𝑖𝑗) and False Omission Rate (𝐹𝑂𝑅𝑖𝑗) (Rushdi 

and Rushdi, 2018a, Rushdi et al., 2018; Rushdi and Talmees, 2018; 2019). The former four 

indicators are direct or agreement measures while the latter four serve as discrepancy or 

disagreement measures between the two tests or metrics 𝑖 and 𝑗. Due to the four complementation 

relations within pairs of these eight measures, the number of independent quantities among them 

is at most four. We show in Section 5 that this number is, in fact, three. 

 

 
 

 

 𝑃(𝐴) = 𝑃(𝑗 = +1) 𝑃(𝐴̅) = 𝑃(𝑗 = −1) 

𝑃(𝐵) = 

𝑃(𝑖 = +1) 
𝑃(𝐴 ∩ 𝐵) =

𝑇𝑃𝑖𝑗

𝑁
 𝑃(𝐴̅ ∩ 𝐵) =

𝐹𝑃𝑖𝑗

𝑁
 

𝑃(𝐵̅) = 

𝑃(𝑖 = −1) 
𝑃(𝐴 ∩ 𝐵̅) =

𝐹𝑁𝑖𝑗

𝑁
 𝑃(𝐴 ∩ 𝐵) =

𝑇𝑁𝑖𝑗

𝑁
 

 

Figure 2. The contingency matrix in Figure 1 normalized as a unit square representing a Universe of 

Discourse involving the two events 𝐴 and 𝐵 without area proportionality. The matrix has fractional non-

negative entries that add up to unity 
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   𝐵 conditioned 

 

𝑃(𝐴̅|𝐵̅) = 

𝑃( 𝑗 = −1|𝑖 = −1)
= 𝑁𝑃𝑉𝑖𝑗 

𝑃(𝐴|𝐵̅) = 

𝑃( 𝑗 = +1|𝑖 = −1)
= 𝐹𝑂𝑅𝑖𝑗  

𝑃(𝐵|𝐴̅) = 

𝑃(𝑖 = +1|𝑗 = −1)
= 𝐹𝑃𝑅𝑖𝑗  

𝑃(𝐵̅|𝐴̅) = 

𝑃(𝑖 = −1|𝑗 = −1)
= 𝑆𝑝𝑒𝑐𝑖𝑗 = 𝑇𝑁𝑅𝑖𝑗  

Conditioning 

uncomplemented 

𝑃(𝐴̅|𝐵) = 

𝑃( 𝑗 = −1|𝑖 = +1)
= 𝐹𝐷𝑅𝑖𝑗  

𝑃(𝐴|𝐵) = 

𝑃( 𝑗 = +1|𝑖 = +1)
= 𝑃𝑃𝑉𝑖𝑗  

𝑃(𝐵|𝐴) = 

𝑃(𝑖 = +1|𝑗 = +1)
= 𝑆𝑒𝑛𝑠𝑖𝑗 = 𝑇𝑃𝑅𝑖𝑗  

𝑃(𝐵̅|𝐴) = 

𝑃(𝑖 = −1|𝑗 = +1)
= 𝐹𝑁𝑅𝑖𝑗 

  Conditioned uncomplemented  

 

Figure 3. Definition of the eight conditional probabilities concerning events 𝐴 and 𝐵. The four most 

prominent among them (lacking mixed polarity) are entered in shaded cell. The graph has four major cells, 

each containing two complementary indicators 

 

 

 

4. The Length/Area-Proportional Normalized Table 
The normalized contingency matrix in Figure 2 might be thought to represent the Universe of 

Discourse or the probability Sample Space, i.e., it might be considered a Karnaugh map or a Venn 

diagram. However, it is not a length/area-proportional diagram, and its viewers might mistakenly 

assume that events 𝐴 and 𝐵 are necessarily independent if they inadvertently assume that the area 

allotted to a conjunctive event and the length assigned to a marginal event are proportional to 

their probabilities. To rule out such an assumption, we replace the Universe of Discourse of 

Figure 2 by one of two different length/area-proportional Venn diagrams shown in Figure 4, 

which are valid for positive inter-dependence between events 𝐴 and 𝐵. The simplest way to attain 

area-proportionality in Venn diagrams is to use rectilinear rather than curvilinear boundaries 

(Chow and Ruskey, 2003; Rushdi and Rushdi, 2018b; 2019), and hence the two diagrams are 

better (and henceforth will be) described as Karnaugh-map-like ones. An offshoot of using 

rectilinear rather than curvilinear boundaries is that length proportionality is additionally attained 

beside area proportionality. Each diagram is an obvious liaison among ten probabilities, namely, 

the four shared conjunctive probabilities (represented as proportional areas), two specific 

marginal probabilities of its own (represented as proportional lengths) and four specific 

conditional probabilities of its own (also represented as proportional lengths). The case of 

negative inter-dependence between events 𝐴 and 𝐵 might be handled in an analogous way (Figure 

5), while in the case of independence between events 𝐴 and 𝐵, the two diagrams become the 

same single diagram, and all conditional probabilities become equal to marginal ones (Figure 6). 

Without loss of generality, we will consider only examples pertaining to Figure 4 in the rest of 

this paper. 
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𝑃(𝐴) 𝑃(𝐴̅)  

𝑃(𝐵|𝐴) 𝑃(𝐴 ∩ 𝐵) 

𝑃(𝐴̅ ∩ 𝐵) 𝑃(𝐵|𝐴̅) 

𝑃(𝐴̅ ∩ 𝐵̅) 𝑃(𝐵̅|𝐴̅) 

𝑃(𝐵̅|𝐴) 𝑃(𝐴 ∩ 𝐵̅) 

 
 

𝑃(𝐴|𝐵) 𝑃(𝐴̅|𝐵) 

𝑃(𝐵) 𝑃(𝐴 ∩ 𝐵) 𝑃(𝐴̅ ∩ 𝐵) 

𝑃(𝐵̅) 𝑃(𝐴 ∩ 𝐵̅) 𝑃(𝐴̅ ∩ 𝐵̅) 

 
𝑃(𝐴|𝐵̅) 𝑃(𝐴̅|𝐵̅) 

 

Figure 4. Modification of the Universe of Discourse of Figure 3 so as to be replaced by two different 

length/area-proportional Karnaugh-Map-like Diagrams. Each diagram is a liaison among the four 

conjunctive probabilities, two specific marginal probabilities and four specific conditional probabilities. 

Each map supplies four independent equations, each of which expresses a conjunctive probability (as a 

product of a conditional probability and a marginal one), as well as two additive relations for conditional 

probabilities. These twelve basic equations are supplemented by a thirteenth independent equation; which 

is one of the three equations (6-8) 
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𝑃(𝐴) 𝑃(𝐴̅)  

𝑃(𝐵|𝐴) 𝑃(𝐴 ∩ 𝐵) 

𝑃(𝐴̅ ∩ 𝐵) 
 

𝑃(𝐵|𝐴̅) 

 

 

𝑃(𝐵̅|𝐴) 

𝑃(𝐴 ∩ 𝐵̅) 

 

 

𝑃(𝐴̅ ∩ 𝐵̅) 𝑃(𝐵̅|𝐴̅) 

 
 𝑃(𝐴|𝐵) 𝑃(𝐴̅|𝐵) 

𝑃(𝐵) 𝑃(𝐴 ∩ 𝐵) 𝑃(𝐴̅ ∩ 𝐵) 

𝑃(𝐵̅) 𝑃(𝐴 ∩ 𝐵̅) 𝑃(𝐴̅ ∩ 𝐵̅) 

 𝑃(𝐴|𝐵̅) 𝑃(𝐴̅|𝐵̅) 

 

Figure 5. The probability diagrams of Figure 4 redrawn for the case of two mutually disfavoring 

(weakening) events. (𝑃(𝐴|𝐵) <  𝑃(𝐴)), (𝑃(𝐵|𝐴) < 𝑃(𝐵)) 
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𝑃(𝐴) 𝑃(𝐴̅) 

𝑃(𝐵) 𝑃(𝐴 ∩ 𝐵) 𝑃(𝐴̅ ∩ 𝐵) 

𝑃(𝐵̅) 𝑃(𝐴 ∩ 𝐵̅) 𝑃(𝐴̅ ∩ 𝐵̅) 

 

Figure 6. The probability maps of Figure 4 combine into a single map for two independent events 

(𝑃(𝐴|𝐵) =  𝑃(𝐴)), (𝑃(𝐵|𝐴) = 𝑃(𝐵)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 7. The splitting of unknowns and equations between the two diagrams in Figure 4 

 

 

Diagrams similar to those in Figures 4 and 5 appeared earlier in many published works including 

Bertin (1967), Edwards (1972), Hartigan and Kleiner (1981) (under the name of "mosaic"), 

Oldford and Cherry (2006), Pfannkuch and Budgett (2017) (under the name of “eikosogram,” 

Greek for probability picture), Politzer (2014), Böcherer-Linder et al. (2018), and Böcherer-

6 Basic equations 

(9,10,14,16,18,20) 

6 specific unknowns: 

  2 marginal probabilities  

        plus 4 conditional  

        probabilities 

supplementary 

equation  

4  

common 

unknowns 

(4 conjunctive 

probabilities) 

6 specific unknowns: 

2 marginal probabilities 

plus 4 conditional 

probabilities 

  6 Basic equations  

(11,12,13,15,17,19) 

Diagram in  

Figure 4(top) 

 

Diagram in  

Figure 4(bottom) 
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Linder and Eichler (2019). However, we believe that this is the first time a pair of such diagrams 

is employed as a solution aid for ternary problems of conditional probability. 

