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Introduction

While there is considerable agreement that economies of scale and
scope in performing R&D and the magnitude of R&D spillovers may have
important implications for research productivity, research to date has been far
from conclusive. The theoretical literature is divided, for example, as to the
effects that relative firm size or the presence of spillovers should have on
incentives to undertake research (Dasgupta and Stiglitz (1980); Spence,
(1984)), while empirical work has generated surprisingly inconclusive and
sometimes contradictory results. (Cohen and Levin, (1989).) Several observers
have suggested that this is the result of a historical reliance upon aggregated
data, combined with a failure to control adequately for firm or industry effects
(Baldwin and Scott, (1987); Cohen and Levin, (1989)). In this paper we look
inside the firm for evidence on the importance of scale, scope and spillovers
for research productivity, using detailed, disaggregated, data at the level of the
research program obtained from the internal records of ten major research-
oriented pharmaceutical companies.

The ennched understanding of the production technology of
innovation which this research provides may help to resolve several debates
in the economics of industrial organization. There are also implications for the
theory of the firm. For example several scholars, notably Chandler (1990),
have suggested that the presence of very large firms in modem capitalist
economies is driven by the opportunity to exploit internal economies of scale
and scope. Moreover since the size of research programs, firm size and
spillover regimes may be dramatically affected by regulatory policy, a better
understanding of their effects upon research productivity can help to lay the
ground work for informed public policy.

Data from the pharmaceutical industry are particularly well suited to

studying these issues. The industry is extremely research intensive, and



successful research drives firm performance. As a result nearly every firm in
the industry conducts multiple research programs that compete directly with
each other, offering us a rich data set. Research effort is relatively
homogeneous, so that a comparison of research programs across firms is not
confounded by unobservable varnation in technology. Moreover the nature of
the technology is such that it is possible to construct reasonable measures of
technological "distance” in order to evaluate the effects of spillovers. A study
of research productivity in the pharmaceutical industry is also interesting in its
own right, since the industry is one in which a better understanding of the
importance of scope, scale and spillovers is likely to have immediate
implications for the formulation of government policy and the conduct of
individual firms.

We use a panel data set with almost five thousand observations,
covering more than twenty years to explore the drivers of research productivity
in the "discovery” phase of ethical drug research. Our results suggest that
there are no returns to scale per se at either the level of the firm or the level
of the research program. However we find that individual programs are more
productive, all other things equal, in larger and in more diversified firms, and
that research productivity is strongly correlated with the productivity of
programs in related therapeutic areas within the firm, suggesting that there
may be significant economies of scope at the level of the therapeutic class. Our
results also suggest that research productivity in a given therapeutic class is
positively associated with the patents applied for by competing firms. We
interpret these results as evidence consistent with the presence of extensive
spillovers within the industry, but we also note that they are consistent with
correlated research efforts and outcomes due to industry-wide shocks to
technological opportunity.

The paper begins with a short literature review. We then briefly



describe the nature of research in the pharmaceutical industry as background
to the development of some hypotheses. Subsequent sections discuss some of
the estimation issues and describe the data on which the study is based. A
discussion of the empirical results follows, and the paper closes with a

discussion of their implications and an outline of future research.

1. Hypothesis Development and Literature Review.

Scale, scope, spillovers and research productivity.

Schumpeter (1934,1950) was the first to argue systematically that
there was an enduring relationship between firm size and research
productivity. As several observers have noted, his argument can be
decomposed into several elements. In the first place, he suggested that there
might be a significant relationship between research productivity and monopoly
power. Ex ante monopoly power might serve to mitigate problems in the
financial markets, while ex post monopoly power would mitigate problems of
appropriability. In the second place, Schumpeter suggested that there may be
significant economies of scale in the research production process itself, and
that larger firms may enjoy significant economies of scope. Thus he implied
that not only will larger research programs be more productive than smaller
ones, but also that a research program of any given size will be more
productive if it is conducted within a larger firm.

Later work has fleshed out this idea to suggest that there may be three
major advantages in performing R&D conferred by size (Fisher & Temin
(1973), Cohen and Levin, (1989)). In the absence of fully functioning markets
for innovation, larger firms may be able to spread the fixed costs of research
over a larger sales base. Larger firms may also be able to exploit
complementarities between other assets of the firm -- marketing or

manufacturing expertise for example -- to increase the productivity of research.



They may also have advantages in the financial markets over smaller firms:
to the degree that they are able to mitigate problems of adverse selection and
moral hazard in raising capital, they may be better positioned to fund risky
projects. Much qualitative, historical evidence is consistent with these ideas,
although a paucity of data at the program, as opposed to the firm level, has
made it difficult to distinguish between economies of scale and scope
(Chandler, (1990); Mowery (1989)).

Schumpeter’s core conclusions have been challenged on two fronts.
On the one hand, organizational researchers have suggested that increasing
organizational size imposes significant diseconomies of scale in the form of
increasingly bureaucratic and hierarchical organizations that reduce
technological creativity. Some industry level and case based research is
consistent with this hypothesis (Burns and Stalker, (1966); Tushman and
Anderson, (1986)).

On the other hand, systematic cross-sectional studies of Schumpeter’s
ideas have had inconclusive results. Much early research explored the
relationship between firm size and research intensity, seeking to explore the
degree to which research intensity increased with firm size (Baldwin and Scott
(1987), and Cohen and Levin (1989), provide excellent summaries of research
in this tradition.). The results of this work are largely contradictory, and, as
Fisher and Temin (1973) have pointed out, cannot be taken as tests of
Schumpeter’s ideas. Unfertunately the results of later work exploring the more
appropriate relationship between research output and firm size have been
similarly unconvincing. Bound et al. (1984) found that there was evidence of
linear returns to scale for R&D programs between $2 and $100m when patents
were used as a measure of research output, but they found that their results
were quite sensitive to specification assumptions. Acs and Audretsch (1988),
using a measure of "major innovations” as a measure of output found that in

highly concentrated industries with high barriers to entry large firms were
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likely to be the source of the majority of innovations, while in less
concentrated, less mature industries smaller firms were likely to be more
innovative. A study by Pavitt et al. (1987), using a similar measure of output,
suggested that both very small firms and very large firms were proportionately
more innovative than more moderate sized firms. In general, as Cohen and
Levin (1989) suggest, a failure to account for specific industry effects such as
variations in demand conditions, in technological opportunity and in
appropriability conditions, coupled with an inability to use project level as
opposed to aggregate firm level data may be responsible for the inconclusive
nature of existing results. '

The role of spillovers in determining research productivity is similarly
not well understood. Two significant practical problems make it difficult to
measure their impact (Griliches, 1991). In the first place it is difficult to
distinguish between the influence that spillovers from other industries have on
research productivity through their unmeasured effect upon input costs, and the
influence that they have directly on research productivity by increasing the
total stock of knowledge available to researchers. In the second place, the
accurate estimation of spillover effects is dependent on adequate measures of
technological "distance” and of R&D capital, both constructs that are
exceedingly difficult to measure. Jaffe’s work (1986,1988) provides the best
example of a careful attempt to account for these problems, and his work
suggests that spillovers have important effects on research productivity, but
there have been few attempts to duplicate his results using disaggregated data

or more detailed measures of technological distance.

Research in the Pharmaceutical Industry
Before turning to hypothesis development it is important to describe
the nature of research and development in the pharmaceutical industry since

it has several quite distinct characteristics that shape the determinants of
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research productivity (Cocks (1973,1975), Caglarcan (1978), Chein (1979),
Gross (1983), Spilker (1989)).

Pharmaceutical drugs are chemical compounds that are introduced into
humans to cure or alleviate illness.' Ethical drugs can be usefully grouped into
"therapeutic areas” such as "cardiovascular diseases” or "disorders of the
alimentary system,” although some drugs, such as aspirin, have multiple
effects across ‘several therapeutic areas. Within therapeutic classes, drugs
address particular conditions such as hypertension or peptic ulcers. To a first
approximation these more narrowly defined areas correspond to distinct
"markets” but since, in general, drugs that affect a particular organ system
tend to have multiple effects, a drug may be used to treat several conditions
within a particular therapeutic class. Some of the drugs used in the treatment
of hypertension, for example, are also useful in the treatment of congestive
heart failure.

