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As �nancial technology improves and data becomes more abundant, is data bene�tting all

�rms? While recent studies have documented rises in the information content of prices, it turns

out that there are large cross-sectional di�erences. The previously-documented increases in

price information (Bai, Philippon, and Savov, 2016) are driven by a rise in the informativeness

of large, growth stocks. The informational price e�ciency of smaller assets or assets with less

growth potential is �at or declining. We document this data divergence and use structural

estimation to decompose informational e�ciency into a part due to data growth and a part due

to changing growth or volatility characteristics of the assets. Data divergence can be explained

by the fact that large growth �rms' data is becoming relatively more valuable. Computing

the expected marginal value of data implied by our structural model reveals the interaction of

growth and size. As large �rms grow larger, and growth magni�es the e�ect of their change

in size, the marginal value of processing large growth �rm data is becoming more and more

valuable, compared to the value of other �rms' data. In short, ever-growing reams of �nancial

data may be helping price assets more accurately. But this additional data might not deliver

�nancial e�ciency bene�ts for the vast majority of �rms.

We begin by measuring price informativeness in a traditional way: Estimate the coe�cient

on prices in a regression of future asset payo�s on a constant, prices and asset characteristics.

This coe�cient reveals how useful prices are in forecasting future �rm outcomes. Our main

empirical �nding is price informativeness divergence. The rise in price informativeness found in

Bai, Philippon, and Savov (2016) is there. Their sample is S&P 500 �rms. Those are large �rms.

For small �rms, and for the entire sample, price informativeness declines. Furthremore, the

large-�rm increase in price informativeness does not come from all large �rms. It is concentrated

in a subset, the large growth �rms.

The trends in the traditional measure could come from many sources. One interpretation is

that data analysis is being concentrated on large growth �rms. Another interpretation is that

large growth �rms have changed characteristics over time, in a way that a�ects the price infor-

mativeness measure. Disentangling these changes is not easy. Changes in asset characteristics

can also change the incentives to analyze data.

To decompose information and asset characteristics, we use a structural approach. We

derive an expression for price informativeness that holds with minimal theoretical assumptions.
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Price information is comprised of terms that depend on information, cash�ow growth and

volatility. By measuring price informativeness, cash �ow growth and volatility in the data, we

can back out a measure of market information about the �rm. We �nd that information about

most �rms has stagnated for the last 50 years. There is only one category of information that

has become more abundant: information about large, growth �rms. While �rm growth and

volatility have changed over time, these changes work against the trend � alone, they would

reduce price informativeness. Thus, the measurement exercise teaches us that the rise in price

informativeness observed for large growth �rms is likely to be a result of more information, i.e.

more data.

Size shows up in our analysis in two ways. First, small and large �rms have di�erent growth

and volatility, which a�ect the informativeness measure directly. Second, size a�ects the value

of information about the �rm. This o�ers a potential explanation for the informativeness trend:

Data went to the largest �rms because investors can use that data to take large positions in

those assets. Growth ampli�es changes in the value of data. Therefore, when data processing

capacity increased, most of the new data processed was about the large growth �rms. Other

�rms' equity prices did not bene�t from the data revolution.

Related literature Our contribution, relative to the literature is two-fold: 1) We explore

cross-sectional di�erences in a traditional measure of price informativeness (Bai, Philippon, and

Savov, 2016); and 2) we propose a new structural method for uncovering the amount of data

being processed about each class of assets in a given period.

Our methodology is most related to Davila and Parlatore (2016a), who propose an alterna-

tive measure of price informativeness, designed to answer a di�erent question. Their measure

captures the ability of prices to aggregate information. They compute the ability of asset payo�s

to back-cast prices, asset-by-asset, but without examining time trends. Our question is about

how the allocation of �nancial data processing has changed over time. Identifying data diver-

gence is di�cult, because it requires separating forces that change the information content of

prices from information itself. Our simple structural model of equilibrium asset prices suggests

that noise, size and the growth potential of a �rm all interact to drive a wedge between data

and all the previously-used price informativeness measures. We document these wedges and
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�nd they are substantial. Large �rms have more informative prices than small ones. Growth

�rms' prices are more informative than value �rms' and the interaction e�ects are large and

signi�cant. Importantly, these cross-asset di�erences are growing. Finally, our structural ap-

proach also has the advantage that it uncovers changes in the marginal value of data. This help

us to understand the reasons for why large, growth �rms' data evolves so di�erently.

Trends in the aggregate information environment are also explored in work by Stambaugh

(2014) and Glode, Green, and Lowery (2012). These authors highlight forces such as rising

institutional ownership and indexation. Such forces could be incorporated into our measurement

framework by changing the marginal bene�t of data. But our focus is on why these trends di�er

across asset classes and what part of that change is information versus asset characteristics.

The way in which we model data has its origins in information theory (computer science),

and is similar to work on rational inattention (Sims, 2003; Ma¢kowiak and Wiederholt, 2009;

Kacperczyk, Nosal, and Stevens, 2015). Similar equilibrium models with information choice

have been used to explain income inequality (Kacperczyk, Nosal, and Stevens, 2015), infor-

mation aversion (Andries and Haddad, 2017), home bias (Mondria, Wu, and Zhang, 2010;

Van Nieuwerburgh and Veldkamp, 2009), and mutual fund returns (Pástor and Stambaugh,

2012), among other phenomena. Related microstructure work explores the frequency of in-

formation acquisition and trading (Kyle and Lee, 2017; Dugast and Foucault, 2016; Chordia,

Green, and Kottimukkalur, 2016; Crouzet, Dew-Becker, and Nathanson, 2016). Davila and

Parlatore (2016a) share our focus on price information, but do not examine its time trend or

cross-sectional di�erences. Empirical work in this vein (Katz, Lustig, and Nielsen, 2017) �nds

evidence of rational inattention like information frictions in the cross section of asset prices.

Our model extends Farboodi and Veldkamp (2017) by adding multiple, heterogeneous assets.

What we add to this literature is using the theory for structural estimation. The structure

allows us to distinguish changes in information from changes in asset characteristics.

Examinations of the e�ects of improved data processing are scarce. Empirical work pri-

marily examines whether particular data sources, such as social media text, predict asset price

movements (Ranco, Aleksovski, Caldarelli, Grcar, and Mozetic, 2015). In contrast, many pa-

pers have developed approaches to measuring stock market informativeness across countries

(Edmans, Jayaraman, and Schneemeier, 2016), or (Durnev, Morck, and Yeung, 2004). These
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measures are valuable tools for cross-country analysis, but are not consistent with our theoretical

framework and are not appropriate for comparing the informativeness of large and small �rms.

For example, Brogaard, Nguyen, Putnins, and Wu (2018) argue that stock return comovement,

as measured by R2, has increased signi�cantly over time, suggesting less information. But,

they conclude that much of this is from the decline of idiosyncratic noise in prices, not less

information. Martineau (2017) shows that information (earnings news) is incorporated more

quickly into prices, in recent times. That could re�ect more information, or some of the many

regulatory changes dictating what gets announced, to whom and when. For our purposes, these

measures are problematic because there are mechanical reasons why the R2 of large �rm returns

may be higher, and growing, and their earnings announcements incorporated more quickly.

Explorations of how information production a�ects real investment (Ozdenoren and Yuan,

2008; Bond and Eraslan, 2010; Goldstein, Ozdenoren, and Yuan, 2013; David, Hopenhayn,

and Venkateswaran, 2016; Dow, Goldstein, and Guembel, 2017; Dessaint, Foucault, Fresard,

and Matray, 2018) complement our work by showing how the �nancial information trends

we document could have real economic e�ects. Our work also contributes to the debate on

the sources of capital misallocation in the macroeconomy,1 as we add an explanation for why

�nancial markets may be providing better guidance over time for some �rms, but not for others.

1 Empirical Patterns in Price Informativeness

In this section, we study patterns in a well-known measure of price informativeness � specif-

ically, the one used by Bai, Philippon, and Savov (2016).2 Our focus is on cross-sectional

heterogeneity: we will show that some assets, notably large growth stocks, tend to have higher

price informativeness compared to other assets and this gap has risen over the past few decades.