 

5. Ternary Problems of Conditional Probability 
A probability problem is a conditional probability problem if in its formulation at least one of the 

quantities explicitly mentioned (either as a known quantity or as the unknown to be found) could 

be interpreted as a conditional probability. A ternary problem of conditional probability is a 

conditional-probability problem formulated with exactly three known quantities and a single 

unknown quantity to be solved for. The analysis in this section shows that exactly three 

independent quantities (no more and no less) should be given in a conditional-probability 

problem, for this problem to be well formulated and potentially solvable. 

 

A ternary problem of conditional probability that is formulated in the context of a normalized 

contingency table involves sixteen probabilities, which might be classified as: 

 

- Four marginal probabilities: The two probabilities of the basic events 𝑃(𝐵) and 𝑃(𝐴)  and 

the two probabilities of the complementary events 𝑃(𝐵̅) and 𝑃(𝐴̅). 

 

- Four joint, conjunctive or intersection probabilities: 𝑃(𝐴 ∩ 𝐵), 𝑃(𝐴̅ ∩ 𝐵), 𝑃(𝐴 ∩ 𝐵̅) and 

𝑃(𝐴̅ ∩ 𝐵̅). 

 

- Eight conditional probabilities, which are the eight indicators in Figure 3. 

 

There are 19 (redundant) simple or primitive relations among these 16 probabilities, which are 

exhibited in Table 1. These 19 relations involve the aforementioned 16 probabilities and are 

represented by what is called a trinomial graph by Huerta (2009, 2014) and Huerta et al. (2011), 

or equivalently by the composite signal flow graph (SFG) in Rushdi et al. (2018) and Rushdi and 

Talmees (2018, 2019). We stress that Table 1 does not include composite or multi-operation 

probability relations, such as the law of total probability or Bayes’ rule. Any of these composite 

relations is equivalent to a combination of two or more primitive relations. In fact, four versions 

of the law of total probability emerge through the substitution of (13) and (15) into (2), the 

substitution of (17) and (19) into (3), the substitution of (14) and (18) into (4), or the substitution 

of (16) and (20) into (5). Likewise, four versions of Bayes’ rule result by equating the R.H.S. of 

(13) with that of (14), equating the R.H.S. of (15) with that of (16), equating the R.H.S. of (17) 

with that of (18), and equating the R.H.S. of (19) with that of (20). 

 

It can be seen that the bottom 12 equations in Table 1 (equations (9)-(20), highlighted and 

stressed in dark blue or dark red) are independent, in the sense that none of them is derivable 

from the others. We call them basic equations of the ternary problem of conditional probability. 

The top 4 equations in Table 1 (equations (2)-(5)) are implicit in these 12 basic equations and do 

not add any independent information, and hence are de-emphasized with a pale light color. By 

contrast, the next 3 equations (equations (6-8) highlighted in bold green) are independent of the 

12 basic equations and hence none of them can be deduced from these basic equations. However, 

any of the three equations (6-8) might be used to deduce each of the other two (given the 12 basic 

equations), and any single one of them might supplement the basic equations to form a set of 13 

independent equations. Such a set is necessary and sufficient to solve a well-formed ternary 

problem of conditional probability, in which three of the unknown 16 probabilities are given. 
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Table 1. The 19 redundant relations of ternary problems of conditional probability in the contingency table 

context (classified according to relation type) 
 

Relation type Relation 

Additive Relations 

(eleven equations) 

Two joint probabilities add up to a 
marginal probability (four equations) 

𝑃(𝐴 ∩ 𝐵) + 𝑃(𝐴̅ ∩ 𝐵) = 𝑃(𝐵)                              (2) 

𝑃(𝐴 ∩ 𝐵̅) + 𝑃(𝐴̅ ∩ 𝐵̅) = 𝑃(𝐵̅)                              (3) 

𝑃(𝐴 ∩ 𝐵) + 𝑃(𝐴 ∩ 𝐵̅) = 𝑃(𝐴)                              (4) 

𝑃(𝐴̅ ∩ 𝐵) + 𝑃(𝐴̅ ∩ 𝐵̅) = 𝑃(𝐴̅)                              (5) 

Two complementary marginal 
probabilities add up to 1 (two 

equations) 

𝑷(𝑩) + 𝑷(𝑩̅) = 𝟏                                  (6) 

𝑷(𝑨) + 𝑷(𝑨̅) = 𝟏                                  (7) 

The four joint probabilities add up to 1 
(one equation) 

𝑷(𝑨 ∩ 𝑩) + 𝑷(𝑨̅ ∩ 𝑩) + 𝑷(𝑨 ∩ 𝑩̅) + 𝑷(𝑨̅ ∩ 𝑩̅) = 𝟏      (8) 

Two complementary conditional 

probabilities add up to 1 (four 
equations) 

𝑷(𝑨|𝑩) + 𝑷(𝑨̅|𝑩) = 𝟏                                  (9) 

𝑷(𝑨|𝑩̅) + 𝑷(𝑨̅|𝑩̅) = 𝟏                                (10) 

𝑷(𝑩|𝑨) + 𝑷(𝑩̅|𝑨) = 𝟏                                 (11) 

𝑷(𝑩|𝑨̅) + 𝑷(𝑩̅|𝑨̅) = 𝟏                                (12) 

A joint probability is a product of a conditional probability and a 

marginal probability (in two different ways) (eight equations) 

𝑷(𝑨 ∩ 𝑩) = 𝑷(𝑩|𝑨)𝑷(𝑨)                           (13) 

𝑷(𝑨 ∩ 𝑩) = 𝑷(𝑨|𝑩)𝑷(𝑩)                           (14) 

𝑷(𝑨̅ ∩ 𝑩) = 𝑷(𝑩|𝑨̅)𝑷(𝑨̅)                           (15) 

𝑷(𝑨̅ ∩ 𝑩) = 𝑷(𝑨̅|𝑩)𝑷(𝑩)                          (16) 

𝑷(𝑨 ∩ 𝑩̅) = 𝑷(𝑩̅|𝑨)𝑷(𝑨)                           (17) 

𝑷(𝑨 ∩ 𝑩̅) = 𝑷(𝑨|𝑩̅)𝑷(𝑩̅)                           (18) 

𝑷(𝑨̅ ∩ 𝑩̅) = 𝑷(𝑩̅|𝑨̅)𝑷(𝑨̅)                         (19) 

𝑷(𝑨̅ ∩ 𝑩̅) = 𝑷(𝑨̅|𝑩̅)𝑷(𝑩̅)                          (20) 

 

 

In passing, we stress that each of the 19 equations of Table 1 has an immediate geometric 

visualization in one of the two diagrams of Figure 4. Equations (2-5) can be interpreted to mean 

that the total area of two rectangles with a shared side numerically equals the length of this 

common side. Equations (7,11,12) state that the overall shape in the top Figure 4 is a square 

having sides of unit lengths, while equations (6,9,10) assert that the overall shape in the bottom 

Figure 4 is also a square having sides of unit lengths. Equation (8) indicates that the four 

rectangles in each of the top and bottom parts of Figure 4 add to a unit square with a total area of 

unity. Finally, equations (13-20) reveal that the area of any of the four rectangles in each of the 

top and bottom parts of Figure 4 equals its width times its length. 