Pharmaceutical research takes place in two stages: drug discovery and
drug development. The goal of the drug discovery process is to find a
chemical compound that has a desirable effect in a "screen” that mimics some
aspect of a disease state in man. For example, firms might screen hundreds of
soil samples in the hope of finding a chemical compound that kills a particular
kind of bacteria, or they might test fewer carefully synthesized compounds to
find out if they block a particular enzymatic pathway. Drug discovery has
become an increasingly complex process as our knowledge of chemistry and
human physiology has increased. Whereas thirty years ago a majority of drugs
were discovered through random screening, modern drug discovery relies on
the integration of knowledge from a very large number of rapidiy changing

scientific disciplines. Screening remains important since it is very difficult to

' Our focus here is upon "ethical” pharmaceuticals - drugs that can only
be dispensed with a prescription.



predict how a particular compound will react inside a biological system, but
it is now informed to a much greater extent by a detailed knowledge of
scientific disciplines such as biochemistry, molecular biology and physiology.

Individual chemical compounds, and hence particular drugs, can be
patented. Although patents can usually be effectively enforced and thus have
great competitive importance, the ability to patent a particular compound does
not guarantee full appropriability of the knowledge generated during its
discovery. It is sometimes possible to "invent around” a particular patent.
Rival firms can explore variants in chemical structure in the hope of finding
an equally effective compound with fewer side effects, for example. Most
importantly, the institutional structure of the industry, particularly the very
high premium placed on publication and on open communication between
scientists, means that the scientific knowledge generated in the course of a
particular research program is often quickly and widely disseminated
throughout the industry.?

Some of the compounds identified during the drug discovery process
will enter drug development. The goal of the drug development process is to
ensure that a particular compound is safe and effective in humans. Firms apply
for a permission to test a compound in humans by filing an investigational new
drug application, or "IND. " If clinical trials seem successful, the company will
then submit a new drug application, or "NDA" to the Federal Drug
Administration, which will then rule as to whether the drug can be introduced

commercially.? Both drug discovery and drug development are risky. Of

2 Not all firms place a high premium on publication, and major biological
discoveries are more likely to be published before major chemical discoveries.
However the industry remains a strikingly "open”" one in comparison to the
majority of technologically driven industries.

3 The process described here is in use in the United States: a comparable
process is required by nearly every other developed nation.
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approximately 1000 compounds tested in the laboratory and in animals, less

than 10 will be introduced into humans, and that of these only about 20 % will

ultimately be approved (Sheck, (1984)).

Hypothesis Formulation

Although our database includes information about both drug discovery
and drug development, since the two require quite different sets of skills we
focus here upon the determinants of research productivity in ethical drug
discovery.* Given the nature of R&D in the industry, all else equal we expect
there to be significant economies of scale and scope in performing R&D, and
we expect research productivity to be affected by both internal and external
spillovers.

Returns to scale flow from two sources: from the ability to spread
fixed costs out across a larger effort and from the ability to invest in
specialized skills or more efficient techniques as the size of the effort
increases. Conventional wisdom in the pharmaceutical industry suggests that
beyond a minimum threshold size, under most circumstances there is little to
gain from increasing the size of an individual discovery program, and our
descriptive statistics (see below) certainly confirm this conclusion in outline.
However since pharmaceutical research often requires investment in substantial
fixed costs and since the complexity of the underlying science offers
considerable scope for specialization, we expect significant economies of scale

at the level of the firm. For example, to the degree that legal and regulatory

¢ Drug discovery is fundamentally a scientific process requiring the
integration of complex scientific knowledge across a wide range of disciplines.
Successful drug development, in contrast, requires the management of a
program of clinical testing that is often initiated world wide using a diverse
group of medical practitioners, and the integration of a far wider range of
business functions, including toxicology, product formulation and process
development (Spilker, 1989).



expertise are fixed costs, a larger research effort will gain economies of scale
by spreading them over a larger base. A larger R&D effort might also be able
to afford to invest in more highly specialized individuals or facilities. Whereas
a smaller research and development effort might need to employ molecular
biologists who can work across a relatively wide range of fields, for example,
a larger one might be able to afford more narrowly focused specialists.

We also expect there to be significant economies of scope. Economies
of scope exist when a tangible asset or a human resource can be used in more
than one application at no additional cost. Consider, for example, the benefits
of investing in a centralized laboratory devoted to peptide chemistry.
Economies of scale exist if the costs of the laboratory are partially fixed, and
if the lab can serve a larger and larger discovery effort for a less than
proportionate increase in cost. They will also exist if the laboratory can
become more efficient as it has more work to do, possibly through the
specialization of its members. Economies of scope exist if the work of the
peptide chemists is potentially relevant to a wide range of applications, and can
be utilized in any one of them without diminishing its usefulness in the
others.’ Economies of scope may also arise if there are internal spillovers of
knowledge, and the results of successful research in one field have
implicitions for work in other fields.

Thus in general, while we expect economies of scale at the level of
the firm to be simply related to the total size of the discovery effort,
economies of scope should be related to the range and diversity of the research
programs undertaken by the firm. Notice that it is difficult to distinguish

between the benefits of economies of scope that arise from cost (or risk)

5 The aggressive exploitation of a well established brand name by
companies such as Coca-Cola and Johnson and Johnson is another well known
example of the presence of economies of scope.
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shuring and the benefits of internal spillovers. Conceptually, a clear distinction
can be drawn between spillovers, in the sense that research input in one area
may generate knowledge or research results applicable to other areas (research
in neurochemistry directed towards diseases of the central nervous system may
generate compounds which turn out to have clinical application in anti-
spasmodics), and economies of scope arising from the public goods aspects of
core bodies of knowledge applicable to many fields (peptide chemists). In
practice, both effects are likely to be a function of the diversity of the firm’s
research activities and the linkages between them.

At both the level of the firm and the level of the research program,
economies of scale and scope will flow from the firm’s ability to invest in
increased levels of specialization and to spread the fixed costs of scientific
expertise across a wider base of research. The relative size of the two effects
will depend upon the degree to which both the tangible resources and the less
tangible knowledge upon which drug discovery is based are exclusively useful
to a particular research program (or broader therapeutic area) or to the process
of drug discovery in general. We thus expect economies of scale at the level
of the research program to vary across fields, and economies of scope to vary
by firm as firms pursue different mixes of research programs.

Research productivity may also be affected by the efforts of
competing firms. On the one hand, firms may be "racing" with each other to
reach a particular target, so that, all other things equal, research productivity
will be negatively correlated with competitors’ investments (Reinganum,
(1989)). In the extreme, firms will keep entering the race unt»il all of the
potential (privately appropriable) benefits of the new drug will be dissipated
by the costs of competing research (Dasgupta and Stiglitz, (1980)). On the
other hand, firms may benefit from competitor’s research since, all other
things equal, if there are extensive spillovers between firms, the productivity

of a research team may increase as others work in the same field. For
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example, when Bristol-Myers Squibb announced that they had found an orally
active ACE inhibitor, "Captopril,” a potent hypertensive therapy, several
competing firms were able to take advantage of their knowledge of Captopril’s
chemicai structure to focus their own research efforts. If there are significant
spillovers in the industry, a belief certainly consistent with the qualitative
evidence, then competitive investment will increase the marginal productivity
of investment in the industry.

In both theory and practice, of course, these two effects interact with
each other in complex ways (Spence (1984), Dasgupta and Stiglitz (1980),
Baldwin and Scott (1987), Reinganum (1989)). In our companion paper
"Racing to Invest?: The Dynamics of Competition in Ethical Drug Discovery”
we explore this issue in more detail. For the purposes of the analysis presented
here, we hypothesize that, all other things equal, a positive correlation between
research success in any given area across competing firms is consistent with
the presence of significant spillovers or research complementarities between
firms, while a negative correlation is consistent with a research environment

that is primarily driven by racing behavior.®

Prior Research in Pharmaceuticals
Existing studies of the determinants of research productivity within the
pharmaceutical industry provide some support for these hypotheses but have

been hampered by a reliance upon aggregate, firm level data. A majority have

¢  This conclusion must be carefully qualified: our discussion has
assumed that scientific opportunity - the base case relationship between effort
and the odds of obtaining a drug - is constant across these regimes. If
scientific opportunity changes in ways that we can not observe using our data,
then a positive correlation of either investment in research or of research
success across compeling firms may reflect an increase in scientific
opportunity, rather than the presence of spillovers. We return to this point in
the interpretation of our results.
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used new drug applications or new drug introductions as their primary measure
of output, and firm level data that does not discriminate between research
programs or between spending on discovery and development. These studies
suggest that prior to 1962 there were significant diseconomies of scale but that
since 1962 larger firms have enjoyed important economies of scale in research
and development (Comanor (1965,1986), Baily (1972), Cocks (1973), Vernon
and Gusen (19745, Grabowski et al. (1978), Schwartzman (1976), Wiggens
(1979), Jensen (1987).) Most of these studies interpret this result as suggesting
that the increased regulatory stringency that followed the 1962 amendments to
the Food and Drug act gave an advantage to larger firms in allowing them to
exploit economies of scope in dealing with the regulatory authorities. There
has been little systematic exploration of the role of spillovers in the industry,
with the notable exception of work by Dranove and Ward (1991) and Arora
and Gambardella (1991). This work suggests that spillovers are important, but
the limitations of their data allowed them only to explore their implications at

the aggregate level.