This measure is known to have many problems. We do not disagree. Our preferred measure

of information in �nancial markets will emerge from the structural estimation we do in the

next section. This section simply motivates that analysis by showing new and puzzling cross

sectional patterns in a pre-existing measure. These facts motivate our choice of what features

1See e.g., Hsieh and Klenow (2009) or Restuccia and Rogerson (2013) for a survey.
2In Section 3.2, we show that the same cross-sectional patterns we document also hold for the measure of

price informativeness proposed by Davila and Parlatore (2016a).
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to put in the structural model we estimate.

1.1 Measuring Price Informativeness

Data All data are for the U.S. market, over the period 1962�2016. Stock prices come from

CRSP (Center for Research in Security Prices). All accounting variables are from Compustat.

We measure prices at the end of March and accounting variables at the end of the previous

�scal year, typically December. This timing convention ensures that market participants have

access to the accounting variables that we use as controls. In line with common practice, we

exclude �rms in the �nance industry (SIC code 6).

The main equity valuation measure is market capitalization over total assets, M/A and the

main cash �ow variable is earnings over assets, or more precisely, earnings before interest and

taxes, (denoted EBIT in Compustat), scaled by current total assets. Both ratios are winsorized

at 1%.

Since we are interested in the extent to which current prices re�ect future earnings, we need

to make two other adjustments. The �rst is to deal with in�ation, which can create predictability

in nominal earnings and prices. This is particularly relevant for periods of high in�ation, such as

1960s and 1970s. Therefore, we adjust all cash-�ow variables with a GDP de�ator. Second, we

adjust for �rm exit. We use the delisting price as a �nal price and consider di�erent assumptions

for cash-�ows thereafter. Our preferred solution is to only consider periods during which a �rm

has non-missing information. Our results are also robust if we make cash-�ows zero when the

�rm exits or to use a weighted industry cash-�ow as a proxy, as in Bai, Philippon, and Savov

(2016).

Price informativeness Our baseline measure of price informativeness is the one used by

Bai, Philippon, and Savov (2016). It captures the extent to which asset prices in year t re�ect

cash-�ows in year t + s and is constructed by regressing the latter on the former, along with

controls for other observable asset characteristics. We estimate the following cross-sectional

regression, at each date t, separately for each asset group j:

Ef,j,t+s

Af,j,t

= αj,t + βj,s,t · log

(
Mf,j,t

Af,j,t

)
+ γj,t ·Xf,j,t + εf,j,t, (1)
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where Ef,j,t+s/Af,j,t is the cash-�ow of �rm f in group j in year t+ s, scaled by its total assets

in year t; log(Mf,j,t/Af,j,t) is market capitalization scaled by total assets; and Xf,j,t are a set of

�rm-level controls, namely past earnings and industry �xed e�ects, meant to capture publicly

available information. We adjust for potential autocorrelation by using Newey-West standard

errors with four lags.

The coe�cient of interest is βj,s,t, which captures the informativeness of the market prices.

To obtain our measure of (the trend in) price informativeness, we follow Bai, Philippon, and

Savov (2016) and scale βj,t by the variability of the regressor:

PINFj,s,t = βj,s,t · σM/A
j,t (2)

where σ
M/A
j,t denotes the cross-sectional standard deviation of log

(
Mf,j,t

Af,j,t

)
in year t. Finally, since

we are interested in longer term trends, we estimate the following speci�cation (separately for

each asset group j):

PINFj,s,t = PINF j,s

(
1 + Trendj,s ·

t− 1962

2010− 1962

)
+ ej,s,t (3)

The ratio on the right simply normalizes the calendar time variable tε{1962, . . . , 2010}, mapping

it into values between 0 and 1. We use 3 and 5-year-ahead price forecast regressions (s = 3

and s = 5). Since our last price data is from mid-2016, this means our last annual price

informativeness estimate is 2010.

1.2 Divergence of Price Informativeness

We begin by looking at aggregate trends in price informativeness. The left panel of Figure 1

plots the trend in price informativeness � the �tted value from (3) � for the universe of listed

�rms. It shows that price informativeness has fallen over time for the market as a whole (right

panel). In fact, over the past 50 years, this declining trend has eviscerated almost all of the

information content in prices. This contrasts with S&P 500 �rms (left panel), the sample of

�rms studied by Bai, Philippon, and Savov (2016). Consistent with their �ndings, we �nd that

S& P 500 price informativeness rose. Over 1962-2010, S& P price informativeness has increased
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Figure 1: Price Informativeness is Falling (Rising) for all Public Firms (S&P 500
Firms). The plots show the trends in price informativeness, estimated using (3), along with 95% con�dence
interval based on Newey-West standard errors with 5�lags. The left �gure contains S&P 500 non�nancial �rms,
while the right �gure contains all publicly listed non�nancial �rms excluding S&P 500 �rms.
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by about 50% of its original level.

In other words, the past few decades have been marked by diverging trends in informative-

ness. We will show that this divergence is tied to a broader phenomenon � price informativeness

for large-growth �rms has been growing, both in absolute terms and relative to other �rms.

Since such �rms are disproportionately represented in the S& P 500, price informativeness for

the S& P has diverged from that of the market as a whole.3

Price informativeness for large (small) �rms has been rising (falling). In order to

explore the connection between �rm size and informativeness, we compute our estimates for

two sub-samples: one is the 500 largest �rms, and the other, the rest of the �rms. We refer to

these sub-samples as `large' and `small' respectively.

Table 1 reports the results for S&P 500 �rms (columns 1-2), large �rms (columns 3-4) and

small �rms (column 5-6). The increase in price informativeness is very similar for S&P 500

�rms and large �rms, both for 3-year (columns 1 and 3) and 5-year horizons (columns 2 and

4). By contrast, the price informativeness of small �rms, which started from roughly the same

levels as that of large �rms in 1962, fell sharply over this time period. These patterns are

3 Appendix A.2 shows that the informativeness of stocks currently in the S&P 500 is similar to non-S&P 500
stocks with similar characteristics. This suggests that di�erences in asset characteristics, rather than inclusion
in S&P 500 per se, is the source of the divergence.
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robust to alternative criterion for size: we also split the sample into deciles of size, and �nd

that moving from the lowest decile to the highest decile of size implies a 17-fold increase in

price informativeness (c.f. Appendix A.1).

Table 1: Price Informativeness: The Role of Firm Size
This table presents results from estimating (3) for di�erent sub-samples of �rms. Newey�West standard errors,
with four lags are in parentheses. *** denotes signi�cance at the 1% level.

Dep. Var Price Informativeness

Sample (j) S&P 500 Large Firms Small Firms

Horizon s=3 s=5 s=3 s=5 s=3 s=5

(1) (2) (3) (4) (5) (6)

PINF j,s · Trendj,s .016*** .026*** -.0014 .016*** -.047*** -.051***
(.0037) (.006) (.0036) (.0059) (.0028) (.0046)

PINF j,s .033*** .038*** .041*** .048*** .043*** .054***
(.0023) (.0036) (.0023) (.0038) (.0018) (.0029)

Observations 17,662 16,120 22,121 20,307 22,121 82,343

Sector FE X X X X X X

Firm Controls X X X X X X

Growth �rms are central to information divergence. Next, we explore the relationship

between growth and price informativeness. Following Fama and French (1995), we rank �rms

based on their current book-to-market ratio (de�ned as the di�erence between total assets and

long term debt, divided by the �rm's market capitalization). The bottom 30% are labeled

`growth' �rms and the top 30% `value' �rms. We then run our price informativeness regressions

(1) separately for these two groups.

Columns (1) and (2) of Table 2 reveal that price informativeness declines for both growth

and value �rms. However, when we split each category between large and small, we �nd that

large growth �rms show a signi�cant increase (positive coe�cient in column 4) while the small

growth group displays the sharpest decline (column 3). In other words, growth �rms drive both

the rise in price informativeness for large �rms and the declining trend for smaller �rms. The

informativeness for value �rms, both large and small, shows more modest declines. The rate

of change in small value �rms' (column 5) price informativeness is half that of small growth
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�rms (column 3). The information divergence is summarized in Figure 2, which plots the linear

trends in price informativeness for large vs. small �rms (left panel) and for large-growth vs.

large-value �rms (right panel). Both panels exhibit divergence.4

Table 2: Price Informativeness Trends: The Role of Firm Growth
This table presents results from estimating (3) for di�erent sub-samples of �rms. Large refers to the 500 largest
�rms in our data � the rest are labeled Small. Growth �rms are those in the bottom 30% of the distribution of
book-to-market; value �rms are in the top 30%. Newey�West standard errors, with four lags are in parentheses.
*** denotes signi�cance at the 1% level.