 

The visualization capability of the pair of diagrams in Figure 4 is not confined to the primitive 

probability relations in Table 1, but it covers composite probability relations as well. According 

to Figure 4, the marginal probability 𝑃(𝐴) is the sum of the two conjunctive probabilities 

𝑃(𝐴 ∩ 𝐵) and 𝑃(𝐴 ∩ 𝐵̅), which, equal the products 𝑃(𝐴|𝐵)𝑃(𝐵)  and 𝑃(𝐴|𝐵̅)𝑃(𝐵̅), respectively,  

according to the bottom part of Figure 4. The combination of these two observations asserts that 

 

𝑃(𝐴) = 𝑃(𝐴|𝐵)𝑃(𝐵) +  𝑃(𝐴|𝐵̅)𝑃(𝐵̅),                                                                                        (21) 

 

which is simply a statement of the total probability theorem (TPT) for 𝑃(𝐴). The other three 

cases of the TPT (which express 𝑃(𝐴̅), 𝑃(𝐵), and 𝑃(𝐵̅), respectively) are also derivable when the 

two diagrams of Figure 4 are considered together. The two diagrams also ‘co-operate’ to derive 

each of the four various cases of Bayes’ rule (BR). For example, the conjunctive probability 

𝑃(𝐴 ∩ 𝐵) is expressed as 𝑃(𝐵|𝐴)𝑃(𝐴) according to one diagram, and as 𝑃(𝐴|𝐵)𝑃(𝐵)  according 

to the other, which amounts to the BR statement: 
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𝑃(𝐵|𝐴)𝑃(𝐴) = 𝑃(𝐴|𝐵)𝑃(𝐵).                                                                                                      (22) 

 

Cooperation of the two diagrams can be utilized not only for the aforementioned derivations, but 

also for solving any well-formulated probability problems, including, in particular, well-

formulated ternary problems of conditional probabilities (as will be seen in Sec. 6). 

 

A word of caution is warranted about the utility of the pair of diagrams in Figure 4 (or the pair in 

Figure 5). The immediate applicability of this pair of diagrams might be limited to non-extreme 

cases only. In fact, the two diagrams assume that each of the eight conditional probabilities in 

Figure 3 exists, or equivalently, that none of the four marginal probabilities is zero. If this 

assumption is violated, i.e., if a special limiting case emerges, then appropriate changes are 

needed while handling the diagrams. For example, consider the case when 𝑃(𝐵) = 0 (while none 

of 𝑃(𝐴) or 𝑃(𝐴̅) is zero), which depicts the situation of zero apparent prevalence (while the true 

prevalence is neither zero nor unity). In this case 𝑃(𝐵|𝐴) =  𝑃(𝐵|𝐴̅) = 0, and 𝑃(𝐵̅) = 1, while 

neither 𝑃(𝐴|𝐵) nor 𝑃(𝐴̅|𝐵) exists. Also 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴̅ ∩ 𝐵) = 0, 𝑃(𝐴|𝐵̅) = 𝑃(𝐴 ∩ 𝐵̅) =
𝑃(𝐴) while  𝑃(𝐴̅|𝐵̅) = 𝑃(𝐴̅ ∩ 𝐵̅) = 𝑃(𝐴̅). This means that event 𝐵 totally disappears from each 

of the diagrams in Figure 4 (or from each in Figure 5). In fact, both diagrams degenerate into a 

unit square split into two rectangles representing 𝑃(𝐴) and 𝑃(𝐴̅), respectively. This is a case 

where no ternary problem of conditional probability could be formulated. 

 

6. Solution of Ternary Problems of Conditional Probability 
A complete solution of a ternary problem of conditional probability necessitates finding 16 

probabilities (given exactly 3 of them, which are independent) via 12 basic equations together 

with one out of three supplementary equations. Figure 7 shows that the combined use of the 

diagrams in Figure 4 constitutes a divide-and-conquer methodology for problem solution, since 

we can split the 16 probabilities and the 13 independent equations almost evenly (with a minimal 

overlapping) between the two diagrams in Figure 4. In fact, each of the two diagrams deals with 

10 probabilities as follows. Each diagram takes care individually and separately of a disjoint set 

of 6 probabilities, with the two sets together constituting 12 of the 16 probabilities under 

consideration. The remaining 4 probabilities are handled in a shared-fashion by both diagrams. 

On the other hand, each of the two diagrams provides individually and separately 6 of the 12 

basic equations. The top diagram in Figure 4 addresses equations (11-13,15,17,19) distinguished 

in bold red, while the bottom diagram of Figure 4 visualizes equations (9,10,14,16,18,20) 

emphasized in bold blue. The 13th independent equation is supplied as a supplementary equation 

by either diagram (actually either diagram can provide two ‘dependent’ equations of the three 

potential supplementary equations (6-8) shown in dark green). This means that each diagram has 

7 equations to process 10 unknowns. 

 

Now, we have two possibilities: 

1- The given 3 unknowns are totally among the 10 unknowns of one particular diagram:  

In this case, the diagram supplied with the 3 unknown values ends up with 7 equations in 7 

unknowns. This diagram is completely solvable as is, and when solved it imparts values of the 

4 conjunctive probabilities to the other diagram making it also completely solvable. This case 

corresponds to the case of “arithmetic reading” in Huerta (2009; 2014) and Rushdi and 

Talmees (2018; 2019), while the next case corresponds to what is called algebraic reading. 

 

2- The 3 given unknowns are split such that 2 are among the 10 unknowns of one diagram, with 

the remaining third unknown being among the 10 unknowns of the other diagram:  
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This case does not allow direct arithmetic solution but requires algebraic formulation. The 

diagram with exactly two given unknowns is not solvable because it has 7 equations against 8 

unknowns. However, if we assign an arbitrary value “𝑋” to an appropriate variable among 

these 8 unknowns, we can assume that we are left with 7 unknowns only and can solve the 

diagram completely in terms of 𝑋. The other diagram can also be solved completely in terms 

of 𝑋 with (at least) one of the unknowns being computed twice. Hence, an equation in 𝑋 

emerges and might be solved, so that all values computed in terms of 𝑋 are now given final 

numerical values. 

 

An offshoot benefit of using the diagrams in Figure 4 is that they clarify why arithmetic 

processing might suffice to handle a ternary problem of conditional probability, and also identify 

conditions for algebraic reading to become a must. In this latter case, the set of candidate 

unknowns such that one of which is to be assigned an arbitrary symbolic value “𝑋” is 

considerably narrowed. 

 

Example 1: 

Assume we are given the three probabilities 𝑃(𝐴) = 0.2, 𝑃(𝐵|𝐴) = 0.9, and 𝑃(𝐵|𝐴̅) = 0.1. 

These three values belong solely to the top diagram in Figure 4, and hence a purely arithmetic 

solution is possible, as shown in Figure 8, in which various steps are assigned Roman numerals to 

facilitate the reading of the solution. 

 

Example 2: 

Now, we are given the three conditional probabilities 𝑃(𝐵|𝐴) = 0.8, 𝑃(𝐴|𝐵) = 0.4, and 𝑃(𝐴|𝐵̅) =
0.1. The first of these three values belong to the top diagram in Figure 4, while the remaining two 

belong to the bottom diagram in Figure 4. We supplement this latter diagram by an arbitrarily 

assumed value 𝑋 for a suitable one of its remaining unknowns, namely 𝑃(𝐵). We perform the 

computations in Figure 9 in order to express 𝑃(𝐴 ∩ 𝐵) (on the top diagram) twice in terms of 𝑋. 

Hence, we obtain the equation: 

 

0.4 𝑋 = 0.08 + 0.24 𝑋,                                                                                                                (23) 
 

 

which yields 𝑋 = 0.5. A second traversal of all the probabilities in Figure 9 to substitute the value of  

𝑋 produces the desired final numerical values. 
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 𝑷(𝑨) =

0.2  
𝑃(𝐴̅) = 0.8   

𝑷(𝑩|𝑨) 

= 0.9

 

𝑃(𝐴 ∩ 𝐵) 

= 0.18   

 

 

 

𝑃(𝐴̅ ∩ 𝐵) = 0.08  

𝑷(𝑩|𝑨̅) 

= 0.1 

 

𝑃(𝐴̅ ∩ 𝐵̅) = 0.72   

𝑃(𝐵̅|𝐴̅) 

= 0.9 

 
 

𝑃(𝐵̅|𝐴) 

= 0.1

 

𝑃(𝐴 ∩ 𝐵̅) 

= 0.02   

 

 
 

𝑃(𝐴|𝐵) =
0.18

0.26
=

9

13
  

𝑃(𝐴̅|𝐵) = 

0.08

0.26
=

4

13
  

𝑃(𝐵) = 

(0.08 + 0.18) 

= 0.26  

𝑃(𝐴 ∩ 𝐵) = 0.18    
𝑃(𝐴̅ ∩ 𝐵) = 0.08 

 

𝑃(𝐵̅) = 

(0.02 + 0.72) 

= 0.74  

 

 

𝑃(𝐴 ∩ 𝐵̅) =

0.02  
𝑃(𝐴̅ ∩ 𝐵̅) = 0.72  

 
𝑃(𝐴|𝐵̅)

=
0.02

0.74
 

=
1

37
  

𝑃(𝐴̅|𝐵̅) =
0.72

0.74
=

36

37
  

 

Figure 8. Arithmetic solution of a ternary problem of conditional probability given the three known values 