2. Specification of the Econometric Model

The measurement of "true” research productivity is a project fraught
with well known problems (Griliches (1984)). In the ideal case, we would like
to measure the social as opposed to the private returns to research.
Unfortunately the problems of measuring the social returns to investment in
pharmaceutical research are likely to be particularly acute because prices for
pharinaceuticals may not reflect the functioning of an efficient market.” Even

private returns to R&D investment in this industry are difficult to estimate: the

7 The attempted measurement of social return through hedonic analysis

of pharmaceutical characteristics and pricing is underway in studies by Emie
Berndt at MIT and Valerie Suslow at Michigan.
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economic returns realized by firms are the final result of a lengthy and
uncertain process, driven by the uncertainties of clinical testing, the
complexities introduced by marketing, competitive activity and the role of the
forces that determine the demand for new therapies, as well as by scientific
discovery at the laboratory bench. These problems are compounded by
substantial difficulties in estimating costs of capital and in making appropriate
adjustments for risk (Di Masi, (1991); Grabowski and Vernon, (1978)).

Our objectives in this paper are more modest. As a first step towards
building a quantitative model of research productivity, we focus on the
determinants of "technical success” in drug discovery, as measured by patent
grants. Pharmaceutical companies patent prolifically, and patents are, of
course, a rather noisy measure of research success, in part because the
significance of individual patents varies widely. We control for this by
counting only “important” patents, where an "important” patent is defined as
one that was granted in two of the three major junsdictions: Japan, Europe and
the United States. We think of these patents as a useful measure of the
generation of new knowledge, which is the "raw materal” input to subsequent
stages in drug development. Patents are clearly only one possible measure of
success, and later work will explore the use of IND counts, NDA counts, sales
and market share as alternative measures of research output. But our interest
here is on determinants of technical success, defined in terms of producing
new potentially important compounds, rather than on the ultimate commercial
success or failure of new drugs, for which patent grants based on Patent
Examiners’ slowly changing objective criteria of novelty, non-obviousness, and

potential industrial application, are one reasonable measure of research
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output.®

Though the findings may not speak directly to the question of what
deterrunes economic or commercial productivity, we believe them to be an
important contribution to further progress in understanding R&D in
pharmaceuticals. Research results in programs which are not subsequently
successful in the clinic may be valuable to other firms, in other fields, or in
later efforts in (hé same program, and thus insight into their generation has
broader implications. We believe that it would be misleading to base our
analysis on the ex post success of a few blockbuster drugs.

We hypothesize that patent counts are generated by a production

function Y = f(X,3) , where Y is patent counts, X is a vector of inputs to

the drug discovery process, and 8 is a vector of parameters. We have no
priors about the "true” functional form, so the model estimated should be
thought of as a local approximation.

Some previous studies have looked at the dynamics of the
R&D/patents relationship by estimating a lag structure on the input variables.
Rather than make assumptions about distributed lags (and have to throw out
much of our data in order to have 4 or 5 lags present in every program) we
simply include "stocks" of the input variables as explanatory variables. The
annual flows are reasonably smooth, so this is equivalent in many senses to
imposing a geometric lag structure, where we have assumed a depreciation

rate rather than estimated one. Notice that given a smooth series for the flow

¥ Since firms may differ in their patenting strategies, or in their
"propensity to patent,” care should be taken in interpreting our results. We
include firm dummies in our models to control for differences between firms
that persist over time, but in general our results are most robustly interpreted
in terms of marginal effects upon patent output.
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variable, it will be difficult as a practical matter to identify the estimated
coefficient on the stock variable separately from the depreciation rate, making
our assumption of a particular depreciation rate a second-order problem.

Since the dependent variable in this relationship only takes on non-
negative integer values, some type of discrete dependent variable model is
dictated. We assume that patent counts are generated by a Poisson process,
which is appropriate if we are prepared to model research results as the
outcome of an unknown (but large) number of Bernoulli trials with a small
probability of success. This model certainly captures some aspects of drug
discovery, such as screening. It may be less appropriate for mechanism-based
research.

We model the single parameter of the Poisson distribution function,
A, as a function of some explanatory variables, X, and parameters § in the

standard fashion:

E[Y,] = N, = exp(X,0)

to guarantee non-negativity of A, and estimate the parameters by maximum
likelihood in the standard way. Note that the choice of whether to use
explanatory variables in levels or logs has important implications in this
model. If we use levels, the estimated elasticity of output with respect to each
explanatory variable will vary with the magnitude of the vanable by
assumption. Conversely, if an explanatory variable enters in logs we impose
the constraint that the elasticity is constant over its range of variation. In the
case of R&D, we prefer to maintain the null hypothesis of constant elasticity

of Y with respect to R&D expenditures® allowing easy comparison with

? In exploratory work we tested for non-linearities in this relationship by
including separate quadratic terms in the log of R&D. Estimated coefficients
were very small and insignificant.
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previous work. Since we have a fair number of observations in which the
R&D variables are zero, using the log of the R&D vanables introduces the
complication that we cannot take the log of zero. Following previous work,
we deal with this by setting the log of R&D equal to zero in such cases,
including an appropriately coded dummy variable to account for this in the
regression. We have no strong priors about the appropriate way to include the
other explanatdry variables and we report results obtained by entering these
variables in levels. Many of these variables also have substantial numbers of
zeros, and this avoids numerical problems in the estimation caused by near
collinearity of the VARIABLE=0 dummy variables with other regressors.

A useful way to think about this specification is to divide the
explanatory variables into two classes: the R&D vanables, R, and other
variables, Z, (which include spillovers, measures of scope and scale, plus the
constant term and firm and therapeutic class dummies). The estimated function
has a direct proportionate relationship between R&D expenditures and patent
counts, mediated by a multiplicative "shift variable” which will vary according
to the extent of spillovers etc.

E[Y,] = N\, = exp(Blog(R)+YZ,)
= R + exp(vZ)

Re-writing the equation in logs,

log(\,) = Blog(R) + vZ,

thus we can interpret the coefficient on log(R) directly as the elasticity of ¥
with respect to R&D, while the elasticities of the Z additional variables are yZ.

The assumption that the dependent variable is distributed Poisson is

' Very similar results were obtained in exploratory work using all
explanatory vauriables in logs.
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quite strong: like most other data of this type, the mean=vanance property of
the Poisson distribution is violated here. In the presence of such
overdispersion, though the parameters § will be consistently estimated, their
standard errors will typically be under-estimated, leading to spuriously high
levels of significance. Overdispersion is often interpreted as evidence that the
statistical model is misspecified in the sense that there may be unobserved

variables in the equation for X,

E[Y] =X, = exp(X, 8 +¢,)

&

As is well known (see Hausman, Hall, Griliches (1984), Hall, Griliches,
Hausman (1986)) if € is distributed gamma, then it can be integrated out giving
Y distributed as a negative binomial vanate. If € is not truly gamma, however,
then the maximum likelihood estimates of the coefficients of the model will be
inconsistent. Gourieroux, Montfort, and Trognon (1984) suggest using a quasi-
generalized pseudo-maximum likelihood estimator based on the first two
moments of the distribution of Y, which gives consistent estimates for € drawn
from a wide variety of distributions. The GMT estimator is just weighted non-

linear least squares estimates of the NLLS model

Y, = exp(X,8)e,

u

with weights derived from the relation VAR[Y] = E[Y] (1+* E[Y]) using
initial consistent estimates of 3. Below we present alternate estimates of some
of our regression models using maximum-likelihood estimation of the Poisson
and Negative Binomial models, non-linear least squares (with robust standard

errors), and the GMT estimator.

3. Sources and Construction of the Data Set.

This paper uses a data set obtained as part of a larger study of
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research productivity in the pharmaceutical industry. The larger study has both
qualitative and quantitative components. The qualitative study draws upon the
medical and scientific literature and upon a program of detailed field
interviews, and is designed both to shape the choice of variables and
hypotheses explored in the quantitative study and to explore the role of less
easily measurable factors such as organizational structure and firm culture in
driving research productivity. |

The quantitative study draws upon data about spending and output at
the research program level obtained from the internal records of ten
pharmaceutical firms. Although for reasons of confidentiality we cannot
describe specifics of the overall size or nature of the firms, we can say that
they cover the range of major R&D-performing pharmaceutical manufacturers,
that they include both American and European manufacturers, and that we
believe that they are not markedly unrepresentative of the industry in terms of
size, or technical and commercial performance. This section offers a brief
descﬁption of the important variables used in the econometric analysis, and
discusses descriptive statistics for the data set.