Dep. Var Price Informativeness (s = 5)

Sample (j) Growth Value Growth�
Small

Growth�
Large

Value�Small Value�Large

(1) (2) (3) (4) (5) (6)

PINF j,s · Trendj,s -.035*** -.02*** -.058*** .04*** -.024*** -.01*
(.0083) (.0039) (.011) (.01) (.0044) (.0052)

PINF j,s .052*** .014*** .054*** .053*** .017*** .005*
(.0052) (.0024) (.007) (.0067) (.0027) (.0029)

Observations 31,988 28,066 23,110 8,814 24,823 3,167

Sector FE X X X X X X

Firm Controls X X X X X X

Figure 2: Large and Small Firms' Price Informativeness Diverges. The plots show the
trends in price informativeness for horizon s = 5, estimated using (3), along with 95% con�dence interval based
on Newey-West standard errors with four year lags. Large refers to the 500 largest �rms in our data � the rest
are labeled Small. Growth �rms are those in the bottom 30% of the distribution of book-to-market; value �rms
are in the top 30%.
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4Small �rms, both growth and value, show a declining trend � see Figure 8 in the Appendix.
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1.3 Other Possible Data Groupings

It is possible that growth, value and size are not, themselves, the relevant characteristics. They

may well be a proxy for some other correlated �rm or asset characteristics. While we cannot

rule this out, nor do we need to, there are a couple of other groupings of assets that might be

natural or informative to consider before we proceed.

Market power. Recent work suggests that market power may be growing throughout the

economy. In Kacperczyk, Nosal, and Sundaresan (2018), market power reduces price informa-

tiveness. Investors with price impact trade less aggressively on their information. This produces

less informative prices. So market power can interact with the measure of informativeness, and

thus with the measurement of data. Sorting assets according to the price impact of the investors

in those assets is not straightforward. It is also not likely to explain our information divergence.

If market power increased and this reduced price informativeness, it could be one reason for the

overall decline in price informativeness. In that case, our data estimates would then be a lower

bound on true data processing. But then to explain why large, growth �rms have much more

informative prices than they used to, that market would have to be far more competitive than

it was 50 years ago. We know of no evidence that suggests enormous increases in competition

in some equity markets and the evaporation of competition in others.

Technology �rms. Could the increased prevalence of technology �rms explain information

divergence? Appendix A.3 documents that tech �rms do have a lower level of price informa-

tiveness, on average. However, a simple cut of the data suggests that the rise of technology

�rms is unlikely to account for the divergent trends. The share of tech �rms in the large and

small �rm samples is similar over time. Therefore, the composition change cannot explain our

new fact: the divergence in informativeness of large and small �rms' prices, over time.

Note also that our structural approach in the next section will strip out the e�ect of dif-

ferences in fundamentals, e.g. a more volatile or faster growing cash-�ow. So to the extent

that technology �rms are di�erent for these reasons, our analysis in that section adjusts for

technology intensity, and still �nds divergence.

However we group the data, the conclusion is the same: If the changes in price informative-
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ness were driven by changes in information, then, despite the data revolution, there is no more

data available about most �rms now than there was 50 years ago. There is a small set of �rm

that have bene�tted from abundant data; those are large, growth �rms. For those �rms, the

ability of prices to forecast future fundamentals has risen substantially, roughly six-fold. But

that interpretation is complicated by the fact that measuring informativeness and measuring

information is not the same thing. To address this gap, we turn next to a di�erent approach.

2 A Structural Framework for Measurement

2.1 Why do we need a structural framework?

What do these divergent trends re�ect? In particular, to what extent do they point to changes

in data processing? The key di�culty in interpreting these facts is that price informativeness is

an endogenous object that re�ects not just information but also depends on other characteristics

such as growth prospects and volatility. For example, a trend in informativeness could arise

from a trend in cash-�ow growth, which a�ects the sensitivity of prices to cash-�ow news or

because of increases data processing, which causes expected cash-�ows to more closely track

the true values. It could also re�ect time variation in the extent of noise-induced variability in

prices.

One possibility is to use a rich set of �xed e�ects in the reduced-form speci�cation. However,

that would still leave us with the challenge of disentangling trends in data processing from other

trends. Therefore, we use a simple structural model as a measurement framework.

We work with the simplest theoretical framework that achieves this objective. The setup is a

standard noisy rational expectations model with multiple assets, in the spirit of Admati (1985)

and Van Nieuwerburgh and Veldkamp (2009). The model yields simple, intuitive expressions

for price informativeness, as a function of both asset characteristics and investor information.

These expressions form the basis for an empirical strategy that disentangles asset characteristics

from information, using observable moments of stock prices and cash �ows, providing a deeper

understanding of the trends in the previous section.
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2.2 Model

A unit measure of investors trade multiple assets. Each asset is interpreted as a representa-

tive �rm in group j ∈ {SmallGrowth, LargeGrowth, LargeV alue, SmallV alue}. To lighten

notation, we suppress the �rm subscript and use j to refer to group-level variables.

A share is a claim to a dividend stream. The �ow dividend of representative asset j in period

s, denoted {djs}, s = 1, 2, ...., follows a AR(1) process with normally distributed innovations

and is independent across assets. 5 Formally, for t = 1, 2....,

djt = gj djt−1 + εjt, εjt ∼iid N(0,Σjd) (4)

Modeling a stream of dividends, rather than a traditional one-shot payo� is necessary to

depict growth �rms in a meaningful way. However, we consider the simplest such formulation,

with a single round of trading. We then interpret time series data as repeated instances of this

one-shot formulation. At the start of period 1, investors make portfolio choices (conditional on

an information set, described later). At the end of the period, dj1 is observed, investors sell

their holdings and consume. Our key simplifying assumption is that this future sale occurs at

a price equal to the expected value of dividends, discounted at the (gross) riskless rate r > 1.6

Given our assumption on the cash�ow process, this expected discounted value, denoted by Vj1,

is given by:

Vj1 ≡ E

[
∞∑
s=1

djs
rs

∣∣∣∣∣dj1
]

=
r

r − gj
dj1 . (5)

Thus, an asset with more persistent cash-�ows (e.g. growth stock) will have a greater sensitivity

of valuations to current cash�ows. This allows us to capture time series properties of cash-�ow

processes within our one-shot trading model.

5The assumption of independence is motivated by our focus on idiosyncratic rather than aggregate variation,
i.e. a stock-picking rather than a market timing perspective. Having said that, it is not di�cult to relax this
assumption and allow for correlation across assets. Signals and data processing would then be about independent
risk factors, as in Van Nieuwerburgh and Veldkamp (2009).

6A natural alternative assumption here is that investors sell their assets at a market price, which is a
function, among other things, of the information of future participants, as in Farboodi and Veldkamp (2017).
This delivers a similar solution, except that the dependence on future information introduces another �xed point
problem, which complicates the analysis considerably, without providing additional insight.
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Supply: The supply of each asset j has a (commonly known) asset-speci�c mean xj as

well as an unobserved random component. Formally, the total supply is xj + x̃j shares, where

x̃j ∼ N(0,Σjx).

Preferences and portfolio choice: Investors, indexed by i, are endowed with an initial

wealth W
i
and mean-variance preferences over their end-of-period wealth.At the start of time

one, they choose a portfolio, conditional on an information set I i. Formally, investor i with

absolute risk aversion ρi chooses {qij}, the number of shares of asset j, to solve:

max
{qij}

E[U i|I i] = max
{qij}

ρiE
[
W i|I i

]
− ρ2

i

2
V ar(W i|I i) . (6)

where W i = rW
i
+
∑
j

qij(Vj1 − rPj1). (7)

where r is the riskless rate, Pj1 is the equilibrium price of asset j and Vj is a present discounted

asset value that will be derived shortly.

This mean-variance representation can include a broad array of preference speci�cations.

The coe�cient of absolute risk aversion ρi can be any non-random function of initial wealth,

W
i
. Thus, these preferences could be derived from decreasing absolute risk aversion preferences,

or even constant relative risk aversion, in initial wealth.