𝑃(𝐴) = 0.2, 𝑃(𝐵|𝐴) = 0.9, and 𝑃(𝐵|𝐴̅) = 0.1 
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𝑃(𝐴) =  

0.1 + 0.3𝑋  

= 0.25  

𝑃(𝐴̅) = 0.9 − 0.3𝑋    

= 0.75  

 

𝑷(𝑩|𝑨) 

 

= 0.8  

𝑃(𝐴 ∩ 𝐵) 

= 0.4𝑋  

= 

0.08 +

0.24𝑋  

= 0.2  

𝑃(𝐴̅ ∩ 𝐵) = 0.6𝑋  

= 0.3  

𝑃(𝐵|𝐴̅) =
0.6𝑋

0.9−0.3𝑋
  

= 0.4  

𝑃(𝐴̅ ∩ 𝐵̅) = 0.9(1 − 𝑋)  

= 0.45   

𝑃(𝐵̅|𝐴̅) =
0.9−0.9𝑋

0.9−0.3𝑋
  

= 0.6  

 
𝑃(𝐵̅|𝐴) 

= 0.2  

𝑃(𝐴 ∩ 𝐵̅) 

= 

0.1(1 − 𝑋)

 

= 0.05  

 
 

𝑷(𝑨|𝑩) = 0.4  
𝑃(𝐴̅|𝐵) = 0.6 

 

 
𝑃(𝐵)
= 𝑿 

= 0.5  

𝑃(𝐴 ∩ 𝐵) = 0.4𝑋  

= 0.2   

𝑃(𝐴̅ ∩ 𝐵) =

0.6𝑋  

= 0.3  

 
𝑃(𝐵̅) = 

(1 − 𝑋) 

= 

0.5  

𝑃(𝐴 ∩ 𝐵̅) 

= 0.1(1 − 𝑋)

 

= 0.05  

𝑃(𝐴̅ ∩ 𝐵̅) = 0.9(1 − 𝑋)  

= 0.45  

 𝑷(𝑨|𝑩̅) =
0.1 

𝑃(𝐴̅|𝐵̅) = 0.9  

 

Figure 9. Algebraic solution of a ternary problem of conditional probability given the three known values 

𝑃(𝐵|𝐴) = 0.8, 𝑃(𝐴|𝐵) = 0.4, and 𝑃(𝐴|𝐵̅) = 0.1. Since these values are split between the two diagrams, we 

assume a value of 𝑋 for 𝑃(𝐵) and behave as if we have three knowns in the lower map 
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Example 3: 

This example derives formulas for 𝑃𝑃𝑉𝑖𝑗 (𝑃(𝐴|𝐵)) and 𝑁𝑃𝑉𝑖𝑗 (𝑃(𝐴̅|𝐵̅ )) in terms of (𝑎) the true 

prevalence (𝑃𝑟𝑒𝑣 = 𝑃(𝐴) = Probability of disease presence according to the gold standard), 

(𝑏) the sensitivity 𝑆𝑒𝑛𝑠𝑖𝑗 (𝑃(𝐵|𝐴)), and (c) the specificity 𝑆𝑝𝑒𝑐𝑖𝑗 (𝑃(𝐵̅|𝐴̅)). The three given 

quantities all belong to the top diagram in Figure 4. Therefore, a symbolic arithmetic solution is 

possible, the initial steps of which are shown in Figure 10. The computations in Figure 10 might 

be continued to obtain the apparent prevalence 𝑃𝑟𝑒𝑣′ (𝑃(𝐵)) and its complement 𝑃(𝐵̅) as 

 

𝑃(𝐵) = 𝑃𝑟𝑒𝑣′ =  𝑆𝑒𝑛𝑠𝑖𝑗 𝑃𝑟𝑒𝑣 +  (1 − 𝑆𝑝𝑒𝑐𝑖𝑗)(1 − 𝑃𝑟𝑒𝑣 ).                                                    (24) 

𝑃(𝐵̅) =  (1 − 𝑆𝑒𝑛𝑠𝑖𝑗) 𝑃𝑟𝑒𝑣 +  𝑆𝑝𝑒𝑐𝑖𝑗(1 − 𝑃𝑟𝑒𝑣 ).                                                                    (25) 

 

Subsequently, the 𝑃𝑃𝑉𝑖𝑗 and 𝑁𝑃𝑉𝑖𝑗 are obtained as  

 

𝑃𝑃𝑉𝑖𝑗 = 𝑃(𝐴|𝐵)  =  
𝑆𝑒𝑛𝑠𝑖𝑗 𝑃𝑟𝑒𝑣

𝑆𝑒𝑛𝑠𝑖𝑗 𝑃𝑟𝑒𝑣+(1−𝑆𝑝𝑒𝑐𝑖𝑗)(1−𝑃𝑟𝑒𝑣)
                                                                      (26) 

𝑁𝑃𝑉𝑖𝑗 = 𝑃(𝐴̅|𝐵̅)  =  
𝑆𝑝𝑒𝑐𝑖𝑗 (1−𝑃𝑟𝑒𝑣)

(1−𝑆𝑒𝑛𝑠𝑖𝑗) 𝑃𝑟𝑒𝑣+𝑆𝑝𝑒𝑐𝑖𝑗(1−𝑃𝑟𝑒𝑣)
                                                                     (27) 

 

The expressions (24)-(27) are well known TPT and BR results (see, e.g. Kelly et al., 2008; 

Rushdi and Rushdi, 2018). Likewise, we might use algebraic techniques to express the sensitivity 

and specificity in terms of prevalence and predictive values as follows (in agreement with Kelly 

et al. (2008)) 

 

𝑆𝑒𝑛𝑠𝑖𝑗 = 𝑃(𝐵|𝐴) =  
𝑃𝑃𝑉𝑖𝑗 𝑃𝑟𝑒𝑣′

 𝑃𝑟𝑒𝑣
  =  

𝑃𝑃𝑉𝑖𝑗 (𝑁𝑃𝑉𝑖𝑗+ 𝑃𝑟𝑒𝑣−1)

(𝑁𝑃𝑉𝑖𝑗+𝑃𝑃𝑉𝑖𝑗−1) 𝑃𝑟𝑒𝑣
                                                           (28) 

𝑆𝑝𝑒𝑐𝑖𝑗 =  𝑃(𝐵̅|𝐴̅) =  
𝑁𝑃𝑉𝑖𝑗 (1−𝑃𝑟𝑒𝑣′)

(1−𝑃𝑟𝑒𝑣)
=  

𝑁𝑃𝑉𝑖𝑗 (𝑃𝑃𝑉𝑖𝑗−𝑃𝑟𝑒𝑣)

(𝑁𝑃𝑉𝑖𝑗+𝑃𝑃𝑉𝑖𝑗−1)(1−𝑃𝑟𝑒𝑣)
                                                (29) 

We might exploit (24) and (28) to express the true and apparent prevalence via the ‘dual’ relations 

 

𝑃𝑟𝑒𝑣 =  
 (𝑆𝑝𝑒𝑐𝑖𝑗+ 𝑃𝑟𝑒𝑣′−1)

  (𝑆𝑝𝑒𝑐𝑖𝑗+𝑆𝑒𝑛𝑠𝑖𝑗−1)
                                                                                                            (30) 

𝑃𝑟𝑒𝑣′ =  
 (𝑁𝑃𝑉𝑖𝑗+ 𝑃𝑟𝑒𝑣−1)

  (𝑁𝑃𝑉𝑖𝑗+𝑃𝑃𝑉𝑖𝑗−1) 
                                                                                                          (30a) 
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 𝑷(𝑨) =

𝑃𝑟𝑒𝑣  
𝑃(𝐴̅) = 1 −  𝑃𝑟𝑒𝑣   

𝑷(𝑩|𝑨)  
=

𝑆𝑒𝑛𝑠𝑖𝑗
 

𝑃(𝐴 ∩ 𝐵) 

=
𝑆𝑒𝑛𝑠𝑖𝑗  𝑃𝑟𝑒𝑣 

  
 

 

 

 

 

𝑃(𝐴̅ ∩ 𝐵) = (1 −  𝑆𝑝𝑒𝑐𝑖𝑗)(1 −

𝑃𝑟𝑒𝑣)  

𝑃(𝐵|𝐴̅) 

=
(1 − 𝑆𝑝𝑒𝑐𝑖𝑗)  

 

𝑃(𝐴̅ ∩ 𝐵̅) = 𝑆𝑝𝑒𝑐𝑖𝑗(1 − 𝑃𝑟𝑒𝑣)  

 
 

𝑷(𝑩̅|𝑨̅) 

= 𝑆𝑝𝑒𝑐𝑖𝑗   

 

𝑃(𝐵̅|𝐴) 

