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Abstract

Storable Votes and Quadratic Voting are voting systems designed to

account for voters’ intensity of preferences. We test their performance in

two samples of California residents using data on four initiatives prepared

for the 2016 California ballot. We bootstrap the original samples and

generate two sets of 10,000 multi-elections simulations. As per design,

both systems induce minority victories and result in higher expected wel-

fare relative to majority voting. In our parametrization, quadratic voting

induces more minority victories and achieves higher average welfare, but

causes more frequent inefficient minority victories. The results are robust

to different plausible rules-of-thumb in casting votes.

1 Introduction

Traditional political parties in Western democracies are in decline. From the

Gilets Jaunes in France to Cinque Stelle in Italy, voters call for direct democ-

racy and continuous electronic polling. If these calls are heard, we need to

rethink how to protect the system from the tyranny of the majority, a classic

problem in political design.1 The protection of basic rights is the domain of

the judicial branch. Here we are concerned instead with the expression and

weighing of political preferences. There are different reasons for such concern:

∗Columbia University, ac186@columbia.edu, and Cornell University, las497@cornell.edu.
We thank Bora Erdamar, Andrew Gelman, Antonin Mace’, and participants to the Columbia

Experimental Lunch and to the 2018 ETH Workshop on Democracy for useful comments, and

the National Science Foundation (grant SES-0617934) for financial support. The research was

approved by Columbia University Institutional Review Board.
1 See discussions in Dahl (1956, 1989), Guinier (1994), Issacharoff et al. (2002).
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fairness and legitimacy are foremost, but straightforward utilitarian efficiency

is an additional one, and is the object of this study. The numerical size of the

two opposing groups does not account for varying intensities of preferences and

even in binary decisions the outcome of majority voting can be inefficient.

An ideal solution does not superimpose additional rules—quota systems, pre-

set rotation in positions of power—but amends the voting system to allow for

the expression of preference intensity. Outcomes then reflect preferences en-

dogenously, mirroring changes over time, and reverting to majority voting when

intensities do not differ substantially. Two voting schemes with such properties

have been proposed recently: storable votes (SV) (Casella, 2005, 2012, Hortala-

Vallve, 2015), and quadratic voting (QV) (Posner and Weyl, 2015, Goeree and

Zhang, 2017, Lalley and Weyl, 2018a). This paper analyzes their performance

by eliciting preferences and voting behavior over four state-wide propositions in

two samples of California respondents. We find that both voting schemes gener-

ate non-negligible minority victories and result in consistently higher efficiency

than majority voting.

Both schemes induce voters to express the intensity of their preferences by

allowing them to distribute a budget of votes across different binary decisions.

In each decision, the side with more votes then prevails. In large elections, SV

advocates granting voters a "regular" vote to cast on each decision, comple-

mented by a single "bonus vote" to be spent as desired. QV grants voters a

budget of "voices" to be distributed freely, with the defining feature that the

cost of bundling votes is quadratic: casting one vote in an election costs one

voice, but casting ten votes cost 100 voices. Under both systems, voters have an

incentive to cumulate votes to express intensity, but the incentive is tempered:

with SV by the existence of regular votes and the single bonus vote; with QV

by the convex cost of bundling.

In our experiment, we polled California subjects registered on Amazon Me-

chanical Turk (MTurk) on their preferences and voting choices over four propo-

sitions that, at the time of polling, were being considered for the 2016 ballot.

The four propositions concern: (1) the reestablishment of bilingual education

in public schools; (2) the cooperation of the state’s enforcement agencies with

federal immigration agents; (3) new requirements for voters’ approval of large

public infrastructure projects; and (4) longer required teaching experience for

teachers’ tenure. We collected data simultaneously from two samples of about

300 respondents each, exposing one to SV and one to QV.