Information: For each risky asset j, each investor observes kij data points. Each data point

is a noisy private signal of the end-of-period cash�ow dj1:
7

ηi,mj = dj1 + ei,mj , ei,mj ∼ N(0, 1) .

for mε{1, . . . , kij}. The average amount of data about asset j in the market is

Kj =

∫
kij di . (8)

7This language suggests discrete numbers of signals. Since working with discrete variables complicates the
analysis considerably and adds little insight, we treat kij as a continuous variable. Formally, we can take a

quasi-continuous limit. If each data point has variance α, this limit takes the number of data points to be αkij
and then sends α→∞. In the limit, the precision of the set of signals becomes continuous.
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In addition, investors can condition their orders on the realized market-clearing price (Pj1)

and also optimally incorporate the information contained in that price. Finally, at the end of

each period, dividends are paid and thus observed. Thus, investor i's information set comprises,

for each asset j, the dividend realization from the previous period , a set of private signals

and the market-clearing price: I i = {{dj0}nj=1, {{η
i,m
j }

kij
m=1}nj=1, Pj1}. We conjecture (and later

verify) that the information in the market price can be expressed as a signal of the cash-�ow

innovation with additive Gaussian noise. Given this information set, Bayes' law for normally

distributed random variables yields the following expression for investor i's precision, denoted

(Σi
j)
−1:

(Σi
j)
−1 ≡ V ar[dj1|I i]−1 = Σ−1

jd + Σ−1
jp + kij , (9)

where Σ−1
jp is the precision of the market price signal (to be characterized later). The average

market-wide precision, denoted
(
Σj

)−1
, is

(Σj)
−1 =

∫
(Σi

j)
−1di = Σ−1

jd + Σ−1
jp +Kj . (10)

Equilibrium: A rational expectations equilibrium is a set of functions for the price, Pj1, and

portfolio choices qij such that, (i) given the induced information sets I i, the portfolio choices

solve (6) and (ii) markets clear, i.e. ∀j,
∫
qijdi = xj + x̃j.

To solve for the equilibrium, we conjecture a linear form for the price function and solve

for the corresponding coe�cients. We relegate the details to the Appendix and present the

solution in the following result:
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Proposition 1. In equilibrium, the price of asset j is given by:

rPj1 = Aj +Bjεj1 + Cjx̃j , (11)

where Aj =

(
r

r − gj

)
gjdj0 − ρ̄

(
r

r − gj

)2

Σjx̄j , (12)

Bj =
r

r − gj

(
1− Σj

Σjd

)
, (13)

Cj = −
(

r

r − gj

)2

Σj

(
KjΣjx

ρ̄
+ 1

)
. (14)

Σ−1
jp =

(
Bj

Cj

)2

Σ−1
jx (15)

where ρ̄−1 := Σj

∫
ρ−1
i (Σi

j)
−1di is a precision-weighted average of investors' risk tolerance.

Assuming ρ̄ is constant across assets amounts to assuming that risk tolerance and precision are

either uncorrelated, or not covary di�erently across assets.

Equation (13) shows that the coe�cient on current innovation to cash-�owsBj, is the usual

Gordon growth factor, r
r−gj , adjusted for average information about cash�ows

(
1− Σj

Σjd

)
. If

investors have no information about asset j (apart from their prior), then the average posterior

variance Σj is equal to the prior variance Σjd, and the coe�cient Bj = 0. In other words, the

price cannot possibly re�ect information that no investor has learned. At the other extreme, if

the average investor is perfectly informed about current cash�ows, then Σj = 0 and Bj = r
r−gj ,

the Gordon growth factor. Thus, the extent to which the stock price covaries with cash�ow

innovations Bj provides direct evidence about how informed the average investor is about asset

j.

Equation (15) tells us how precise the market price is as a signal of future dividends. The

linear form of the equilibrium price implies that it is informationally equivalent to
rPj1−Aj

Bj
=

εj1 +
Cj

Bj
x̃j, i.e. a noisy signal of εj1, the innovation to cash�ows with a precision

(
Bj

Cj

)2

Σ−1
jx .

The signal is more precise when the the equilibrium sensitivity of the price to fundamentals,

relative to supply noise (Bj/Cj) is high, or the variance of supply Σjx is low.
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Price informativeness: Recall that the price informativeness measure in Section 1 is esti-

mated by regressing cash�ows s periods ahead on current prices, controlling for, among other

things, the most recent cash�ow. Using the equilibrium pricing equation (11), we can express

s-period-ahead price informativeness as: 8

PINFj,s ≡
Cov(djs , Pj1|dj0)

StdDev(Pj1|dj0)
=

V ar(dj1|dj0)

StdDev(Pj1|dj0)︸ ︷︷ ︸
volatility

gsj
r − gj︸ ︷︷ ︸
growth

[
1− Σj

V ar(dj1|dj0)

]
︸ ︷︷ ︸

information

. (16)

Equation (16) forms the core of our analysis of price informativeness. It reveals that PINFj,s

has three components. The �rst is volatility : speci�cally, the variability of cash�ows relative to

prices. All else equal, an asset whose prices are more volatile (relative to cash�ows) will exhibit

lower price informativeness.9 The second component is related to growth: a more persistent,

or faster growing, process will lead to a greater sensitivity of future cash�ows to current ones.

Under our AR(1) structure, this is summarized by the autoregressive coe�cient, gj. Since

prices aggregate information about current cash-�ows, a higher gj, all else equal, makes them

covary more strongly with future cash�ows, resulting in higher price informativeness. Finally,

the last term re�ects information: the less uncertain the average investor is about cash-�ows

(for example, due to increased data processing Kj), the lower is Σj, and therefore, the higher

is price informativeness at all horizons.

3 Estimation of the Structural Framework

Next, we employ the framework developed in the previous section to purge the price infor-

mativeness measure from Section 1 of growth and volatility e�ects.10 What is left reveals the

cross-sectional and time series patterns of information in the market. We further separate this

information into cross-asset di�erences in the e�ciency with which markets aggregate a given

8See Appendix B.3 for the derivation.
9This insight also appears in Davila and Parlatore (2016b).

10The PINF measure in Section 1 is slightly di�erent from the one in (16). The former is obtained by scaling
the regression coe�cient from (1) by the unconditional standard deviation of prices. Our structural analysis,
on the other hand, shows that a more interpretable measure is obtained by re-scaling the regression coe�cient
by standard deviation of residualized prices (i.e. residuals from projecting prices on the set of controls). The
measure in (16) � and in the rest of the paper � is constructed using this approach. Quantitatively, this makes
little di�erence, so, in a slight abuse of notation, we use PINF to refer to the model-guided measure as well.
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1960s 1970s 1980s 1990s 2000s 2010s
Growth gj:

Small Growth 0.859 0.917 0.752 0.775 0.799 0.818
Large Growth 0.996 0.992 0.972 0.967 0.938 0.931
Small Value 0.847 0.741 0.622 0.661 0.798 0.756
Large Value 0.885 0.892 0.842 0.875 0.876 0.791
Volatility Σjd:

Small Growth 0.019 0.023 0.040 0.053 0.036 0.027
Large Growth 0.009 0.008 0.011 0.015 0.013 0.008
Small Value 0.006 0.007 0.008 0.012 0.011 0.008
Large Value 0.002 0.003 0.003 0.002 0.006 0.002

Table 3: Estimated cash �ow parameters: persistence/growth gj and innovation variance Σjd.

amount of data and di�erences in the data quantity or prevalence.

3.1 Estimating Data Divergence

Our empirical strategy is to directly measure the growth and volatility components in (16) and

then remove these estimates from PINF, to obtain the information term Σ̄j. To study cross-

sectional variation, we classify stocks into one of four groups: Small-Growth, Large-Growth,

Small-Value and Large-Value, based on the same criteria used in Section 1. Given our focus on

long-term trends, we estimate each decade separately. Speci�cally, for each decade and asset

group, we estimate PINF, growth and volatility. Then, we divide PINF for that decade-group

by the growth and volatility of that decade-group's assets, as in (16).