 = 

(1 − 𝑆𝑒𝑛𝑠𝑖𝑗)  

 

𝑃(𝐴 ∩ 𝐵̅) 

=

(1 −

𝑆𝑒𝑛𝑠𝑖𝑗)𝑃𝑟𝑒𝑣 

  

 
 

𝑃(𝐴|𝐵)  𝑃(𝐴̅|𝐵) 

𝑃(𝐵) 𝑃(𝐴 ∩ 𝐵) = 𝑆𝑒𝑛𝑠𝑖𝑗  𝑃𝑟𝑒𝑣      

𝑃(𝐴̅ ∩ 𝐵) = 

(1 − 𝑆𝑝𝑒𝑐𝑖𝑗)(1 − 𝑃𝑟𝑒𝑣)

 

𝑃(𝐵̅) 

 

 

𝑃(𝐴 ∩ 𝐵̅) = 

(1 − 𝑆𝑒𝑛𝑠𝑖𝑗) 𝑃𝑟𝑒𝑣 

 

𝑃(𝐴̅ ∩ 𝐵̅) = 𝑆𝑝𝑒𝑐𝑖𝑗(1 − 𝑃𝑟𝑒𝑣)  

 
𝑃(𝐴|𝐵̅) 𝑃(𝐴̅|𝐵̅) 

 

Figure 10. Derivation of expressions for the predictive values 𝑃𝑃𝑉𝑖𝑗  (𝑃(𝐴|𝐵)) and 𝑁𝑃𝑉𝑖𝑗  (𝑃(𝐴̅|𝐵̅)) in 

terms of the prevalence (𝑃(𝐴)), 𝑆𝑒𝑛𝑠𝑖𝑗(𝑃(𝐵|𝐴)) and 𝑆𝑝𝑒𝑐𝑖𝑗(𝑃(𝐵̅|𝐴̅)) 

 

 

Example 4: 
This example (demonstrated by Figure 11) shows how we might use algebra to compute the 

sensitivity in terms of the specificity and predictive values (in the absence of knowledge about the 

prevalence). Here, we are given the three conditional probabilities 𝑃(𝐵̅|𝐴̅) = 𝑆𝑝𝑒𝑐𝑖𝑗, 𝑃(𝐴|𝐵) =

𝑃𝑃𝑉𝑖𝑗, and 𝑃(𝐴̅|𝐵̅) = 𝑁𝑃𝑉𝑖𝑗. The first of these three values belong to the top diagram in Figure 4, 

while the remaining two belong to the bottom diagram in Figure 4. We supplement this latter 
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diagram by an arbitrarily assumed value 𝑋 for the apparent prevalence (𝑃(𝐵)). Calculations in 

Figure 11 are followed by the following computations 

 

𝑃(𝐴̅) =
𝑋 (1−𝑃𝑃𝑉𝑖𝑗)

1−𝑆𝑝𝑒𝑐𝑖𝑗
=

(1−𝑋) 𝑁𝑃𝑉𝑖𝑗

𝑆𝑝𝑒𝑐𝑖𝑗
                                                                                                 (31) 

𝑋

1−𝑋
=  

1−𝑆𝑝𝑒𝑐𝑖𝑗

𝑆𝑝𝑒𝑐𝑖𝑗
 

𝑁𝑃𝑉𝑖𝑗

1−𝑃𝑃𝑉𝑖𝑗
                                                                                                                (32) 

𝑋 =  
(1−𝑆𝑝𝑒𝑐𝑖𝑗)𝑁𝑃𝑉𝑖𝑗

(1−𝑆𝑝𝑒𝑐𝑖𝑗)𝑁𝑃𝑉𝑖𝑗+𝑆𝑝𝑒𝑐𝑖𝑗(1−𝑃𝑃𝑉𝑖𝑗)
                                                                                             (33) 

𝑃(𝐴̅) =
𝑁𝑃𝑉𝑖𝑗(1−𝑃𝑃𝑉𝑖𝑗)

(1−𝑆𝑝𝑒𝑐𝑖𝑗)𝑁𝑃𝑉𝑖𝑗+𝑆𝑝𝑒𝑐𝑖𝑗(1−𝑃𝑃𝑉𝑖𝑗)
                                                                                        (34) 

𝑃(𝐴) =
[1−(𝑁𝑃𝑉𝑖𝑗+𝑃𝑃𝑉𝑖𝑗)] 𝑆𝑝𝑒𝑐𝑖𝑗+𝑁𝑃𝑉𝑖𝑗 𝑃𝑃𝑉𝑖𝑗

(1−𝑆𝑝𝑒𝑐𝑖𝑗)𝑁𝑃𝑉𝑖𝑗+𝑆𝑝𝑒𝑐𝑖𝑗(1−𝑃𝑃𝑉𝑖𝑗)
                                                                                  (35) 

𝑆𝑒𝑛𝑠𝑖𝑗 =
𝑋   𝑃𝑃𝑉𝑖𝑗

𝑃(𝐴)
=

 𝑃𝑃𝑉𝑖𝑗  𝑁𝑃𝑉𝑖𝑗 [1−𝑆𝑝𝑒𝑐𝑖𝑗]

𝑃𝑃𝑉𝑖𝑗  𝑁𝑃𝑉𝑖𝑗+𝑆𝑝𝑒𝑐𝑖𝑗 [1−𝑃𝑃𝑉𝑖𝑗−𝑁𝑃𝑉𝑖𝑗]
                                                                (36) 

This equation might be rewritten as 

 

𝑃(𝐵|𝐴) =
𝑃(𝐴|𝐵)𝑃(𝐴̅|𝐵̅)[1−𝑃(𝐵̅|𝐴̅ )]

𝑃(𝐴|𝐵)𝑃(𝐴̅|𝐵̅ )+ 𝑃(𝐵̅|𝐴̅ )[1− 𝑃(𝐴|𝐵)−𝑃(𝐴̅|𝐵̅)]
                                                                (37) 

 

Now, if we use appropriate symbol interchanges, we obtain 

 

𝑃(𝐵̅|𝐴̅) =
𝑃(𝐴|𝐵)𝑃(𝐴̅|𝐵̅ )[1−𝑃(𝐵|𝐴)]

𝑃(𝐴|𝐵)𝑃(𝐴̅|𝐵̅ )+ 𝑃(𝐵|𝐴 )[1− 𝑃(𝐴|𝐵)−𝑃(𝐴̅|𝐵̅ )]
                                                                (38) 

 𝑃(𝐴|𝐵 ) =
𝑃(𝐵|𝐴) 𝑃(𝐵̅| 𝐴̅) [1−𝑃(𝐴̅|𝐵̅)]

𝑃(𝐵|𝐴)𝑃(𝐵̅|𝐴̅)+ 𝑃(𝐴̅|𝐵̅)[1− 𝑃(𝐵|𝐴)−𝑃(𝐵̅|𝐴̅)]
                                                                (39) 

𝑃(𝐴̅|𝐵̅) =
𝑃(𝐵|𝐴) 𝑃(𝐵̅| 𝐴) [1−𝑃(𝐴|𝐵)]

𝑃(𝐵|𝐴)𝑃(𝐵̅|𝐴̅)+ 𝑃(𝐴|𝐵)[1− 𝑃(𝐵|𝐴)−𝑃(𝐵̅|𝐴̅)]
                                                                  (40) 

 

which translate to the following expressions 

 

𝑆𝑝𝑒𝑐𝑖𝑗 =
𝑃𝑃𝑉𝑖𝑗∗𝑁𝑃𝑉𝑖𝑗 [1− 𝑆𝑒𝑛𝑠𝑖𝑗]

𝑃𝑃𝑉𝑖𝑗∗𝑁𝑃𝑉𝑖𝑗+𝑆𝑒𝑛𝑠𝑖𝑗 [1− 𝑃𝑃𝑉𝑖𝑗−𝑁𝑃𝑉𝑖𝑗]
                                                                                 (41) 

𝑃𝑃𝑉𝑖𝑗 =
𝑆𝑒𝑛𝑠𝑖𝑗∗𝑆𝑝𝑒𝑐𝑖𝑗 [1−𝑁𝑃𝑉𝑖𝑗]

𝑆𝑒𝑛𝑠𝑖𝑗∗𝑆𝑝𝑒𝑐𝑖𝑗+𝑁𝑃𝑉𝑖𝑗 [1− 𝑆𝑒𝑛𝑠𝑖𝑗−𝑆𝑝𝑒𝑐𝑖𝑗]
                                                                                (42) 

𝑁𝑃𝑉𝑖𝑗 =
𝑆𝑒𝑛𝑠𝑖𝑗∗𝑆𝑝𝑒𝑐𝑖𝑗 [1−𝑃𝑃𝑉𝑖𝑗]