Because the voting systems rely on the single budget constraint tying the
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different voting decisions, the unit of analysis is the joint four-proposition elec-

tion. Our data then correspond to two data points, one for storable votes, and

one for quadratic voting, inadequate for any extrapolation. Ideally, we would

want a large number of identical joint elections, all with electorates drawn from

our population. We cannot have such data, but we can bootstrap our original

samples to generate two sets of 10,000 simulated multi-elections, one with SV

and one with QV. This is the dataset on which we base our analysis.2

2 The Theory

A large number  of voters are asked to vote, contemporaneously, on a set of

  1 unrelated proposals. Each proposal can either pass or fail. Voter ’s

preferences over proposal  are summarized by a valuation v, where v 

0 indicates that  is in favor of the proposal, and v  0 that  is against. If

the proposal is decided in ’s preferred direction, then ’s realized utility from

proposal , denoted , equals  = |v|, otherwise it is normalized to 0.
Thus the sign of v indicates the direction of ’s preferences, and  their

intensity. Preferences are separable across proposals, and the voter’s objective

is to maximize total utility , where  =
P

 .

Each individual’s valuations {v1,..,v} are privately known. They are a
random sample from a joint distribution F(v1    v) which is common knowl-
edge. There is no cost of voting, and voters vote sincerely. We consider three

voting systems: majority voting, SV, and QV. In all three, each proposal is

decided in the direction preferred by a majority of the votes cast. The voting

systems differ in the rules under which votes are cast.

Under majority voting, each voter has  votes and casts a single vote on

each proposal. The voting scheme gives weight to the extent of support for a

proposal. Storable votes and quadratic voting allow voters to express not only

the direction of their preferences but also their intensity.

2.1 Storable votes

SV grants each voter a budget of "bonus votes" to be distributed freely over

the different proposals. In large elections, it is typically optimal to cumulate

all bonus votes on a single proposal, and the simplest practical implementation

2We borrowed the methodology from Casella et al. (2010).
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is then to endow each voter with one bonus vote to spend as desired, comple-

mented with "regular" votes, one per proposal, that cannot be bundled.3 The

addition of the bonus vote, simple as it is, grants some weight to intensities of

preferences: the voter’s choice of where to cast it signals the voter’s priorities.

If voters’ valuations are independent across voters and proposals, ex ante

welfare in the unique symmetric Bayesian Nash equilibrium is higher than ex

ante welfare under majority voting, under a range of plausible assumptions

about the marginal distributions .
4 In particular, as is to be expected, the

benefits of SV increase if there are asymmetries in intensities between voters on

the opposite side of a proposal and the minority holds more intense preferences—

the case in which the desirability of majority voting is most disputed.

2.2 Quadratic voting

QV has been studied in the context of a single binary election: voters purchase

votes with a numeraire and pay a price that equals the square of the number of

votes purchased. Goeree and Zhang (2017) and Lalley and Weyl (2018a) show

that if valuations are independent across voters and the distribution  satis-

fies some plausible conditions, then any symmetric Bayesian Nash equilibrium

converges asymptotically to utilitarian efficiency. As in the case of SV, the pos-

sibility of casting more than one vote, at a cost, allows for the expression of a

voter’s intensity of preferences and gives it weight over the final outcome.

In the case of multiple elections, QV could be implemented by paying for

votes in an artificial currency: "voices", which can be translated into votes at a

quadratic cost. Casting  votes on proposal  requires spending 
2
 voices on

 (Posner and Weyl, 2015). QV becomes similar to SV, but for the quadratic

cost, and the quadratic cost limits the incentive to cumulate votes.

There is no theoretical analysis of the equilibrium properties of QV in multi-

ple elections. However, a simple model5 shows that efficiency can extend to this

case if voters believe that, on any election, the marginal impact of their votes

on the probability of their preferred side prevailing is constant for any number

of votes they cast. We know from Lalley and Weyl (2018a) that the condition

is generally not satisfied in equilibrium, but the deviations may be too subtle

for voters to take into account.