To measure the growth component, we estimate equation (4) by running a pooled regression

on cash�ow data for each decade-group. The resulting estimates of the AR(1) coe�cient, gj,

and the volatility of innovations, Σjd, for each decade-group are reported in Table 3. Assuming

a riskless interest rate of 2.5% (r = 1.025), they directly yield
gsj

r−gj , the growth component. 11

Next, note that the numerator of volatility component, V ar(dj1|dj0), is simply the variance

of innovations, Σjd, also reported in Table 3. The denominator, Std(Pj1|dj0), is obtained (again,

for each group-decade pair) by projecting prices (or more precisely, market capitalization scaled

11In our baseline analysis, we use r = 1.025 for the entire sample. In Appendix C, speci�cally in Figure 9,
we relax this assumption and show that our results are robust to using the actual time path of riskless rates.
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by assets) on controls, which include past earnings.

Finally, we estimate price informativeness for each decade-group as described in Section 1.12

We can then recover the information component using:

1− Σj

Σjd

=
PINFj,s

gsj
r−gj

Σjd

Std(Pj1|dj0)

(17)

Our decade-by-group estimates for price informativeness and its components are reported

in Table 6 in Appendix C.1. In line with our focus on longer term trends (and to facilitate

comparison with the facts in Section 1), we plot the �tted trendlines for each series in Figure

3. The �rst panel reproduces the patterns documented in Section 1. Price informativeness

has trended up for the Large-Growth group, but has remained constant/declined for all other

groups. The top right panel reveals that changes in the information component played a central

role in the divergence. The trends in this component parallel those in price informativeness

overall: rising for the large-growth assets and stagnating/falling for the others. 13

The remaining panels in Figure 3 show other systematic changes in asset characteristics

over time. In particular, the growth component, re�ecting the persistence of cash-�ows, is

declining. This is consistent with Gschwandtner (2012), who also �nds a long run decline in the

persistence of �rm pro�ts. This could re�ect, for example, an increase in competition because of

globalization. Note that this decline is most dramatic for the large-growth assets, which by itself

should have reduced their price informativeness relative to other assets. In other words, the rise

in the information component for large-growth �rms is su�ciently large that it overwhelms the

e�ect of declining cash-�ow persistence on informativeness.14 Finally, the volatility component

shows signi�cant cross-sectional heterogeneity but is relatively stable over time.

12We make two modi�cations to tie the estimation closer to the theory: �rst, we use M
A in levels (instead of

logs). Second, we use the absolute value of the estimated price informativeness, since the theory cannot reconcile
negative estimates (this only matters for a couple of observations and does not a�ect conclusions about longer
term trends).

13Table 4 sheds further light on the timing of the increase for large growth �rms: it shows that the information
component divergence spiked around the 2000's, the same time as the widespread adoption of information
technology in the �nancial sector (Abis, 2018).

14In Figure 10, we conduct a counterfactual decomposition holding the growth component for each group
�xed at its 1960s level. This moderates the magnitude of the divergence somewhat, but the basic pattern � an
increase in information processing for the Large-Growth group and modest declines for the other three groups
� survives. This exercise shows that controlling for changes in asset fundamentals is important for an accurate
quantitative estimate of information.
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Figure 3: Data Divergence: Trends in Price Informativeness, with its Data, Volatility
and Growth Components.

For each component, the plots show a linear trendline �tted to the estimates reported in Table 6.
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Figure 4: Large, Growth Trend Comes from Both Market Information and Private
Information.

For each component, the plots show a linear trendline �tted to the estimates reported in Table 4. Volatility,
growth and information are the three terms in eq. 16. Speci�cally, information is the estimate of[

1− Σj

V ar(dj1|dj0)

]
, which includes both price information and data processing.

Market information vs private data. Next, we explore where information came from: Did

it stem from better information aggregation through prices or from increased data processing?

To answer this question, we decompose overall information, Σ̄−1
j , into its components as in

(10): speci�cally, the prior or unconditional variance of dividends (Σjd := V ar(dj1|dj0)), the

information content of the price signal (Σ−1
jp ) and a price noise term V ar(ej). The term V ar(ej)

is the noise with which prices predict contemporaneous earnings. To estimate V ar(ej), we �rst

estimate (1) with s = 0 and equate V ar(ej) to the variance of the residuals. Appendix C derives

the following mapping, which yields an estimate for Σjp for each group by decade:

Σjp =
V ar(ej) · Σjd

Σjd − V ar(ej)
. (18)

Equation (18) thus . Substituting Σjp, along with overall information Σ
−1

j and the prior preci-

sion, Σ−1
jd into (10) yields the market-wide data processed, Kj:

Kj = Σ
−1

j − Σ−1
jd − Σ−1

jp (19)

Table 4 presents the estimates for price information Σ−1
jp and data processing Kj, by decade.

Figure 4 plots the associated �tted trend-lines. The precision of the price signal for large-growth

�rms rose modestly in recent years, but much of the increase in overall information over the

past few decades can be attributed to increases in data processing.
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1960s 1970s 1980s 1990s 2000s 2010s
Market information. Σ−1

jp

Small Growth 0.36 0.01 0.00 0.03 0.10 0.00
Large Growth 2.97 7.86 4.75 1.61 18.85 13.02
Small Value 0.34 4.46 0.11 0.03 1.48 0.00
Large Value 0.28 6.99 2.27 6.22 8.39 0.12
Private information, Kj:

Small Growth 15.42 0.56 0.35 4.40 9.48 0.33
Large Growth 2.37 6.65 11.55 9.30 113.64 147.82
Small Value 4.37 25.32 13.40 4.38 14.69 1.41
Large Value 6.93 11.63 21.59 32.62 15.36 13.99

Table 4: The sources of information

3.2 Other Measures of Price Informativeness

Davila and Parlatore (2016a) propose an alternative measure of �absolute' price informative-

ness.� It captures the �ability of asset prices to aggregate dispersed information.� Their measure

is the precision of an unbiased signal constructed from prices of the current cash-�ow innova-

tion.In our setting, this corresponds to Σ−1
jp . It is the same as what we call �market information�

in Table 4 and Figure 4.

The divergence between small and large �rm information remains intact under this alterna-

tive measure: Large growth �rms have market prices that convey more information and that

informativeness increases dramatically over time. 15 For all other groups, informativeness stag-

nates or declines. In fact, the divergence is even more stark under this alternative measure

of price informativeness. The results in Figure 4 suggest a reason why both measures show

the same patterns. They show that more data processed by investors (higher Kj) was the

key driver of the time trends, which leads to prices being both more accurate as signals (the

Davila-Parlatore notion of price informativeness) and being more sensitive to cash�ows (the

Bai-Philippon-Savov measure).

Note that, like our baseline informativeness measure, the Davila-Parlatore one is also in�u-

15Davila and Parlatore (2016a) use the entire time series to estimate market information for individual
stocks. We group assets into categories based on observable characteristics like size and growth and estimate
price informativeness by group-decade, which highlights how price informativeness has diverged for certain types
of assets (e.g. large-growth stocks).
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enced by the fundamental characteristics of the asset: from equation (15), we see that Σjp is a

function of the equilibrium coe�cients Bj and Cj and therefore, asset characteristics that a�ect

these (e.g. cash-�ow growth) will also have an e�ect on Σjp. To be clear, this does not negate

the value of this measure: it merely underscores the value of separating asset characteristics

from information, even in the context of this measure.

4 Why the Surge in Large Growth Firm Data?

Our results show that, while asset characteristics did change over this period, divergence in the

price informativeness for large-growth �rms came predominantly from data divergence. This

raises an obvious question: why did so many investors process increasing amounts of data about

large, growth stocks and not about other assets?

One possibility is that data choices changed over time because the cost of data changed.

For this to explain our �ndings, the cost of large, growth �rm data must be falling, relative

to the cost of data about other �rms. While this is certainly a possibility, we have no direct

evidence to support or quantify this channel. The other possibility is that the marginal bene�t

of data changed. For this explanation, our model informs us about how measured changes in

asset characteristics should change the value of data. This is the approach we take: Use the

structural model and estimates to determine whether the bene�ts of data have changed in a

way that might explain the changes. This does not rule out � and in fact, is complementary to

� the possibility that changes in costs might have contributed to the observed patterns in the

data.

In this setting, marginal values can be misleading. The reason is that, when many investors

process high-value data, they make the data less valuable for others to process. High marginal

values predict more data processing. But more data processing lowers the marginal value. In

equilibrium, data processing choices should push down all marginal values until they equal

marginal cost. This is the same logic that Berk and Green (2004) applied to mutual fund �ows

also applies to data �ows: Equilibrium forces should equalize marginal returns.