𝑆𝑒𝑛𝑠𝑖𝑗∗𝑆𝑝𝑒𝑐𝑖𝑗+𝑃𝑃𝑉𝑖𝑗[1− 𝑆𝑒𝑛𝑠𝑖𝑗−𝑆𝑝𝑒𝑐𝑖𝑗]
                                                                               (43) 
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 𝑃(𝐴) 𝑃(𝐴̅)   

𝑃(𝐵|𝐴) 

𝑃(𝐴 ∩ 𝐵) 

= 𝑋 ∗ 𝑃𝑃𝑉𝑖𝑗

 
 

 

 

 

 

𝑃(𝐴̅ ∩ 𝐵) = 𝑋(1 − 𝑃𝑃𝑉𝑖𝑗)  

𝑃(𝐵|𝐴̅) 

=
(1 −

𝑆𝑝𝑒𝑐𝑖𝑗)  

 

𝑃(𝐴̅ ∩ 𝐵̅) = (1 − 𝑋)𝑁𝑃𝑉𝑖𝑗   

 

𝑷(𝑩̅|𝑨̅) 

= 𝑆𝑝𝑒𝑐𝑖𝑗   

𝑃(𝐵̅|𝐴) 

𝑃(𝐴 ∩ 𝐵̅) 

=
(1 −

𝑋)(1 −

𝑁𝑃𝑉𝑖𝑗)    

 
 

𝑷(𝑨|𝑩) = 𝑃𝑃𝑉𝑖𝑗  
𝑃(𝐴̅|𝐵) =

1 − 𝑃𝑃𝑉𝑖𝑗   

𝑃(𝐵) 

= 𝑿   
𝑃(𝐴 ∩ 𝐵) = 𝑋 ∗ 𝑃𝑃𝑉𝑖𝑗    

𝑃(𝐴̅ ∩ 𝐵) =

𝑋(1 − 𝑃𝑃𝑉𝑖𝑗)  

𝑃(𝐵̅) 

= (1 − 𝑋)  

 

 

𝑃(𝐴 ∩ 𝐵̅) =
(1 − 𝑋)(1 −

𝑁𝑃𝑉𝑖𝑗)  

𝑃(𝐴̅ ∩ 𝐵̅) = (1 − 𝑋)𝑁𝑃𝑉𝑖𝑗  

 𝑃(𝐴|𝐵̅) =

(1 − 𝑁𝑃𝑉𝑖𝑗)  
𝑷(𝑨̅|𝑩̅) = 𝑁𝑃𝑉𝑖𝑗   

 

Figure 11. Steps for algebraic computing of the sensitivity (𝑆𝑒𝑛𝑠𝑖𝑗 = 𝑃(𝐵|𝐴)) in terms of the specificity 

(𝑆𝑝𝑒𝑐𝑖𝑗 = 𝑃(𝐵̅|𝐴̅)), the positive predictive value (𝑃𝑃𝑉𝑖𝑗 = 𝑃(𝐴|𝐵)) and negative predictive value (𝑁𝑃𝑉𝑖𝑗 =

𝑃(𝐴̅|𝐵̅)) under the assumption that no division by zero is committed 

 

 

 

Equations (36, 38-40) express each of the four most prominent indicators of diagnostic testing 

(Sensitivity, Specificity, Positive Predictive Value, and Negative Predictive Value) solely in 

terms of the other three. They seem to be novel ones. We have not come across them anywhere in 

the open literature. Of course, these equations are valid (in their present forms) only in regular or 

non-limiting cases and provided no division by zero is involved. 
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7. Application to the Assessment of Prevalence of the COVID-19 Pandemic 
The ongoing epidemic of the novel coronavirus (now called SARS-CoV-2, causing the disease 

COVID-19) seems to have expanded from the Wuhan province in China, but has definitely 

reached almost any inhabited area on earth (Goldstein and Burstyn, 2020; Guo et al., 2020; 

Lipsitch et al., 2020; Li et al., 2020; Park et al., 2020; Rothan and Byrareddy, 2020; Yang et al., 

2020; Wu et al., 2020). This fatal disease, being a catastrophic threat of great global public-health 

concern, is expected to have diverse grave (and potentially irreversible) consequences. Therefore, 

research concerning various aspects of epidemiology, in general, with a stress on epidemiological 

facets, features and aspects related to Covid-19, in particular, might pay off handsomely in 

improving the response of humanity to this epidemic, now characterized as a pandemic by the 

World Health Organization (2020). This paper constitutes a modest effort that falls under the 

umbrella of such research. The paper offers good insight as well as efficient computational 

techniques for the ternary problem of conditional probability as formulated in the context of a 

contingency table, a well-known and prominent epidemiology problem. The insight gained and 

the techniques presented might be instrumental in characterizing diseases and epidemics as well 

as in assessing (and even in constructing) artificial-intelligence (AI) models for detecting them. 

We note that though COVID-19 made its first appearance in our world only a few months ago, 

already several papers on its detection via AI techniques have already appeared (see, e.g. 

Chowdhury et al., 2020; Li et al., 2020; Salman et al., 2020; Sethy et al., 2020). 

 

We devote the rest of this section to a timely (though narrow) application of the methods 

developed herein, namely, to the issue of assessment of the true prevalence of the COVID-19 

pandemic (and any similar disease) at any instance of time (worldwide or within a specific 

region), a prelude to determining the rate at which the disease is spreading or retreating. Such an 

assessment is naturally based on implementing certain tests, which (albeit adequate) are 

somewhat imperfect and cannot be elevated to the status of a gold standard. The present models 

indicate that limited (rather than imperfect) testing should be the main source of concern at this 

stage (Goldstein and Burstyn, 2020; Peto, 2020). Tests (even if imperfect) facilitate the 

identification (and isolation) of infected individuals, guide the medical treatment that they 

receive, allow the tracing and quarantining of their contacts, thereby leading to prudent allocation 

of medical resources, and to quick understanding of this unprecedented phenomenon. 

 

Let us first consider the extreme case of 𝑃(𝐵) = 0, considered earlier in Sec. 5. Here, 𝑃𝑟𝑒𝑣′ = 0, 

𝑆𝑒𝑛𝑠𝑖𝑗 = 0,  and 𝑆𝑝𝑒𝑐𝑖𝑗 = 1, and hence according to (30), the true prevalence 𝑃𝑟𝑒𝑣 is 0/0, 

which is an undefined quantity. This result manifests the correct (but entirely absurd or even 

useless) conclusion that if we perform no testing, then we have no clue whatsoever as to what the 

true prevalence of the pandemic is. Of course, this extreme case does not resemble the actual 

situation of COVID-19 in any country. But it might serve as a first cut at (or an engineering 

approximation of) an assessment of the situation in a few countries, which lack the resources or 

the desire to perform testing on a plausible part of the population (including at least symptomatic 

individuals as well as those who had been in direct contact with them). We cannot overstress the 

importance of global and early testing (even when imperfect) in a pandemic such as COVID-19. 

For a typical test of that pandemic, Goldstein and Burstyn (2020) assume that a plausible value of 

𝑆𝑒𝑛𝑠𝑖𝑗 is between 0.6 and 0.9, while 𝑆𝑝𝑒𝑐𝑖𝑗 might be held high between 0,9 and 1.0. In contrast 

to perfect testing (𝑆𝑒𝑛𝑠𝑖𝑗 = 1,  𝑆𝑝𝑒𝑐𝑖𝑗 = 1) for which (𝑃𝑟𝑒𝑣 = 𝑃𝑟𝑒𝑣′), an available imperfect 

test produces (according to Equation (30)) the following upper bound on true prevalence, 
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𝑃𝑟𝑒𝑣 ≤  
  𝑃𝑟𝑒𝑣′

  0.6 
   = 1.667  𝑃𝑟𝑒𝑣′                                                                                                 (44) 

 

Equation (44) means that typical tests for COVID-19 might underestimate prevalence of the 

pandemic to 60% of its actual value. While our estimate of the pandemic prevalence is somewhat 

hampered by testing imperfection, it is seriously undermined by the lack of extensive or global 

testing. To see this in mathematical terms, let us assume that the total population consists of 𝑁𝑢 

and 𝑁𝑡 untested and tested individuals, respectively. Let 𝑃𝑟𝑒𝑣𝑢 denote the pandemic true 

prevalence among those that have not been tested and let 𝑃𝑟𝑒𝑣𝑡 denote the corresponding value 

for those who have been tested. According to our previous discussion, 𝑃𝑟𝑒𝑣𝑢 is totally unknown, 

apart from the fact that it is a probability, and hence it is such that 

 

0 ≤ 𝑃𝑟𝑒𝑣𝑢 ≤ 1                                                                                                                                  (45) 

 

Our previous equation (44) pertains solely to the tested population. To stress this fact, we rewrite 

it with its variables qualified with the subscript 𝑡 (for tested) 

 

𝑃𝑟𝑒𝑣𝑡 ≤  1.667  𝑃𝑟𝑒𝑣𝑡′                                                                                                              (44a) 

 

Now, we can express the true prevalence 𝑃𝑟𝑒𝑣 among the general mixed population as a 

weighted sum of the corresponding values 𝑃𝑟𝑒𝑣𝑢 and 𝑃𝑟𝑒𝑣𝑡 among  the untested and tested 

populations, respectively  

 

𝑃𝑟𝑒𝑣 =  
 𝑁𝑢 𝑃𝑟𝑒𝑣𝑢+𝑁𝑡 𝑃𝑟𝑒𝑣𝑡

   𝑁𝑢 +𝑁𝑡  
                                                                                                            (46) 

 

Define the non-negative ‘dimensionless’ parameter  𝜌 = 𝑁𝑡/𝑁𝑢 that denotes testing intensity. 