3Casella and Gelman (2008).
4Casella and Gelman (2008). We summarize the arguments in the appendix.
5The model was suggested by Glen Weyl and is reported in the appendix. It is similar but

more transparent than the one in Lalley and Weyl (2018b).
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3 The Experiment

In May 2016 we selected four propositions that were being prepared for inclu-

sion in the November 2016 California ballot. We then recruited 647 California

subjects via MTurk, and randomly assigned them either to the SV treatment

(324 subjects; 306 after data cleaning6) or to the QV treatment (323 subjects;

313 after cleaning). We asked how each subject would vote on each of the four

propositions, presented in random order, allowing for the option to abstain,

and how important each of these propositions was to the subject. Respondents

assigned to the SV (QV) treatment were then presented with a version of SV

(QV) and asked how they would cast their votes. Outcomes were computed

using simple majority, and either SV or QV. We incentivized voting choices

by promising $250 for an organization working in favor of any proposal that

passed under either SV or QV, depending on the sample. The questions were

programmed in Qualtrics, and copies of all screenshots are reproduced in the

appendix.

3.1 The four propositions

We needed propositions whose outcome was unlikely to be a landslide, about

which some voters would feel strongly, and that would be clear enough to the

average MTurk subject. In March 2016 we had presented an original set of ten

propositions, all with the potential to reach the November ballot, to a sample

of 94 California MTurk subjects. Based on their responses, we selected for the

experiment the following four propositions:7

(1) Bilingual education (BE): re-instate the possibility of bilingual classes in

public schools. The proposition was included in the November 2016 ballot and

passed.

(2) Immigration (IM): require all state law enforcement officials to verify

immigration status in case of an infraction and report undocumented immigrants

to federal authorities. The proposition was not included in the ballot.

(3) Teachers’ tenure (TT): increase required pre-tenure experience for teach-

ers from two to five years. The proposition was not included in the ballot.

(4) Public Vote on Bonds (PB): require voters’ approval for all public in-

frastructure projects of more than $2 billion. The proposition was included in

6See the appendix for details.
7The March survey also yielded a small poll we reported at the end of the experiment. It

had no effect and we ignore it in what follows.
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the ballot and failed.

3.2 Direction and intensity of preferences

The two novel voting rules appeared only in the second part of the survey.

The first part—eliciting voters’ direction and intensity of preferences—allowed

us to compute outcomes under majority voting and construct a measure of

utilitarian welfare. We asked each subject to distribute 100 points among the

four propositions, with the number of points a scale of the importance attributed

to each proposal ("How important is this issue to you?"). We used examples

to clarify that importance is unrelated to preferred direction and summarized

responses in terms of priorities, allowing for revisions, and asking for a final

confirmation. We interpret points as proxy for valuations, and the common

total of 100 points as a normalization preventing factors of scale from distorting

welfare.8

Denoting by  the number of points attributed to proposition  by indi-

vidual , we set  = . Thus 

 =

P
:∈


, where  ∈ {

  } indicates the voting scheme, and 
 the side casting the

majority of votes on  under . Realized aggregate welfare  is given by

 =
P



P
:∈


. Utilitarian efficiency requires that each proposition be

won by the side which collectively values it most, or ∗ =
P



P
:∈  where

 denotes the side with higher total number of points on .

If the two opposite sides attribute similar aggregate values to a proposition,

any outcome for that proposition is close to efficient. To control for this, we

normalize the welfare measures by a floor corresponding to expected welfare

under random decision making, where either side of any proposition has equal

probability of winning:  =
P



P
 2. For each voting scheme , we call

the ratio ( −)( ∗ −) ’s realized share of surplus, and consider it our

primary performance measure.

3.3 The voting schemes

The second part of the survey tests the new voting schemes. In the SV sample,

subjects are told that each is granted a bonus vote—one extra vote—in addition

8The report was not incentivized. The simplest procedure—a bonus proportional to the

value attributed to propositions in which the subject is on the winning side—distorts replies

towards least contentious propositions. We concluded that incentive compatible methods

would be too cumbersome for MTurk.
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to the regular votes cast earlier. Each subject is asked to choose the proposition

in which to use it; the vote is then cast automatically in the direction indicated

in the first part of the survey. The final outcome is calculated summing regular

and bonus votes.