If marginal value does not reliably explain the amount of data processing, what does? The

initial value of data is what the value of the �rst increment of precision would be, if no one
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else processed any data on that asset.16 Using our framework and estimates, we can estimate

that initial value. If the assets for which data processing is high also have high initial values of

information, this could explain the data divergence we see in the previous section.

Therefore, we use the model to estimate the initial value of one unit of processed data (one

precision unit) about each asset type, in each decade. We �nd that the value of learning about

large �rms rose substantially over this period, both in absolute terms as well as relative to small

�rms. The divergence in data value was driven by the increase in large �rms' relative size. This

surge in the relative size of large �rms is the same divergence in �rm size documented by Davis

and Haltiwanger (2015). The source of this divergence is the subject of an active debate in the

macroeconomics and IO literatures.

4.1 Deriving the initial value of information

To arrive at the value of information, we compute ax-ante expected utility and determine its

sensitivity to information choice. Ex-ante expected utility of investor i from asset j is given by

E[U i
j ] =

1

2
E
[
(Πi

j)
2
]( r

r − gj

)−2

(Σi
j)
−1 where Πi

j ≡ E[Vj − Pjr|I i]. (20)

is the interim (i.e. conditional on a data set I i) expected pro�t per share of asset j and

(Σi
j)
−1 is investor i's posterior precision about asset j's cash�ows. This form of expected

utility arises in a large class of noisy rational expectations models. Intuitively, investor i's

interim pro�ts are qijΠ
i
j. The optimal asset demand qij is proportional to V ar[V |Ii]−1Πi

j where

V ar[V |Ii]−1 =
(

r
r−gj

)−2

(Σi
j)
−1.

Equation (20) directly shows that the marginal utility of a unit increase in the investor's

posterior precision is 1
2
E
[
(Πi

j)
2
] (

r
r−gj

)−2

. This is the marginal value of data. Data is more

valuable when pro�ts are expected to be high (in absolute value)17 and/or more volatile because

16This concept is related to what is sometimes referred to as a water-�lling equilibrium in the information
choice literature. Equilibrium is often computed letting agents sequentially choose risk factors to learn about.
Using learning about a risk is like �lling its bucket with water. Once su�ciently full, investors move on to �lling
the next deepest bucket. Our value of information is the depth of each bucket, before being �lled with water.
See our follow-up paper (Farboodi et. al., 2019)for estimates of the equilibrium marginal value of information
as well.

17High negative expected pro�ts are also valuable, because they present pro�table shorting opportunities.
The 1/2 in eq. (20) comes from subtracting a variance term in the formula for the mean of a log-normal variable.
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that makes the expected value of the squared pro�t high.

Next, we compute the unconditional expected pro�t per share: 18

E
[
Πi

j

]
= ρ̄

(
r

r − gj

)2

Σjx̄j . (21)

Thus, the expected pro�t per share is the product of the total amount of asset j risk borne by

the average investor, scaled by aggregate risk aversion ρ̄. Faster growth, or equivalently more

persistent cash-�ows (higher r
r−gj ) means greater uncertainty about payo�s (or discounted values

of the entire cash-�ow stream) for a given level of uncertainty about current cash-�ows (Σj).

Similarly, larger supply (higher x̄j) implies more overall risk for the average investor's portfolio

and therefore, a larger compensation in the form of expected pro�ts. In other words, it is more

valuable to learn about large, fast-growing �rms with greater uncertainty.

To compute the initial value of data, we simply replace the equilibrium information level

Σj with its pre-data value, the prior variance Σjd in (20). Then, compute the partial derivative

with respect to (Σi
j)
−1. This is what we call the initial value of information (V Ij):

V Ij =
1

2

[
ρ̄2

(
r

r − gj

)2

Σ2
jdx̄

2
j

]
+

1

2
Σjd (22)

The �rst component in (22) is related to the mean of the expected pro�t per share of asset

j from (21). As we saw earlier, higher growth (gj), larger size (x̄j) and more uncertainty

(Σj) all raise V Ij, making information about the asset's cash-�ows more valuable. Moreover,

these factors enter multiplicatively and therefore, amplify each other. This interaction makes

large-growth �rms particularly valuable to learn about.

The second term in (22) stems from the variance of expected pro�ts per share. Quantita-

tively, however, this term is dominated by the �rst term, because r
r−gj and x̄j are both large,

relative to other terms. In other words, most of the variation in the value of the information,

both in the cross-section and over time, comes from changes in the expected pro�ts.
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Figure 5: The Initial Value of Information, by Asset Class, over Time. The initial value
of information V Ij is de�ned in (22).

4.2 Estimated initial value of information.

We construct a time series for the value of information (V Ij), for each of the four asset groups

by decade. Computing V Ij requires parameters already estimated in Section 3, as well as risk

aversion ρ̄ and the asset supply (x̄j). To estimate total supply by decade, we take the average

(book) value of assets of �rms in group j. We assume the risk aversion coe�cient is ρ̄ = 0.02.

The resulting estimates in Figure 5 o�er a simple explanation for why so much data has been

processed for large �rms, especially large growth �rms: information about such �rms is more

valuable. Both size and growth increase the value of information, which is also ampli�ed by

their interaction. The combination of being large and growing quickly makes a �rm a desirable

target for data analysis. In the �gure, the value of information for small growth and small value

stocks is almost indistinguishable from the x-axis, orders of magnitude lower than the value of

the large �rms' data.

The time series for V Ij in Figure 5 shows a dramatic rise in the value of large �rms' infor-

mation during the 1990s and 2000s. These patterns are driven almost entirely by movements in

the �rst term in (22). Why did this component rise so sharply and then fall? The increase can

be traced to the rise in their size (x̄j): in other words, large �rms grew larger (both in absolute

and relative terms) during the 1990s and 2000s, raising expected pro�ts per share and making

data about them more valuable. The decline in the 2010s stems from a fall in the estimated

variability of cash�ows Σjd. This is consistent with the low price of volatility options (the VIX)

18Note E
[
(Πi

j)
2
]

= (E
[
Πi

j

]
)2 + V ar(Πj). See Appendix D for the derivation of V ar[Πi

j ] and other details.
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during this period.

The value of large-value �rms' information surpasses that of large growth �rms' information

for one decade in our sample. This was the combined result of a decrease in the growth prospects

of large-growth �rms and a rise in the relative size of large-value �rms. One possibility is that

these changes in �rms' characteristics was unexpected. If data processing can be frictionlessly

reallocated, one would expect a quick reaction to the surprise change in growth and size. But,

in reality, research groups take time to build, time to hire, and time to develop expertise. It

could be that, much like physical capital, information processing expertise is slow to adjust. A

full exploration of this possibility is a question for another paper.

5 Conclusions

The ability of �nancial prices to transmit information about �rm pro�tability is often regarded

a measure of the e�ciency or success of �nancial markets. As data processing technologies

have improved, one might expect this to increase in the information content of all prices.

Instead, what we �nd is that price informativeness has diverged across assets. While prices

of large, growth stocks are getting more informative, the extent of information in prices of all

other assets is stagnant or declining. This could re�ect changes in information or changing

asset characteristics. To disentangle trends in various factors in�uencing informativeness, we

estimate a structural model and decompose the traditional measure of informativeness into

changes in growth, volatility and information. This decomposition only strengthens the puzzle:

Investors seem to be processing more and more data about large growth assets, but not about

others.

To explore why data processing might diverge, we use the estimated structural model to

impute a marginal value of data. We �nd that the value of large growth �rm data has increased,

primarily because these �rms grew larger. Larger �rms are more valuable to learn about,

particularly if they are also expected to grow faster. This o�ers a partial explanation for the

diverging trends in the information content of prices � investors chose to analyze the most

valuable data, that pertaining to large, growth �rms.

If data continues to become more and more abundant, eventually, the value of additional
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information about large-growth �rms should fall, due to diminishing returns. Over time, would

expect to see equalization of marginal value. The improvements in data technology should

eventually be applied to study other �rms. However, given the substantial � and growing �

inequality in �rm sizes, data convergence could take a long time.