The data set used in this paper is an unbalanced panel of 4879
observations, indexed by firm, research program, and year. With a complete,
rectangular, panel we would have 11,400 observations, made up of ten firms,
38 research programs, and up to 30 years of data. In practice not all of these
observations are available: the average time period for which we have
complete data is on average just under 20 years per firm, and not all firms are
active in all research areas. Our working sample is drawn from a data base
which currently has 5543 potentially useful observations. After deleting
missing values, grossly problematic data and peripheral research areas we are
left with 4879 observations. The number of observations per firm varies from

over 1000 to less than 100, with a mean of 554.3. For each observation we

18



have data on both inputs and outputs to the research process. Our measures of
input include person years and research spending in discovery and
development, and our measures of output include patents, INDs, NDAs, new
drug introductions, sales and market share.

Assembling the data in a consistent and meaningful format required
considerable effort. In nearly every case the process of data collection was an
iterative one, involving close collaboration between the researchers and key
personnel from the participating companies. The majority of the data were
collected specifically together for the purposes of this study. Each firm spent
some months assembling the data, usually from primary documents, and the
full data collection effort took nearly two years. We worked hard to ensure
that, as far as was possible, definitions of research program and of expense
grouping were standard across firms, data was collected at the same level of
aggregation, and overhead expenses were treated in a consistent way.

Data was collected by research program rather than by therapeutic
class or by project since analyzing the problem in this way best reflects the
dynamics of discovery research. A grouping by therapeutic class is too
general: "cardiovascular research,” for example, includes research into widely
different areas such as hypertension, cardiotonics, antiarrhythmics and
hyperlipoproteinemia. However analysis of data by individual project is
difficult and misleading. Not only is it difficult to assign effort to particular
drug candidates with any accuracy, but the notion that research productivity
is best measured at this level raises serious conceptual difficulties. A research
program typically continues over many years. At the discovery stage, the firm
invests in the program, rather than in particular candidates. The identification
of a drug development candidate is an indication of the success of the
program, and retrospectively assigning resources to its generation may
introduce serious biases into the analysis.

Classification of our data into therapeutic areas is an important factor
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in ou;' analysis, since it drives both the fundamental organization of our data,
and the notion of spillovers.!" Note also a crucial distinction drawn between
two tiers of aggregation: a detailed "research program” level, and a more
aggregated "therapeutic class” level which groups related programs into
therapeutic areas. For example, the therapeutic class "CARDIOVASCULAR"
includes the research programs "ANTI-HYPERTENSIVES",
"CARDIOTONIéS', "ANTITHROMBOLYTICS", "DIURETICS" etc.

Full details of the construction of variables used in the study are given
in the Appendix. Our primary variables are DISCOVERY, defined as
"expenditure relating primarily to the production of new compounds”, which
excludes clinical development work and is measured in constant dollars; and
PATENTS, a count of "important” patents. These measures of inputs and
outputs are matched by year and research program. We count patents by their
year of application, and define "importance” by the fact that the patent was
granted in two of the three major markets: the USA, Japan, and the European
Community. Applying this criterion screens out large numbers of patents: up
to 60% of the number filed in the US in any given year are discarded. The
first year in which we were able to obtain this data is 1961, and although we
have data for 1989 and 1990, we believe that these are seriously undercounted.
Patent grants may lag applications by as much as four years in the United
States and six in Japan. Our data were obtained from files current in 1992, and
since we are counting patents by year of application, many of the patents

applied for in 1989 and 1990 may not yet have been granted, and our final

"' We classified our data into therapeutic areas according to a scheme

which closely follows the IMS Worldwide classes. A more detailed discussion
of this issue is contained in Appendix One, and a complete listing of
therapeutic classes is given in Appendix Two.
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sample therefore includes only observations for the years 1961-1988.'2

We tried our best to ensure that the DISCOVERY variable was
measured consistently across research programs and across firms, despite
serious differences in accounting conventions and reporting formats across
firms and over time, and we took steps to ensure that, wherever possible, the
data covered worldwide research spending, not just US facilities.

We also construct measures of the overall size of the firm's R&D
effort and of the scope of its activities. SIZE is total discovery spending that
year, which is intended to capture the effects of the overall scale of the firm's
research effort.”” SCOPE is a count of the number of narrowly defined
research areas in which the firm is active, in that it spent more than $500,000,
in constant 1986 dollars, in a single year. This variable is intended to capture
the effects of the firm's diversification into different therapeutic areas. Note
that SCOPE and SIZE are unique only to firm and year, not to firm, year, and
research program.

We then construct vanables intended to capture the effects of

spillovers both within and between firms. For each observation on firm and

‘2 Several industry experts have suggested that this is an unsatisfactory
measure of "importance” in that many purely "defensive” patents are filed in
at least Europe and the U.S. They suggest that a more appropriate gauge of
importance would be filing in fifteen or twenty counties. There may also be
important differences in the patenting policies of European vs US firms.
However preliminary analysis using INDs as a measure of output suggests that
our measure of patents is significantly correlated with INDs, confirming us in
the belief that we are capturing an important dimension of performance.

"> There are some grounds for believing that the relevant measure of size
is the scale of the entire firm, captured by e.g. total sales, or total employees.
We experimented with these types of measures in exploratory work, but
obtained poor results. These are perhaps not too surprising given that size
effect captured by a variable such as total firm sales is likely to be seriously
confounded with e.g. demand.
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research area, we start with the basic data on "own” annual flows of inputs
and outputs. We then construct spillover variables at two levels. We capture
spillovers internal to the firm by measuring the output of all of the other
research programs within the relevant therapeutic class. We measure spillovers
between firms using the output of 29 other firms, both in the observation’s
own narrow research area, and in the wider therapeutic class.'* Finally, we
construct "stocks" for all of these variables by accumulating the flows over
time with a 20% depreciation rate, and also a "news” variable by subtracting

20% of the stock at the beginning of the year from the annual flow.

Descriptive Statistics

Tables (1) and (2) and Figures (1),(2) and (3) present summary
statistics describing these data. The first five columns in Table 1 are for our
full set of data with up to 5543 observations on each variable, and are "case-
wise” calculations based on each variable’s non-nussing observations. Means
for the sample of 4879 observations used in our regressions which is obtained
by "list-wise” deletion and imputation of zeroes for some missing data, are
given in the last column.

Averaging across all firms, research programs, and years, our firms
spent on average $1.99m 1986 dollars on discovery per program per year for
an average of 1.7 "important” patents. Each "important" patent, on average,

thus cost about $1.2m in 1986 dollars. The average firm in our sample is

'“" We chose as our sample the ten firms that have given us data together
with 19 other firms who have been consistently in the top 40 world wide
pharmaceutical firms in terms of R&D dollars and sales. Note that these 19
firms are only a fraction of the population of other firms generating spillovers,
and the estimated coefficient on our external spillover variables may therefore
tend to overstate the magnitude of this effect. However we believe that these
firms are a representative sample of the industry as a whole, and account for
the majority of the industry’s spillover pool.
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highly diversified, investing substantially (more than half a million dollars) in
just over ten programs a year. In addition firms invest more than ten thousand
dollars a year in a further six programs.

All of the key variables show a substantial amount of varation.
Discovery expenditures per class per year have grown substantially for the
firms in our data set, from $730,000 1986 dollars per class per year in 1964
to $4.2m 1986 dollars per class per year in 1990 (Figure 1). At the same time,
our data suggest that there has been a secular decline in the number of patents
granted per program per year since the late 70s. (Figure (1).) This decline
may be an artifact of our definition of "important” patents, since in many cases
patents do uot' issue in Japan until quite late in the lifetime of a product, but
it may also reflect the general decline in patenting rates that has characterized
US and European firms over the last five years.'

Perhaps the most dramatic effect visible in the time series aggregates
of our data is the huge increase in the costs of pharmaceutical research: the
average firm in this sample’s total investment in discovery research more than
quadrupled in real terms from $16m constant 1986 dollars in 1964 to almost
$67m constant 1986 dollars in 1990, reflecting increased intensity of highly
skilled manpower in R&D and very substantial increases in the complexity and
sophisiication of research methods, equipment, materials etc. This aggregate
figure masks some important movements in the program level data. While
there was a very significant "deepening” of individual research programs (real
discovery spending per program rises by almost 600 % over the same period),
this was accompanied by changes in the scope of the average firm’s activities:

the number of half million dollars plus programs in our average firm’s

'S This in tun may not reflect a real decline in inventive activity, but
institutional factors such as resource constraints imposed on patent offices. See
Griliches (1991).
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portfalio rises by 31%, from 8.2 to 10.7, and concomitant movements in the
numbers of smaller programs active in any given year. (See Figure (2).) It
should be noted though that the variation in SCOPE of the whole sample is
driven largely by differences between firms, rather than within firms. In fact
SCOPE varies rather little within firms, with only the most diversified firm
having a CV (std/mean) of more than 0.3, suggesting that it is likely to be
difficult to distinguish between scope and firm effects in subsequent analysis.