The design of the QV scheme is less straightforward because it must convey

clearly that cumulating votes has a quadratic cost.9 Our survey presents the

subjects with four different classes of votes, distinguished by color, and asks

them to choose one class. Blue votes are regular votes, four in number. Votes

cannot be cumulated, and thus a person choosing blue votes casts one vote on

each proposition. Green votes are only three, but each is worth more than a

regular blue vote and beats a blue vote if the two are opposed. Yellow votes are

two, each stronger than a green vote. Finally, a subject can choose to cast a

single red vote, stronger than a yellow vote. More precisely, the weights of the

different votes are 1 for blue votes, 1.2 for green votes, 1.5 for yellow votes, and

2 for the red vote. A subject who chooses green/yellow/red votes casts votes on

only three/two/one propositions.

QV: Vote classes

Figure 1: The design of the QV scheme in the MTurk survey.

The simple four-class classification respects the convex cost of concentrating

votes. A voter using all four votes on different propositions—choosing blue votes—

9Quarfoot et al. (2017) employed QV to elicit opinions in a large electronic survey, but

did so with proprietary software developed for the purpose, and after showing respondents a

training video. We chose instead to simplify the QV scheme.
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has a total weight of 4, but the total weight declines as votes are concentrated:

a voter using all her voting power on a single referendum has a total weight of 2,

the square root of 4, exactly in line with QV logic. For the intermediate cases of

concentration on three or two propositions, the total weights are 3.6 and 3. The

decline in total voting weight is increasing with concentration, and increasing

at an increasing rate, capturing the core feature of QV. On the other hand, our

streamlined version of QV forces subjects to cast votes of equal weight on all

propositions on which the subject casts votes, a constraint that is not part of

the original idea. In the uncontrolled and fast MTurk environment, the hope

is that our simplified QV benefits from its easier comprehension more than it

loses in flexibility.

We asked each subject to choose a class of votes, and then select the propo-

sition(s) on which to cast the vote(s). As with SV, votes were then cast auto-

matically according to the preferences indicated in the first part of the survey.

The final outcome was calculated on the basis of the QV votes cast.

Under both voting systems, and in all calculations we report, ties were re-

solved randomly.

3.4 The experimental data

3.4.1 Preferences and outcomes

In each sample, the survey yielded a distribution of preferences—the empiri-

cal counterpart to the theoretical distribution F—and voting outcomes. We

reproduce the histograms of respondents’ preferences over each proposition in

the appendix. Here we summarize preferences and voting choices by reporting

percentage margins in favor of each proposition, in terms of aggregate points,

number of voters, and number of votes (Figure 2).10

10Because each subject must allocate 100 points, within each sample the distributions of

points across propositions are not independent, but with four initiatives no individual distri-

bution is redundant.
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IM BE PB TT
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‐0.2
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0.2

0.4

0.6

IM BE PB TT

SV sample

SV/QV

Maj voting

total points

Margins in favor

Figure 2: Margins in favor. Two-sided KS tests assessing whether the distribu-

tions of points are drawn from the same population yield bootstrapped p-values

equal to 0.629 (IM), 0.66 (BE), 0.092 (PB), 0.384 (TT).

In both samples, a majority of respondents is in favor of BE and PB and

against TT and IM, although the margin in the IM proposition is very small.