Of course, our conclusions depend on our structural model and measure. One might ask:

What about all the other measures of information out there? Our goal is not to advocate for any

particular measure, but to argue that information is diverging across �rms, over the long run.

One might make this point with alternative measures, just as we do with the alternative Davila-

Parlatore measure, at the end of Section 3. However, many of the measures that originate in

the microstructure literature are well-suited to think about high-frequency information, where

knowing a moment before others know something is valuable. Other measures, such as price

synchronicity, are well-suited to low frequency information, but would need to be adjusted

to think about what synchronicity means for a cross-section of assets. One advantage of our

structural equilibrium approach is that it can guide our thinking about how to adapt price

informativeness, synchronicity, or other measures to provide meaningful cross-sectional insights.

Our focus on long-run, low-frequency information leads us to explore an equilibrium model

suited for this purpose. But the broader contribution is that we can quantitatively assess

the cross-sectional allocation of information and use that knowledge to better understand the

cross-sectional properties of asset prices.
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Appendices

A Additional Empirical Results

This appendix contains additional results about the evolution of price informativeness.
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A.1 Price Informativeness by Size

To estimate price informativeness by size, we pool all �rm-year observations and construct deciles of

�rm size (de�ned as market value in 2009 dollars).19 We then run the cross-sectional regression (1)

within each bin, i.e. the subscript j now refers to a size bin. Price informativeness is then obtained

by scaling the coe�cient, as in (2). The results, presented in Figure 6, show a clear pattern: the

informativeness of large �rms is signi�cantly higher than those of smaller �rms. This is particularly

true for the largest �rms, i.e. those in the top decile.

Figure 6: Price Informativeness by Decile. Price informativeness is de�ned as in (Eq 2). We run
the regression in (1) for each year t = 1962, ..., 2010, horizon s = 5 and size decile. The sample contains publicly
listed non-�nancial �rms from 1962 to 2010. The graph shows the average PINFj,s,t over the entire sample for
each decile.

19This size variable has been shown to matter in the context of CEO compensation, for instance in (Gabaix
and Landier (2008).
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A.2 Price Informativeness in the S&P 500

Table 5 quanti�es the magnitude of the divergent trends for S&P 500 and non-S&P 500 �rms

and shows that they are both statistically signi�cant and economically large. Price Info (t=0)

reports the magnitude of the predictive power of stock prices for future cash��ows at the

beginning of our sample period. Because we normalize the time trend between zero and one,

the coe�cient on Price Info×Trend can be directly interpreted as the total evolution of price

informativeness over the period. For the S&P 500 sample, price informativeness at the 5�year

horizon rose by 70% (0.026/0.038). For the non�S&P 500 �rms, it fell by around 80%. In all

cases, the evolution is signi�cant at the 1% level.

Table 5: Price Informativeness Grew (Fell) for S&P 500 (other) Firms.
This table shows the estimates of (3). Newey�West standard errors, with four lags are in parentheses. ***
denotes signi�cance at the 1% level.

Dep. Var Price Informativeness

Sample (j) S&P 500 Non S&P 500

Horizon s=3 s=5 s=3 s=5

(1) (2) (3) (4)

PINF j,s · Trendj,s .016*** .026*** -.047*** -.048***
(.0037) (.006) (.0027) (.0045)

PINF j,s .033*** .038*** .046*** .056***
(.0023) (.0036) (.0018) (.0028)

Observations 17,662 16,120 105,580 86,550

Sector FE X X X X

Firm Controls X X X X

To explore whether there is something speci�c to �rms in the S&P 500, we perform two

di�erent tests. First, we looked at �rms that have never been included in the S&P 500 but are

relatively close in terms of market capitalization and size. It turns out these �rms exhibit a

rise in price informativeness nearly identical to that of the S&P 500 �rms (though the levels

of price informativeness are somewhat di�erent). This suggests that the rising trend in price

informativeness has more to do with �rm characteristics (like size) rather than inclusion in

the S&P 500 per se (though being part of the index does increase the level of informativeness

somewhat).

In other results, we also looked at �rms that were in the S&P 500 only for a part of our

sample period. We estimate two separate speci�cations of Equation 1 � one for the period of

the �rm life when it is in the S&P 500 and for when it is not. We �nd that, among the sample
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of �rms that are in the S&P 500 at some point in their life, the trend in price informativeness is

similar for �rms currently in and out of the S&P 500. In levels, price informativeness is actually

higher when a �rm is not in the S&P 500, than when they are in.

A.3 Is this All About Tech Firms?

A potential explanation for the decrease in price informativeness for the market as a whole is

that the share of �rms, whose shares are harder to price � speci�cally high tech �rms � has

increased over time. However, we �nd that quantitatively, the rise of such �rms explains little

of the divergence in price informativeness, because the tech time trends in the large �rm and

small �rm samples were not su�ciently di�erent.

We use R&D intensity (R&D spending scaled by assets) as a proxy for high tech intensity.

First, we sort the full sample of �rm-year observations into deciles of R&D intensity. We then

estimate price informativeness for each decile, using the same method as before. We �nd that

price informativeness declines strongly with R&D intensity.

Next, we analyze changes in R&D composition in the cross-section. We use inclusion in the

S&P 500 as our indicator of being a large �rm. In both the S&P 500 and the non-S&P 500

sample, the fraction of �rms investing more in R&D has increased steadily. The share of high-

tech �rms has grown slightly more rapidly in the full sample than in the S&P 500 sample.

Until the early 80's, the high-tech shares for S&P 500 and non-S&P 500 �rms track each other

closely. Then, in the mid-80's trends diverge. The share of high-tech �rms increases more in

the whole sample, essentially driven by a rapid entry rate of tech �rms. Then, in the early

2000's, the share of tech �rms in the S&P 500 increases and tech-shares for S&P 500 and

non-S&P 500 converge again. Since the tech composition of the samples did not trend, the

prevalence of tech �rms, while it may explain the average decline in informativeness, cannot

explain the cross-sectional divergence.

A.4 Evolution of Firm Size

Figure 7 show that S&P 500 �rms got larger, relative to non-S&P 500 �rms. As we showed

in Section 4 in the main text, size is a key determinant of the value of information, so this

diverging trend in size could help explain the diverging trends in informativeness.

A.5 Price Informativeness by Firm Size and Growth

Figure 8 plots the trend in price informativeness � estimated using (3) � for 4 sub-samples

of �rms: Growth-Large, Value-Large, Growth-Small and Value-Small. It shows that informa-
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Figure 7: S&P 500 Firms Became Larger relative to Non-S&P 500 Firms. The graph
shows the average size of S&P 500 and non-S&P 500 �rms over time. Size is de�ned as �rm's total market value
(in 2009 dollars). The sample contains publicly listed non-�nancial �rms from 1960 to 2010.

tiveness has increased for the Growth-Large group, but declined or remained constant for the

others.

B Structural Framework: Derivations

B.1 Proof of Proposition 1

Solving for the equilibrium follows a standard guess-and-verify procedure, widely used in the

noisy rational expectations equilibrium (REE) literature. First, we express total demand for

each asset j, as a function of price (Pj1), and equate it with total supply (x̄ + x̃j). Then,

we match coe�cients on both sides of this market clearing condition to obtain a system of

equations in Aj, Bj, Cj. Speci�cally, all constant terms are equated to Aj; terms that multiply

εj1 get equated to Bj and �nally, those multiplying x̃j must equal Cj. Simplifying that system

of equations yields the stated result.
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Figure 8: Price Informativeness by Firm Size and Growth.
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B.2 Decomposing Price Informativeness: Derivation of (16)

PINFj,s =
Cov(djs , Pj1|dj0)

StdDev(Pj1|dj0)
= gsj

Cov(dj1 , Pj1|dj0)

StdDev(Pj1|dj0)
(23)

= gsj
Cov(εj1 , Pj1)

StdDev(Pj1|dj0)
=
gsj
r

BjΣjd

StdDev(Pj1|dj0)
(24)

=
Σjd

StdDev(Pj1|dj0)

gsj
r − gj

[
1− Σj

Σjd

]
(25)

where the last line uses the expression for Bj from (13).