This parameter attains its minimum value of 0 in the case of no testing at all, and it increases 

without bound (tends to infinity) when perfect global testing is realized. This parameter might be 

invoked in (46) as follows 

 

𝑃𝑟𝑒𝑣 =  
  𝑃𝑟𝑒𝑣𝑢+𝜌 𝑃𝑟𝑒𝑣𝑡

   1 +𝜌  
                                                                                                                 (47) 

 

When (46a) is combined with (45), we obtain bounds for the prevalence in the general population 

as follows 

 
 𝜌 𝑃𝑟𝑒𝑣𝑡

   1 +𝜌  
 ≤  𝑃𝑟𝑒𝑣 ≤   

 1+𝜌 𝑃𝑟𝑒𝑣𝑡

   1 +𝜌  
                                                                                                     (48) 

 

Equation (47) sets bounds on the pandemic prevalence among the general population, in terms of 

two parameters: (a) the true prevalence 𝑃𝑟𝑒𝑣𝑡 among those tested, and (b) the testing intensity 𝜌. 

The interval between these bounds is unacceptably wide for small 𝜌, but narrows gradually as 𝜌 

increases. 

 

8. Conclusions 
This paper provided a divide-and-conquer methodology for solving a ternary problem of 

conditional probability associated with a two-by-two contingency matrix, through the utilization 

of two length/area-proportional normalized variants of such a matrix. The methodology is 
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particularly useful in various areas of diagnostic testing such as clinical or epidemiological 

testing, though it is still conveniently applicable in other types of problems of general nature 

involving conditional probabilities. The paper explains why and how a conditional-probability 

problem (with exactly three appropriate quantities being given or pre-specified) can be solved. 

The paper also identifies the case when an arithmetic solution is possible and differentiates this 

case from the case when an algebraic solution is warranted. The methodology proposed herein 

can be used to recover all known relations involving quantities pertinent to or derivable from the 

two-by-two contingency table. As a particularly significant offshoot, this methodology shows that 

the four most prominent indicators of diagnostic testing (Sensitivity, Specificity, Positive 

Predictive Value, and Negative Predictive Value) constitute three rather than four independent 

quantities. This observation is virtually unheard of, though it is implicit in earlier solutions of the 

ternary problem of conditional probability. 

 

The contribution of this paper to the diagnostic testing aspects of mathematical epidemiology 

culminates in a timely application to and a discussion of the contemporary world-wide COVID-

19 pandemic. An important observation made herein is that our assessment of the pandemic 

prevalence is affected by test imperfection, which tends to cause an inadvertent underestimation 

of the prevalence value. However, this is a mild problem that can be tolerated or even 

accommodated by using a ‘factor of safety.’ A more serious problem is that of using a testing 

intensity that is too low to provide concrete information with some acceptable uncertainty. 

 

 

 
Conflict of Interest 

The authors assert that no conflict of interest exists. 

 

Acknowledgement 

This work is funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah. Therefore, the 

authors acknowledge, with thanks, the DSR for their financial and technical support. The first-named author (AMAR) is 

gratefully indebted to Dr. Rufaidah Rushdi, of Kasr Al-Ainy Faculty of Medicine (Cairo University, Arab Republic of 

Egypt) for stimulating discussions concerning epidemiological testing and its various measures, and for proposing an 

application of our results to COVID-19. 

 

 

 

 

References 

Amin, M.N., Rushdi, M.A., Marzaban, R.N., Yosry, A., Kim, K., & Mahmoud, A.M. (2019). Wavelet-

based computationally-efficient computer-aided characterization of liver steatosis using conventional 

B-mode ultrasound images. Biomedical Signal Processing and Control, 52, 84-96. 

Anderson, T.W., & Finn, J.D. (1996). Summarizing multivariate data: association between categorical 

variables. In The New Statistical Analysis of Data (pp. 177-230). Springer, New York. 

Bertin, J. (1967). Sémiologie graphique. paris, gauthier-villars. Translation. as Semiology of Graphics 

(1983). Wisconsin: University of Wisconsin Press. 

Böcherer-Linder, K., & Eichler, A. (2019). How to improve performance in Bayesian inference tasks: a 

comparison of five visualizations. Frontiers in Psychology, 10, Article 267, 1-9. 

Böcherer-Linder, K., Eichler, A., & Vogel, M. (2018) Visualising conditional probabilities -three 

perspectives on unit squares and tree diagrams. In: Batanero, C., Chernoff, E. (eds) Teaching and 

Learning Stochastics. ICME-13 Monographs. Springer, Cham. pp. 73-88. 



International Journal of Mathematical, Engineering and Management Sciences                                                   

Vol. 5, No. 5, 787-811, 2020 

https://doi.org/10.33889/IJMEMS.2020.5.5.062 

809 

Carles, M., & Huerta, M.P. (2007, February). Conditional probability problems and contexts. The 

diagnostic test context. In Proceedings of the Fifth Congress of the European Society for Research in 

Mathematics Education, 5(2), 702-710. 

Cerdán, F., & Huerta, M.P. (2007). Problemas ternarios de probabilidad condicional y grafos trinomiales 

(Ternary problems of conditional probability and trinomial graphs). Educación Matemática, 19(1), 27–

62. 

Chow, S., & Ruskey, F. (2003, September). Drawing area-proportional Venn and Euler diagrams. 

In International Symposium on Graph Drawing (pp. 466-477). Springer, Berlin, Heidelberg. 

Chowdhury, M.E., Rahman, T., Khandakar, A., Mazhar, R., Kadir, M.A., Mahbub, Z.B., Islam, K.R., 

Khan, M.S., Iqbal, A., Al-Emadi, N., & Reaz, M.B.I. (2020). Can AI help in screening viral and 

COVID-19 pneumonia?.  arXiv preprint arXiv:2003.13145. 

Costello, F., & Watts, P. (2016). People’s conditional probability judgments follow probability theory (plus 

noise). Cognitive Psychology, 89, 106-133. 

Da Costa, N.C.A. (1986). Pragmatic probability. Erkenntnis, 25(2), 141-162. 

Edo, P., Huerta, M.P., & Cerdán, F. (2011). Análisis de las resoluciones de problemas de probabilidad 

condicional mediante grafos (analysis of conditional probability problems using graphs).  In: Marín, 

M., Fernández, G., Blanco, L., & Paralea, M. (eds) Investigación en Educación Matemática XV (pp. 

337–350). 

Edwards, A.W.F. (1972). Likelihood: an account of the statistical concept of likelihood and its application 

to scientific inference. Cambridge and New York: Cambridge University Press. 

Falk, R., & Bar-Hillel, M. (1983). Probabilistic dependence between events. The Two-Year College 

Mathematics Journal, 14(3), 240-247. 

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874. 

Fienberg, S.E., & Gilbert, J.P. (1970). The geometry of a two by two contingency table. Journal of the 

American Statistical Association, 65(330), 694-701. 

Goldstein, N.D., & Burstyn, I. (2020). On the importance of early testing even when imperfect in a 

pandemic such as COVID-19. https://doi.org/10.31219/osf.io/9pz4d. 

Good, I.J., & Mittal, Y. (1987). The amalgamation and geometry of two-by-two contingency tables. The 

Annals of Statistics, 15(2), 694-711. 

Guo, Y.R., Cao, Q.D., Hong, Z.S., Tan, Y.Y., Chen, S.D., Jin, H.J., Tan, K.S., Wang, D.Y., & Yan, Y. 

(2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) 

outbreak-an update on the status. Military Medical Research, 7(1), 1-10. 

Hájek, A. (2003). What conditional probability could not be? Synthese, 137(3), 273-323. 

Hartigan, J.A., & Kleiner, B. (1981) Mosaics for contingency tables. In: Eddy W.F. (eds) Computer 

Science and Statistics: Proceedings of the 13th Symposium on the Interface . Springer, New York. 

pp. 268-273. 