The size distribution of discovery expenditures per research program
per year, presented in Figure (3), is also interesting. For over 44% of the
program-years in our sample, no expenditures on discovery were recorded. '
Of the remainder, about one quarter of cases involved spending less than
$0.2m 1986 dollars per program per year, and about one half spent less than
$0.8m 1986 dollars per program per year. At the other tail of the distribution,
Just under 2% of cases involved expenditures of more than $10m 1986 dollars
per program per yeér. There are also very substantial differences in the
average level of expenditure across therapeutic classes: mean discovery
expenditures per program range from $940,000 per year in alimentary tract
and metabolic research to $4.0m per year in cytostatics.

On the output side, the distribution of annual counts of important
patents per program (Figure (4)) is highly skewed to the left. About half of
our observations show zero output per program-year, and almost 90% of the
counts are less than S per year. Patent counts also vary significantly across
firms, across therapeutic classes and across time. While the mean number of

patents per program is 1.7 per year, this varies across firms from 3.1 to 0.09

'* To the best of our knowledge these are "genuine” zeros and reflect
intermittent expenditures over time, or programs which were "alive” in that
they were spending money on development. Deleting these observations from
the data set does not substantially change either the magnitude or the
significance of our estimated coefficients.
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per year, and across therapeutic classes from 0.7 per year for work in the

genito-urinary system to 3.7 per year for cardiac and circulatory products.

4. The Empirical Results.

Analysis of aggregate data.

As a preliminary step in the analysis, Table (3) presents results
obtained by aggregating our data to the firm level to explore the effects of
scope and scale. This aggregated version of our data is a rather small sample,
with only 181 observations on our 10 firms, and results should be therefore
be treated with caution. Specifications (1) and (2) are Poisson regression
estimates of "iniportant" pateats on flow and stock values of DISCOVERY,
a quadratic time trend, and firm dummies. (Nonsensical results were obtained
without the time trend, which is included in all our models.) The implied long
run elasticity of "important” patent output with respect to research spending
in model (2) is about 0.4, somewhat lower than, but not inconsistent With, the
results obtained for much larger samples of firm level data by e.g. Bound et
al. (1984), Hausman, Hall, and Grnliches (1984) and Hall, Griliches and
Hausman (1986).'" This elasticity is well below 1, suggesting that there are
not increasing returns to scale in drug discovery at the firm level. Note that
these results suggest that firm effects are a very important determinant of
innovative performance. Including firm dummies more than doubles the log-
likelihood functio.n, and failing to control for firm effects, as in model (1),
gives a puzzlingly low coefficient on contemporaneous R&D, indicating that

this version of the model may be badly miss-specified. In equations (3) and (4)

'7 There are two important differences between this work and previous
studies which make these results not strictly comparable. Firstly, we have
distinguished between discovery and development expenditures, and secondly,
our patent counts are restricted to "important” patents.
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we use our knowledge of the number of active research programs within each
firm to investigate the presence of returns to scope. In equation (3) our
measure of scope enters the regression linearly, with an implausible negative
coefficient. Our preferred model allows for diminishing returns to increasing
scope by including a quadratic term, giving us a more plausible inverted-U
relationship between scope and research productivity. The final column of
Table (3) presents results conditioning on past innovative success by including
the stock of past patents. The coefficient on R&D stock falls somewhat, but
the results on scope are largely unchanged.

Thus, in aggregate, our data appear to reflect the general cross
sectional result: there is no evidence of returns to scale per se in research:
increasing R&D intensity in and of itself does not produce a more than
proportionate increase in innovative output. The results do however suggest
that up to a point, size may confer substantial benefits: at the mean, an
increasing the size of the total research effort by 10% (an amount equivalent
to adding an additional program) is associated with a 3% increase in the patent
output of existing programs.

If we did not have access to program level data we might stop here,
noting that this result is consistent with the qualitative evidence that suggests
that there are limited returns to increasing the size of research programs, and
that the returns to scale in the industry suggested by the recent wave of
mergers and by the results of scholars such as Baily (1972), Cocks (1973),
Comanor (1965) and Jensen (1987) are driven by and by economies of scale
in activities "downstream” from discovery research, notably in clinical

development and in the regulatory arena.

Analysis of Program Level Data

The results of our analysis of program level data are given in Tables
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(4), (5) and (5a).

Table (4) shows the results from re-estimating variants of the
equations in Table (3) at the disaggregated research program level. Again, the
dependent variable is "important™ patent applications and the models were
estimated using Poisson regression.

Two core findings are immediately apparent. Firstly, there is a
statistically significant relationship between inputs and outputs in these
disaggregated data. Although prior research has shown that there is a
statistically significant relationship between inputs and outputs at the firm
level, it is reassuring to find that at the research program level there is more
in the quantitative data than simply noise.'

Secondly, there are very significant differences in research
productivity across therapeutic classes and between firms. In these data we are
able to control for an important source of heterogeneity in the data by
including therapeutic class dummies (defined at a somewhat higher level of
aggregation than our "program” unit of observation) as well as controlling for
fixed firm effects. Likelihood ratio tests on excluding firm and therapeutic
class dummies are highly significant, and interaction effects on discovery
spending show large differences across firms and therapeutic classes.'” Note
that while firm dummies account for a substantial amount of the vanance in

the dependent variable, the R&D elasticities do not change much when they

'8 The very substantial increase in the log likelihood as we add vanables
to the model corresponds to an R? in excess of 0.5 which corresponds
favorably to typical panel data results using micro data.

19 With both firm fixed effects and therapeutic class fixed effects we are
quite close to estimating a non-linear panel data model with fixed effects.
While we believe that is important to control for these effects at these levels
of aggregation, the large numbers of dummy variables (10 firms and 16
therapeutic classes) limits our ability to obtain stable estimates if we try to, for
example, use time dummies instead of a non-linear trend.
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are included in the model. By contrast the coefficients on the R&D variables
fall by about a third in equation (8) when the class dummies are included. This
suggests that an important part of the "firm effect” identified in the aggregate
data and the results presented in Table (4) lies in the firm’s choice of research
programs. Just as in the firm level results, SCOPE has a significant and
non linear impact on research productivity. In these data we are also able to
test for scale effects derived from the total size of the rescarch program: the
SIZE variable enters with a positive and significant coefficient in equation
(12), which increases somewhat when we control for SCOPE in equations (13)
and (14). The final equation in Table (4) conditions on past success (or
innovative capabilities) by including the stock of past patents. This variable is
highly significant, and induces a correspondingly large drop in the likelihood
function. The coefficient of 0.035 corresponds to an elasticity of about 0.25
at the mean. The S'IZE and SCOPE effects are unchanged, but the coefficients
on R&D fall sharply. We interpret this as being consistent with the hypothesis
that patent applications are driven by the available stock of knowledge capital,
and that the better measure of this stock is innovative output rather than
innovative input. It may also however reflect two specification problems: the
patent stock variable may be proxying for a variety of unobserved correlated
effects, or there may be a problem with the exogeneity of the R&D vadableé
with respect to patents. Conditioning on past success may simply be purging
}he R&D coefficients of the part which is the endogenous response to past
success.

In Table (5) we introduce our measures of internal and external
spillovers. (The first column of Table (5) simply duplicates the last column of
Table (4) to allow easy comparison.) In exploratory work we included both
flow and stock versions of these variables in the model, but concerns about the
presence of measurement error (in many cases the coefficients were equal but

opposite-signed suggesting that they were picking up the same underlying
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factor) led us to use the “news" formulation presented here, in which news in
X is given by N =X -8K_ where K is the stock of X and § is the

depreciation rate. This construction reduces the measurement error problem
and has an informative interpretation: own research productivity is higher
when the output of spillover sources "spurts” beyond the level required simply
to maintain their previous stock. Equation (15) includes a measure of internal
spillovers: "news” in the output of related programs within the same firm,
which enters with a positive and strongly significant coefficient. An
alternative, and perhaps less satisfactory, measure of internal spillovers is
effort in related classes (as measured by discovery spending) which we
introduce to the basic model by itself in equation (16), and in conjunction with
the output-based variable in equation (17). By itself, the effort variable is
positive and-marginally significant, but the "news in related patents” knocks
it out completely in (17) and we drop it from further consideration.