B.3 Estimating Σjp: Derivation of (18)

Prices and cash-�ows conditional on dj0 can be expressed as20

dj1|dj0 = εj1 (26)

Pj1|dj0 = Ãj +
Bj

r
εj1 +

Cj

r
x̃j , (27)

where Ãj = Aj/r − r
r−gj gjdj0. The regression coe�cients are then given by

βj =
Cov(εj1, Pj1|dj0)

V ar(Pj1|dj0)
=

rBjΣjd

B2
j Σjd + C2

j Σjx

,

αj = E(εj1)− βjE
(
Ãj + (Bj/r)εj1 + (Cj/r)x̃j

)
= −βjÃj ,

20As in the main text, we suppress the �rm subscript for all the variables.
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where we use E[εj] = E[x̃j] = 0. The estimated residuals and their variance are:

ej = dj1|dj0 − αj − βjPj1|dj0 =

(
1− βj

Bj

r

)
εj1 − βj

Cj

r
x̃j ,

=

(
1− BjΣjd

B2
j Σjd + C2

j Σjx

Bj

)
εj1 −

(
BjΣjd

B2
j Σjd + C2

j Σjx

)
Cjx̃j ,

=

(
C2

j Σjx

B2
j Σjd + C2

j Σjx

)
εj1 −

(
B2

j Σjd

B2
j Σjd + C2

j Σjx

)
Cj

Bj

x̃j ,

=

 C2
j

B2
j
Σjx

Σjd +
C2

j

B2
j
Σjx

 εj1 −

 Σjd

Σjd +
C2

j

B2
j
Σjx

 Cj

Bj

x̃j ,

⇒ V ar(ej) =

 C2
j

B2
j
Σjx

Σjd +
C2

j

B2
j
Σjx


2

Σjd +

 Σjd

Σjd +
C2

j

B2
j
Σjx


2

C2
j

B2
j

Σjx . (28)

Noting that Σjp =
C2

j

B2
j
Σjx, we can write (28) more succinctly as

V ar(ej) =

(
Σjp

Σjd + Σjp

)2

Σjd +

(
Σjd

Σjd + Σjp

)2

Σjp =
ΣjpΣjd

Σjd + Σjp

. (29)

Solving (29) for Σjp yields the expression in (18).

C Structural Estimation: Additional Results

C.1 Baseline Estimates

Table 6 presents our estimates for price informativeness and its components by decade and

group.

C.2 Time-varying interest and growth rates

In our baseline estimation, we assumed a constant r = 1.025 over time. In this subsection,

we show that this is not a critical assumption. In particular, we compute the actual average

real interest rate for each decade (de�ned as the di�erence between 1-year nominal Treasury

yield from the Federal Reserve Board's H15 release and realized in�ation over the subsequent

year, computed using the PCE Price Index) and use that series to re-estimate the growth and

information components of price informativeness (note that the volatility component remains

una�ected). Figure 9 plots the estimated trends for all three components and looks very similar

to the baseline results in Figure 3.
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1960s 1970s 1980s 1990s 2000s 2010s

Price Informativeness

Small Growth 0.012 0.002 0.000 0.009 0.012 0.000

Large Growth 0.012 0.019 0.024 0.018 0.049 0.029

Small Value 0.003 0.013 0.003 0.002 0.012 0.001

Large Value 0.001 0.008 0.004 0.006 0.017 0.001

Volatility,
V ar(dj1|dj0)
Std(Pj1|dj0)

Small Growth 0.013 0.021 0.022 0.026 0.020 0.017

Large Growth 0.008 0.006 0.009 0.008 0.008 0.006

Small Value 0.033 0.055 0.045 0.053 0.038 0.030

Large Value 0.013 0.026 0.020 0.015 0.029 0.011

Growth,
gsj

r−gj
Small Growth 3.82 7.10 1.56 1.86 2.25 2.64

Large Growth 34.45 29.75 17.23 15.48 9.44 8.55

Small Value 3.42 1.44 0.60 0.79 2.24 1.61

Large Value 4.97 5.32 3.26 4.49 4.50 2.12

Information, 1− Σj

V ar(dj1|dj0)

Small Growth 0.23 0.01 0.01 0.19 0.26 0.01

Large Growth 0.04 0.10 0.15 0.14 0.64 0.58

Small Value 0.03 0.17 0.10 0.05 0.15 0.01

Large Value 0.02 0.06 0.06 0.08 0.13 0.03

Table 6: Price informativeness and components.

Figure 9: Time-variation in riskless rates.

The plots show a linear trendline �tted to components of price informativeness estimated using (16) and
decade-speci�c interest rates. For details of how r is estimated, see text.

Next, we explore the role by changes in the estimated growth rate of cash�ows. To answer

that question, we re-estimate the model assuming that the cash-�ow growth rate (gj) each

group was �xed at the level estimated for the 1960s. The results, presented in Figure 10, still

show a clear pattern of divergence across groups: information processed increases for large

growth �rms, albeit less dramatically than in the baseline version (note that the scale in the
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Information panel in Figure 10 is much smaller than the corresponding one in 3) and the pattern

of stagnation/decline for the others remain intact.

Figure 10: Time variation in growth rates.

The plots show a linear trendline �tted to components of price informativeness estimated using (16) with the
persistence parameter held �xed at its estimated value for the 1960s.

D Marginal value of information

D.1 Derivations

Interim expected utility, i.e. after chosen information and prices are observed, is

E[U i
j |I i] =

1

2

(E[Vj1 − rPj1|I i])2

V ar[Vj1 − rPj1|I i]
=

1

2

(Πi
j)

2(
r

r−gj

)2 (Σi
j)
−1 (30)

Note that, from an ex-ante perspective, Πi
j is a random variable, since it is a function of the

data observed by i. In our Gaussian setting, the posterior variance, Σi
j, depends only on second

moments (which are known ex-ante, i.e. before data is observed). Ex-ante expected utility

therefore becomes:

E[U i
j ] = E[E[U i

j |I i]] =
1

2

E
[
(Πi

j)
2
](

r
r−gj

)2 (Σi
j)
−1 (31)

=
1

2

(E
[
Πi

j

]
)2 + V ar(Πi

j)(
r

r−gj

)2

 (Σi
j)
−1 , (32)

The unconditional mean and variance of expected pro�t per share can be computed directly
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from the equilibrium price function:

E
[
Πi

j

]
= ρ̄

(
r

r − gj

)2

Σjx̄j . (33)

V ar(Πi
j) = B2

j Σjp +

(
r

r − gj
−Bj

)2

(Σjd − Σi
j)− 2

(
r

r − gj
−Bj

)
BjΣ

i
j (34)

The variance of expected pro�t depends, among other things, on the equilibrium pricing coef-

�cient Bj and the noise in the price signal Σjp. Higher sensitivity to dividends or more noise

leads to more ex-ante variability in expected pro�ts. Substituting the mean and variance of the

expected pro�t per share into (32), we get:

E[U i
j ] =

[
ρ̄2

(
r

r − gj

)4

Σ
2

j x̄
2
j

]
(Σi

j)
−1

2
(

r
r−gj

)2

+

[
B2

j Σjp +

(
r

r − gj
−Bj

)2

(Σjd − Σi
j)− 2

(
r

r − gj
−Bj

)
BjΣ̂

i
j

]
(Σi

j)
−1

2
(

r
r−gj

)2

=

ρ̄2

(
r

r − gj

)2

Σ
2

j x̄
2
j +

(
Bj
r
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where

Mj =
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ρ̄2

(
r

r − gj

)2

Σ
2

j x̄
2
j

]
+

1

2

[(
1− Σj

Σjd

)2

Σjp +

(
Σj

Σjd

)2

Σjd

]
(35)

is the marginal value of information for asset j and the precision of the price signal and Hj is

an equilibrium constant that does not depend on i's information.

Note that Mj is a function, among other things, of the amount of data processed by the

average investor (through Σ
2

j and Σjp terms). The value of information in (22) in the main text

removes these e�ects by setting Σ
2

j = Σjd. The implications for Σjp comes from the pricing

coe�cients � see (15). If no data is processed by others, then no information can be revealed

in prices, so Bj = 0 and Σjp = ∞. At the same time, the term
(

1− Σj

Σjd

)2

becomes zero.

Using L'Hospital's rule, we can show that the latter dominates and therefore, the product

becomes zero in the no-information limit. Combining, the value of information Mj reduces to

the expression for V Ij in (22).
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