Huerta, M.P. (2009). On conditional probability problem solving research–structures and 

contexts. International Electronic Journal of Mathematics Education, 4(3), 163-194. 

Huerta, M.P. (2014). Researching conditional probability problem solving. In Probabilistic Thinking. 

Springer, Dordrecht. pp. 613-639. 

 

 

https://doi.org/10.31219/osf.io/9pz4d


International Journal of Mathematical, Engineering and Management Sciences                                                   

Vol. 5, No. 5, 787-811, 2020 

https://doi.org/10.33889/IJMEMS.2020.5.5.062 

810 

Huerta, M.P., Cerdán, F., Lonjedo, M.A., & Edo, P. (2011). Assessing difficulties of conditional 

probability problems. In: Pytlak, M., Rowland, T., & Swoboda, E. (eds) Proceedings of the Seventh 

Congress of the European Society for Research in Mathematics Education, University of Rzeszów, 

Poland (pp. 807–817). 

Johnson, K.M. (1999). The two by two diagram: a graphical truth table. Journal of Clinical 

Epidemiology, 52(11), 1073-1082. 

Johnson, K.M. (2017). Using Bayes’ rule in diagnostic testing: a graphical explanation. Diagnosis, 4(3), 

159-167. 

Johnson, K.M., & Johnson, B.K. (2014). Visual presentation of statistical concepts in diagnostic testing: the 

2× 2 diagram. American Journal of Roentgenology, 203(1), W14-W20. 

Kelly, H., Bull, A., Russo, P., & McBryde, E.S. (2008). Estimating sensitivity and specificity from positive 

predictive value, negative predictive value and prevalence: application to surveillance systems for 

hospital-acquired infections. Journal of Hospital Infection, 69(2), 164-168. 

Kent, P., & Hancock, M.J. (2016). Interpretation of dichotomous outcomes: sensitivity, specificity, 

likelihood ratios, and pre-test and post-test probability. Journal of Physiotherapy, 62(4), 231-233. 

Krämer, W., & Gigerenzer, G. (2005). How to confuse with statistics or: the use and misuse of conditional 

probabilities. Statistical Science, 20(3), 223-230. 

Lesaffre, E., Speybroeck, N., & Berkvens, D. (2007). Bayes and diagnostic testing. Veterinary 

Parasitology, 148(1), 58-61. 

Li, B., Yang, J., Zhao, F., Zhi, L., Wang, X., Liu, L., Bi, Z., & Zhao, Y. (2020). Prevalence and impact of 

cardiovascular metabolic diseases on COVID-19 in China. Clinical Research in Cardiology, 109, 531-

538. https://doi.org/10.1007/s00392-020-01626-9. 

Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., Bai, K., Lu, Y., Fang, Z., Song, Q., Cao, K., Liu, D., 

Wang, G., Xu, Q., Fang, X., Zhang, S., Xia, J., & Xia, J. (2020). Artificial intelligence distinguishes 

COVID-19 from community acquired pneumonia on chest CT. Radiology, 200905. 

https://doi.org/10.1148/radiol.2020200905. 

Lipsitch, M., Swerdlow, D.L., & Finelli, L. (2020). Defining the epidemiology of Covid-19-studies 

needed. New England Journal of Medicine, 382(13), 1194-1196. 

Oldford, R.W., & Cherry, W.H. (2006). Picturing probability: The poverty of Venn diagrams, the richness 

of eikosograms. Retrieved from. 

http://www.stats.uwaterloo.ca/~rwoldfor/papers/venn/eikosograms/paperpdf.pdf. 

Parikh, R., Mathai, A., Parikh, S., Sekhar, G.C., & Thomas, R. (2008). Understanding and using sensitivity, 

specificity and predictive values. Indian Journal of Ophthalmology, 56(1), 45-50. 

Park, M., Cook, A.R., Lim, J.T., Sun, Y., & Dickens, B.L. (2020). A systematic review of COVID-19 

epidemiology based on current evidence. Journal of Clinical Medicine, 9(4), 967. 

Peto, J. (2020). Covid-19 mass testing facilities could end the epidemic rapidly. The BMJ (Originally, the 

British Medical Journal), 368. Available at https://www.bmj.com/content/368/bmj.m1163.long. 

Pfannkuch, M., & Budgett, S. (2017). Reasoning from an eikosogram: an exploratory study. International 

Journal of Research in Undergraduate Mathematics Education, 3(2), 283-310. 

Politzer, G. (2014). Deductive reasoning under uncertainty using a water tank analogy. HAL Archives, Id: 

ijn_00867284, 1-32. 

Powers, D.M. (2011). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and 

correlation.  Journal of Machine Learning Technologies, 2(1), 37-63. 

https://doi.org/10.1148/radiol.2020200905
http://www.stats.uwaterloo.ca/~rwoldfor/papers/venn/eikosograms/paperpdf.pdf
https://www.bmj.com/content/368/bmj.m1163.long


International Journal of Mathematical, Engineering and Management Sciences                                                   

Vol. 5, No. 5, 787-811, 2020 

https://doi.org/10.33889/IJMEMS.2020.5.5.062 

811 

Rothan, H.A., & Byrareddy, S.N. (2020). The epidemiology and pathogenesis of coronavirus disease 

(COVID-19) outbreak. Journal of Autoimmunity, 109, 102433. 

https://doi.org/10.1016/j.jaut.2020.102433. 

Rushdi, A.M., Rushdi, M.A. (2017). Switching-algebraic analysis of system reliability. In: Ram, M., 

Davim, J. (eds) Advances in Reliability and System Engineering (pp. 139-161). Management and 

Industrial Engineering. Springer, Cham. Switzerland. 

Rushdi, A.M.A., & Talmees, F.A. (2018). An exposition of the eight basic measures in diagnostic testing 

using several pedagogical tools. Journal of Advances in Mathematics and Computer, Science, 26(3), 1-

17. 

Rushdi, A.M.A., & Talmees, F.A. (2019). Computations of the eight basic measures in diagnostic testing. In: 

Advances in Mathematics and Computer Science. International, Hooghly, West Bengal, India. 

Rushdi, R.A., & Rushdi, A.M. (2018a). Karnaugh-map utility in medical studies: the case of fetal 

malnutrition. International Journal of Mathematical, Engineering and Management Sciences, 3(3), 220-

244. 

Rushdi, R.A., & Rushdi, A.M. (2018b). Common fallacies of probability in medical context: a simple 

mathematical exposition. Journal of Advances in Medicine and Medical Research, 26(1), 1-21. 

Rushdi, R.A., Rushdi, A.M., & Talmees, F.A. (2018). Novel pedagogical methods for conditional-

probability computations in medical disciplines. Journal of Advances in Medicine and Medical 

Research, 25(10), 1-15. 

Rushdi, R.A.M., & Rushdi, A.M.A. (2019). Mathematics and examples for avoiding common probability 

fallacies in medical disciplines. In: Current Trends in Medicine and Medical Research. International, 

Hooghly, West Bengal, India. 

Salman, F.M., Abu-Naser, S.S., Alajrami, E., Abu-Nasser, B.S., & Alashqar, B.A. (2020). COVID-19 detection 

using artificial intelligence. International Journal of Academic Engineering Research, 4(3), 18-25. 

Sethy, P.K., & Behera, S.K. (2020). Detection of coronavirus disease (COVID-19) based on deep features and 

support vector machine. International Journal of Mathematical, Engineering and Management 

Sciences, 5(4), 643-651. 

Shindo, T., Takahashi, T., Okamoto, T., & Kuraishi, T. (2012). Evaluation of diagnostic results by Bayes' 

theorem. IEEJ Transactions on Electrical and Electronic Engineering, 7(5), 450-453. 

World Health Organization (2020). WHO Director-General's opening remarks at the media briefing on 

COVID-19 on March 11, 2020. Available at https://www.who.int/dg/speeches/detail/who-director-general-

s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. 

Wu, D., Wu, T., Liu, Q., & Yang, Z. (2020). The SARS-CoV-2 outbreak: what we know. International Journal 

of Infectious Diseases, 94, 44-48. 

Yang, J., Zheng, Y., Gou, X., Pu, K., Chen, Z., Guo, Q., Ji, R., Wang, H., Wang, Y., & Zhou, Y. (2020). 

Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic 

review and meta-analysis. International Journal of Infectious Diseases, 94, 91-95. 

 

 

 

 
 

 

Original content of this work is copyright © International Journal of Mathematical, Engineering and Management Sciences. Uses 

under the Creative Commons Attribution 4.0 International (CC BY 4.0) license at https://creativecommons.org/licenses/by/4.0/ 

 

https://doi.org/10.1016/j.jaut.2020.102433
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020