In equation (18) the basic model is augmented with measures of
external spillovers from outside the firm, both from within the narrowly
defined research area, and from related therapeutic classes. Both enter with
positive and significant coefficients, with elasticities of about 0.1 at the mean.
Re-introducing the internal spillovers vanable in (19) completes our
"preferred” model, which captures the following effects: a rather low elasticity
of research output with respect to R&D spending (about 0.1 in the long run);
a positive effect on research productivity from increasing the scope of the
firm’s research activities (up to a point); a positive effect from increasing the
overall scale of the research effort; a very significant effect of past research
success on current performance, and positive effects of spillovers from both
within the firm and from the research output of competitors.

Table (5a) addresses some of econometric issues raised previously by

presenting alternative estimates of equation (19) using the various statistical

29



models discussed in section 2. (Again (19) is duplicated from the previous
table to allow easy comparison of results.) Equation (20) gives Negative
Binomial estimates, where the variance is modelled as an increasing function
of the mean®, equivalent to adding an unobserved gamma distributed random
program effect to the model. Coefficients are broadly comparable to those
obtained in the Poisson model, with slightly inflated standard errors, though
the coefficients on stock of patents and current R&D rise quite substantially.
Equation (21) is the non-linear least squares model, Y = e¥+e¢ , with
robust Eicker-White standard errors. In this model, the R&D variables lose
their significance altogether (and the coefficient on R&D stock falls by a factor
of 4) though the other results carry through from the Poisson specification.
Finally, (22) gives the results from the weighted NLLS GMT estimator which
if the exp(X[3) part of the model is correctly specified, will give consistent and
efficient parameter estimates.?’ Results are broadly comparable with the
Poisson estimates, with slightly larger standard errors, though the coefficients

on the R&D variables are somewhat higher.

5. Conclusions
Previous research has suggested that large firms may have an
advantage in R&D competition arising from their ability to exploit economies

of scope and scale in conducting research. However little systematic work has

2 Cameron and Trivedi’s (1986) Negbin II model.

2 The GMT estimates were calculated with weights derived from the
Poisson estimates of (3, rather than from unweighted NLLS. These give
estimates of 5? which are in line with the overdispersion parameter estimated
in the Negative Binomial model. Using the NLLS (s gave an implausibly low
estimate of ? of 0.11, and the resulting GMT weighted NLLS results were
very difficult to interpret.
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attempted to distinguish between the effects of scale and scope, and cross
sectional studies using firm or line-of-business level data have found no simple
relationship between size and research productivity. Our results confirm that
moving within the firm through the use of detailed program level data may
significantly improve our understanding of the relationship between scale,
scope, spillovers and research productivity.

In line with previous studies of the pharmaceutical industry, we find
no evidence of increasing returns to scale or scope at either the program or the
firm level. We do however find evidence for complicated relationships
between scale and scope and research productivity which are non linear and
embedded in the structure of the research portfolio, and thus very difficult to
pick up in aggregate firm level data.

"Up to a point,” we find that research programs conducted within
large firms will be significantly more productive those conducted within
smaller firms, all other things equal. We identify three main advantages to
running larger research efforts: economies of scale, economies of scope, and
enhanced absorption of internal and extemnal spillovers. The marginal effects
suggested by our regression coefficients are difficult to interpret because SIZE,
SCOPE and the program size are not independent. To get a sense of
magnitudes, relocating the "average” program into a firm of twice the size
would increase its productivity by 12%. Similarly, moving it from one of the
least diversified firms into a firm running twice the number of programs would
increase its productivity by about 20% through scope economies alone. This
understates the return to diversification since the move to a more diversified
firm will also increase the program’s productivity through the absorption and
generation of additional intra-firm spillovers.

Our results also suggest that inter-firm spillovers play an important
role. "Own" research productivity is significantly positively associated with

competititors’ success in related research. A 10% increase in the flow of
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paterts in related areas at other firms generates an expected increase in patent
count of around .7%. While this number may seem small, recall that these
cross firm spillovers operate across the entire industry, so that the aggregate
effects of on industry productivity may be quite high. If we knew that it was
always equally difficult to get patents, our results would be consistent with the
hypothesis that the effect of spillovers in the industry are such as to make the
social rate of return to research significantly higher than the private rate of
return. However we cannot conclude this from our results, since our
coefficients estimate the net effects of scientific opportunity, investment
behavior and the presence of spillovers. If investment behavior reflects a
sudden change in the scieatific opportunities in a particular field, for example,
then our results are consistent with the hypothesis that when scientific
opportunities in an area dramatically increase, both investments in discovery
and the rate of patenting also increases. We explore this issue in more detail
in our companion paper "Racing to Invest?: The Dynamics of Competition in
Ethical Drug Discovery.”

While the specifics of our results cannot be unilaterally extended to other
industries, they do suggest that a very significant component of the firm effect
evident in previous studies of research productivity is precisely the size and
shape of the research portfolio. This is a finding that has fundamental
implications for the larger question of the theory of the firm. It has long been
known that in general minimum efficient scale in production cannot explain
observed firm sizes (Panzar, 1989), and our results lend support to those that
have argued that one of the most important determinants of firm size and scope
in research intensive industries is the opportunity to take advantage of intra-
firm spillovers of knowledge (Chandler, 1990; Teece, 1988).

The heterogeneity we observe across the firms in our sample in
innovative performance reflects significant variation in their responses to

sharply rising costs of doing research and the increasing role of core bodies
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of knowledge about physiological mechanisms. While SIZE rose substantially
for every firm in the sample, firms "grew" their research portfolios in very
different ways. Though we cannot be specific, due to confidentiality issues, we
note that while some firms held SCOPE (as captured by our rather crude
measure) constant and simply increased their average program size, others held
program size roughly constant and grew by adding new programs, others grew
in both dimensions, and some chose to reduce SCOPE and greatly increase
program size. At the same time, the firms in our sample employed quite
different organizational structures in an attempt to ensure that the potential of
both intra-firm economies of scope and inter-industry spillovers were fully
realized. Pursuing these different strategies had, we believe, quite important
consequences for their innovative and financial performance. We are actively

exploring this issue in our research.
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Appendix One: Data Sources and Construction

The data set used in this study is based on detailed data on R&D
inputs and outputs at the research program level for ten ethical pharmaceutical
manufacturers.

Inputs

Our data on inputs to the drug discovery process are taken from the
internal records of participating companies, and consist primarily of annual
expenditures on exploratory research and discovery by research program.
Several issues arise in dealing with these data.

(a) Discovery vs. Development

The distinction between discovery and development is important. We
define resources devoted to discovery as all pre~clinical expenditures within a
therapeutic class, and development as all expenses incurred after a compound
has been identified as a development candidate. Where exploratory research
was attributable to a particular research program, this is included in the
discovery category. Non-program exploratory research was included in the
overhead allocation for each research program. Clinical grants are included in
the figures for development, and grants to external researchers for exploratory
research are included in the total for discovery.

In some cases, the companies supplied us with data already broken
down by discovery vs development by research program. In others, we had to
classify budget line items for projects/programs into the appropriate category.
This was done based on the description of each item in the original sources,
and the location of items within the structure of the company’s reporting
procedure.

(b) Overhead

In order to maintain as much consistency in the data collection process
as possible, we tried to ensure that these figures include appropriate overhead
charges directly related to discovery activities, such as computing, R&D
administration and finance etc., but exclude charges relating to allocation of
central office overhead etc. The overhead also includes some expenditures on
discipline-based exploratory research such as "molecular biology" which
appeared not to be oriented towards specific therapies. Overhead was allocated
across therapeutic classes according to their fraction of total spending.

(c) Licensing

We treat up-front, lump-sum payments in respect of in-licensing of
compounds, or participation in joint programs with other pharmaceutical
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companies, universities or research institutes, as expenditure on discovery.
Royalty fees and contingent payments are excluded.

Outputs

In this paper we focus on patent grants as our measure of research
output. We count patents by year of application. Our interest here is on
determinants of technical success, defined in terms of producing new
potentially important compounds, rather than on the ultimate commercial
success or failure of new drugs. Since Patent Examiners award grants based
on slowly changing objective criteria of novelty, non-obviousness, and
potential industrial application, we believe that patent grants are an appropriate
basis for measuring research output in this industry. Pharmaceutical companies
patent prolifically, and patents are, of course, a rather noisy measure of
research success, in part because the significance of individual patents varies
widely. We partially control for this by counting only "important” patents,
where we define "importance” by the fact that the patent was granted in two
of the three major markets: the USA, Japan, and the European Community.

These data were provided by Derwent Publications Inc, who we asked
to use their proprietary classification and search software to produce counts of
"important” patents to us broken down by therapeutic class for 29 US,
European, and Japanese pharmaceutical manufacturers for the 26 years
preceding 1990. These firms were chosen to include the ten firms that have
given us data together with 19 other firms chosen on the basis of their absolute
R&D expenditures, R&D intensity, and national "home base” to try to get a
representative, rather than exhaustive, assessment of world-wide patenting
activity. These 19 firms have been consistently in the top 40 world wide
pharmaceutical firms in terms of R&D dollars and sales.

Note that many of these patents will be "defensive” patents in that
firms may patent compounds they do not intend to develop in the short term
but that may have competitive value in the longer term. Alternative measures
of "importance” include citation weighting and more detailed international
filing data - "very" important patents are usually filed in nearly every major
potential market. We hope to explore these alternative measures in later work.

Classification

Classification of inputs and outputs by therapeutic class is important
because this drives our measure of spillovers. There are essentially two
choices: to define programs by physiological mechanisms, e.g. "prostaglandin
metabolism”, or by "indications” or disease states, e.g. "arthritis”. We have
chosen to classify on the basis of indication, largely because this corresponds
well to the internal divisions used by the companies in our sample (which is
conceptually correct), but also because classification by mechanism is much
more difficult (a practical concern.) In further work we intend to repeat the
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analysis using a "cut” by mechanism. We classified both inputs and outputs
according to a scheme which closely follows the IMS Worldwide classes. This
scheme contains two tiers of aggregation: a detailed "research program” level,
and a more aggregated “therapeutic class” level which groups related
programs. For example, the therapeutic class "CARDIOVASCULAR" includes
the research programs "ANTI- HYPERTENSIVES", "CARDIOTONICS",
"ANTITHROMBOLYTICS", "DIURETICS" etc.

There are some problems with this procedure. Firstly, some projects
and compounds are simply very difficult to classify. A particular drug may be
indicated for several quite distinct therapies: consider serotonin, which has
quite different physiological actions on either side of the blood-brain barrier.
As a neurotransmitter it is believed to play important roles in mediating motor
functions. As a systemic hormone it has a variety of effects on smooth muscle,
for example it functions as a vasoconstrictor. Some companies report
expenditures in areas which are very difficult to assign to particular therapeutic
classes: a company doing research using rDNA technology might charge
expenditure fo an accounting category listed as "Gene Therapy/Molecular
Biology" which is actually specific research performed on e.g. cystic fibrosis,
but we have no idea about which diseases the research is directed towards
treating, and are forced to include these expenditures in "overhead". Secondly,
our two-tier classification scheme may not catch all important relationships
between different therapeutic areas. We believe that we are undercounting,
rather than overcounting in this respect, so that the importance of spillovers
will be underestimated rather than overestimated. Thirdly, where firms
supplied us with “pre-digested” data, they may have used substantively
different conventions in classifying projects. One firm may subsume antiviral
research under a wider class of anti-infectives, while another may report
antivirals separately. Not surprisingly there are major changes within
companies in internal divisional structures, reporting formats, and so forth,
which may also introduce classification errors. After working very carefully
with these data, we recognize the potential for serious miss-assignment of
outputs to inputs, but we believe that such errors that remain are not serious.
The use of patents as the output measure should reduce vulnerability to this
problem, since we observe relatively large numbers, and a few miss-
classifications are unlikely to seriously affect our results. When we move to
INDs and NDAs as our output measures, the much more sparsely distributed
data are likely increase our vulnerability.

Matching

Data series on inputs and outputs for each firm were matched at the
research program level. This procedure appears to successfully match outputs
and inputs unambiguously for the great majority of programs. In a very few
cases, however, we ended up with research programs where patents, INDs or
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‘NDAS were filed, but where there were no recorded expenditures. Of these the
majority were obviously coding errors or reflected dilemmas previously
encountered in the classification process, and appropriate corrections were
made. In other cases, it was clear that these reflected "spillovers” -- research
done ostensibly in, for example, hypertension, may generate knowledge about
the autonomic nervous system which prompts patenting of compounds may be
useful in treating secretory disorders (e.g. ulcers.) In such cases we set "own"
inputs for the program equal to zero, and included these observations in the
data base.

Deflation

Since our data sources span many years, it is important to base the
analysis on constant dollar expenditures. We used the R&D price deflator
constructed by Edwin Mansfield (1987) for his Oil and Chemicals industry
grouping. This index is based on wage rates for R&D employees, and a price
index for equipment and instrumentation purchases, and though its movement
is quite different from the CPI or the GNP deflator, it varies much less across
industries, leading us to believe that it may be a reasonable approximation to
the "correct” index for pharmaceuticals. Mansfield’s index exists only for
1969-1983, we extended it backwards to 1966 and forwards to 1990 using
movement in the CPI. The periods 1966-1969 and 1983-1990 saw relatively
little price inflation, so this approximation is unlikely to be serious problem.
In a later paper we intend to exploit the information that some companies were
able to give us on R&D inputs in units of labor hours to construct an index
specifically for research costs in the pharmaceutical industry.

Construction of stock variables

Annual flows of discovery and expenditures were capitalized
following the procedure described by Hall et al. (The R&D Masterfile:
Documentation, NBER Technical WP #72). In bref, we first assume a
depreciation rate for "knowledge capital” , 8, here equal to 20%. (This is
consistent with previous studies, and as argued above is not going to be very
important in terms of it’s impact on the regression results since no matter what
number we chose, if the flow series is reasonably smooth we would still find
it difficult to identify § separately from the estimated coefficient on the stock
variable.) We then calculate a starting stock for each class within firm based
on the first observation on the annual flow: assuming that real expenditures
have been growing since minus infinity at a rate g, we divide the first
observed year’s flow by 6+g. Each year, the end-of-year is set equal to the
beginning-of-year stock net of depreciation, plus that year's flow. For the
cases where the annual flow was missing "within" a series of observations, we
set it equal to zero. In almost all instances, these missing values occur after
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the expenditure flows have been declining towards zero: we are reasonably
that these are "real” zeros and not missing data which should be interpolated.
We used the same procedure to accumulate "stocks" of patents, based on the
flow variables described above.

Definition of Variables Used in the Regression Analysis

Observations are identified by (encoded) FIRM, CLASS, and YEAR.

DISCOVERY Expenditures by this firm in this research
area, relating primarily to production of new
compounds, by year, in millions of constant
1986 dollars.

own PATENTS Important patents granted to this firm in this

research area, by year, from the Derwent
database. Note that throughout the analysis

own PATENTS in
related programs

we count patents by year of application.

Important patents granted to this firm in the
related therapeutic class, net of the patents
granted in this research area.

PATENTS in this
program area by other
firms:

Important patents granted this year in this
research area to 29 other major multinational
firms.

PATENTS in related
programs by other
firms:

Important patents granted in related
therapeutic classes this year to 29 other
major pharmaceutical firms.

SCOPE The number of research areas in which this
firm has spent at least $0.5m dollars on
discovery this year.

SIZE Total research expenditure by this firm in

this year across all therapeutic classes.
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appendix Two: Therapeutic Class Definition

l Class 10

Alimentary Tract and Metabolism

Class 20 Blood and Blood Forming Organs
Class 30 The Cardiovascular System

Class 40 Dermatologicals

Class 50 Genito-Urinary System and Sex Hormones
Class 60 General anti-infectives, systemic.
Class 90 Cytostatics

Class 100 Musculo-Skeletal System

Class 110 Central Nervous System

Class 120 Parasitology

Class 130 Respiratory System

Class 140 Sensory Organs

Class 150 Allergens and Immunomodulators

Class 160

!

All other therapeutics.
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Patents/program

Figure (1):
Patenting rates per program over time
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SCOPE: # progs > $500k

Figure (2):
The Evolution of Scope and Size

SIZE: total discovery spending 1986$m
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Figure (3)
Discovery/program, Frequency Distrib.
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Figure (4)
Patents/program frequency distribution
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Table (2): Descriptive Statistics: Means of Selocted Variables By Year
YEAR | N DISCOVERY: Own SIZE: SCOPE: Number SALES
Spending per PATENTS Total discovery of programs > Total pharma.

program, per spending by this | $500K, 1986 $m sales,

1986 $m program. firm, 1986 Sm 1986 $m
61 83 0.42 0.99 7.08 3.9 1.99
62 115 0.61 0.90 12.81 7.1 4.81
63 115 0.69 1.30 14.60 7.6 5.41
64 115 0.73 1.39 16.24 8.2 6.36
65 120 0.77 1.44 18.72 10.1 7.52
66 124 0.87 1.47 22.61 11.6 8.74
67 126 0.96 1.28 24.36 12.0 10.27
68 123 1.14 1.74 27.69 12.8 11.80
69 128 1.18 1.38 28.72 14.1 12.73
70 120 1.40 2.26 31.65 14.3 14.77
71 17 1.45 1.82 34.57 13.7 16.49
72 163 1.55 1.88 29.14 11.2 18.14
73 173 1.67 2.39 31.60 11.8 19.35
74 175 1.86 2.75 34.49 12.5 20.24
75 196 1.82 2.73 31.38 12.1 20.19
76 196 1.83 2.91 30.58 11.4 20.69
71 198 1.97 2.59 30.57 10.8 20.91
78 200 2.15 2.84 31.14 10.7 22.17
79 232 1.96 2.06 28.42 9.9 22.04
80 224 2.07 2.04 31.20 9.6 23.02
81 222 2.25 1.70 33.81 10.3 24.39
82 241 2.32 1.53 36.50 9.9 23.39
83 251 2.45 1.64 38.78 9.8 22.62
84 284 2.25 1.55 35.32 9.9 21.76
85 278 2.50 1.79 40.39 10.4 22.57
86 275 2.63 1.25 43.84 10.5 24.64
87 262 3.01 0.97 50.93 11.0 23.94
88 251 3.53 0.51 54.42 10.7 25.45
89 195 3.73 0.30 58.16 10.3 29.70
90 193 4.16 0.08 66.72 10.7 31.36




Table (3): Determinants of pateat output at the FIRM level.
Poisson Regression. Dependeat variable = Total Firm PATENTS, 181 observations.

1) (2) 3) “ (5)
Intercept 1.968++ 0.189 -0.283¢ -0.617 0.121+*
(0.101) (0.132) (0.147) (0.157) (0.159)
Lo(Total Firm Discovery) 0.084* 0.154%+ 0.330%* 0.288+* 0.273%+
(0.037) (0.040) (0.046) (0.047) (0.047)
Ln(Total Firm Stock of 0.286+* 0.214*+ 0.330%~ 0.345% 0.216%+
Discovery) (0.033) (0.049) (0.053) (0.053) (0.054)
SCOPE: No. classes firm is -0.053¢* 0.03++ 0.055++
aclive (0.007) (0.015) (0.016)
SCOPE * SCOPE -0.004++ 0.004++
: (0.001) (0.001)
Total Firm Stock of own pats 0.0015%+
(0.0002)
Firm dummies none Sig. Sig. Sig. Sig.
Time 0.155++ 0.153%~ 0.156%* 0.162++ 0.118++
(0.007) (0.009) (0.009) (0.009) (0.011)
Time * Time -0.005++* 0.006+* -0.006*+ | -0.006%+* -0.005*+
(0.001) (0.001) (0.001) (0.002) (0.001)
Log-likelihood -2622.5 -1259.8 -1231.3 -1211.7 -1189.9

Standard errocs in parcatheses.
In{variable) is sct=0 when variable =0, and an appropriately coded dummy variable is included in the regression.

*¢ Significant at the 1% level.
* Significant af the 5% level.
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Table (5): Determinants of patent output at the research program level.
Poisson Regression. Dependent varisble = PATENTS, 4879 observations.

14) (15) (16) mn (18) (19)
Intercept -2.842¢% | -2.712%* | -2.805%*¢ -2.690+* -2.951++ -2.807++
(0.149) (0.149) (0.149) (0.149) (0.148) (0.149)
La(Discovery) 0.048*+ | 0.041%+ | 0.051*+ | 0.042¢* | 0.038++« | 0.030*~
(0.010) (0.010) (0.010) (0.010) (0.009) (0.010)
Ln(Stock of Discovery) 0.035%* 0.040++ 0.036+* 0.039++ 0.032++ 0.035¢~
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
SCOPE: No. classes irm 0.112%* 0.106%+ 0.111*+ 0.1064+ 0.110*~ 0.105**
is active (0.016) (0.015) (0.016) (0.016) (0.016) (0.016)
SCOPE = SCOPE 0.007** | -0.006%* | -0.006** | -0.006** 0.006** | .-0.006+*
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Ln(SIZE): Total disc. 0.295%+ 0.236%* 0.282%* 0.233++ 0.308++ 0.244++
spending by firm.’ (0.042) (0.042) (0.041) {0.042) (0.042) (0.042)
Stock own pats in this 0.035+* 0.032%* 0.033++ 0.033+* 0.031** 0.032%+
class (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
News in patents in related 0.032%* 0.032%+ 0.033*«
classes (0.002) (0.002) (0.003)
News in discovery in 0.025+ 0.003
related classes (0.013) (0.012)
News in competitors’ 0.005++ 0.007++
pateats in this class (0.001) (0.001)
News in competitors® 0.003++ 0.002¢+
patents 'm‘rclated classes (0.001) (0.000)
Firm dummies Sig. Sig. Sig. Sig. Sig. Sig.
Class dummies Sig. Sig. Sig. Sig. Sig. Sig.
Time 0.1054+ 0.105++ 0.105%+ 0.106++ 0.066%+ 0.069+*
(0.008) (0.008) (0.008) (0.008) (0.008) (0.010)
Time * Time -0.004%* | -0.004*+« | -0.005*+ | -0.004+¢ -0.002++ 0.003%+
(0.000) (0.000) (0.000) (0.000) (0.000) (0.001)
Log-likelibood -8269.1 -8192.0 -8259.1 -8183.9 -8105.1 -8026.9

Standard errors in parcatheses. In(vaciable) is sct=0 whea variable =0, and aa appropriately coded dummy vaciable is included i
the regressioa. The omitied therpeutic <lass dummy is class60, sysiemic anti-infeclives.

** Significant at the 1 % level.

* Significant at the $% level.



Table (Sa): Alternate Models
Dependent variable = PATENTS, 4879 observations.

Poisson Negative Noo-Linear GMT
Binomial Least Squares
. (19) (20) 1) (22)
Intercept -2.807¢+ -2.693%++ -2.267%++ -2.113%+
(0.149) (0.202) (0.313) (0.239)
La(Discovery) 0.030++ 0.061++ 0.011 0.076**
(0.010) (0.015) (0.021) 0.019)
Ln(Stock of Discovery) 0.035++ 0.039++ 0.008 0.053+
(0.009) (0.014) (0.022) (0.018)
SCOPE: No. classes firm is 0.105** 0.104++ 0.085+ 0.049
active (0.016) (0.023) (0.037) (0.028)
SCOPE * SCOPE -0.006++ -0.006++ -0.004++ -0.004*=
(0.001) (0.001) (0.002) (0.001)
Ln(SIZE): Total disc. 0.244++ 0.131+ 0.298++ 0.230%+
spending by firm. (0.042) (0.069) (0.085) (0.095)
Stock own pats in this class 0.032++ 0.052++ 0.027++ 0.057++
(0.001) (0.002) (0.002) (0.026)
News in pateats in related 0.033++ 0.041+~ 0.022*+ 0.069+~
classes (0.003) (0.005) (0.005) (0.008)
News in competitors’ 0.007++ 0.012++ 0.003 0.011**
patents in this class (0.001) (0.001) (0.002) (0.001)
News in competitors’ 0.002++ 0.001 0.003*+ -0.002
patents in related classes (0.000) (0.001) (0.001) (0.001)
Firm dummies Sig. Sig. Sig. Sig.
Class dummies Sig. Sig. Sig. Sig.
Time . 0.069++ 0.084+¢ 0.020 0.071 ¢+
(0.010) (0.013) (0.019) (0.016)
Time * Time 0.003++ 0.003++ -0.002++ -0.0024+
(0.001) (0.000) (0.001) (0.001)
overdispersion parameter N/A 0.518 N/A 0.409
(0.003)
Log-likelihood -7131.61 R1=0.582 SER=.905
SER=2.240

Notes: see over.



Table 5a Notes: Poisson model as in column (19) of Table (5).
Negative Binomial vaniance modelled as VAR(Y)=E[X](1 + «E(X])
Non-linear Least Squares: Y =exp(Xp) +¢
GMT: weighted non-linear least squares, with weights derived from Poisson estimates of § in

column (19): w,=exp(XR) +ijlexp(XR)

Standard errors in parentheses. lo(variable) is set=0 when varable=0, and an appropriately
coded dummy varable is included in the regression. The omitted therapeutic class dummy is
class60, systemic anti-infectives.

** Significant at the 1 % level.
+ Significant at the 5% level.