In both samples and all propositions, the outcome is unchanged whether using

majority voting, SV, or QV. When the aggregate point margin has the same

sign as the majority voting outcome (all propositions in the QV sample; all but

IM in the SV sample), the outcome is efficient. Thus both majority voting and

QV appropriate the full surplus in the QV sample, while both majority and SV

fall short in the SV sample (aggregating over all propositions, they realize 60.4%

of full surplus).11

The IM proposition stands out under several dimensions. It is the most

contested: although it fails in both samples and with all three voting systems,

it always does so with very small vote margins.12 It is also the most salient: as

reported in the appendix, it receives the highest number of total points in both

samples, the highest number of bonus votes in the SV sample, and the highest

number of red votes and of total votes in the QV sample. In addition, the voting

result shows that under SV in the IM proposition the bonus vote was not used

11The inefficient victory in the IM proposition is heavily penalized because in the SV sample

all margins of victory are small, and thus welfare under random outcomes, the floor of our

welfare measure, is relatively high.
12The vote tallies under majority are 129 to 125 (SV sample) and 136 to 130 (QV sample);

under SV the tally is 181 to 170, and under QV a bare 124.6 to 124.4.
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symmetrically by supporters and opponents: supporters’ higher total intensity

is not reflected in the SV results, and the inefficiency of majority voting is not

corrected.13

3.4.2 Voting choices: SV and QV

We report details on the voting choices in the appendix. Here we summarize

them through two statistical models, to be read as compact representations of

the data.

With SV, inspired by Casella et al. (2010), we conjecture that each subject

follows one of four mutually exclusive behaviors: with probability , the

bonus vote is cast on the subject’s highest value proposition; with probability

 on the one with closest outcome (IM); with probability  on the

most familiar (either BE or TT, the two education propositions, with equal

probability); and with probability  according to some other criterion that

appears to us fully (uniformly) random. Each choice observed in the data,

matched with the individual’s reported valuations, can be expressed as function

of the four probabilities.

With QV, we posit a noisy two-step process that starts with choosing a

vote class and then, given the vote class, proceeds to casting the vote(s) on

the different propositions in order of intensity. Denoting by () the voter’s th

highest value, we summarize behavior through five parameters: {    }.
With probability (1−), the voter chooses the vote class that reflects her relative
priorities: red if (4)(3) ≥ , yellow if (4)(3)   but (3)(2) ≥ , green

if (4)(3)  , (3)(2)  , but (2)(1) ≥ , and blue otherwise; with total

probability , the voter chooses one of the other classes (uniformly). Given a vote

class, with probability (1−) all votes are cast monotonically, i.e. on the highest
intensity propositions; with probability , votes are cast non-monotonically,

with uniform probability over the different options.

For both SV and QV, parameters are estimated by MLE, assuming indepen-

dence across subjects. We reproduce them in Table 1.

13On average, opponents who cast their bonus vote on IM did so at lower intensity than

supporters (43.7 points for opponents versus 55.9 for supporters, a significant difference ( 

001)).

10



SV QV

95% CI 95% CI

 0.63 [0.56, 0.76]  1.33 [1.21, 2.10]

 0.04 [0, 0.14]  1.19 [1.04, 1.21]

 0.09 [0.04, 0.21]  1.39 [1.18, 1.79]

 0.23 [0.15, 0.37]  0.50 [0.44, 0.54]

 0.21 [0.17, 0.26]

Table 1. Voting choices: two simple statistical models. MLE estimates of

the statistical models.14 The confidence intervals are obtained by bootstrapping

and reflect the distribution of the estimated parameters in 10,000 simulations.

In the SV sample, the bonus vote is cast primarily on the proposition that

the voter considers her highest priority, but a relatively large role is left for

randomness. In the QV sample, the thresholds in relative values determining

the choice of vote class are significantly higher than 1 but quantitatively not

far, indicating a strong tendency towards cumulating votes.15 About half of the

time, the vote class does not obey the threshold rules estimated by the model.

Given the vote class, however, the tendency towards monotonicity is strong.

4 10,000 Multi-election Samples

On all four propositions, both SV and QV confirmed the outcome reached with

simple majority voting. The observation, however, is not very informative: be-

cause the votes cast across propositions are tied by a budget constraint, each

sample reduces to a single data point. We would want to replicate the same

elections many times, with different electorates all drawn from the same pop-

ulation distribution. We cannot rerun the elections, but we can approximate

such iterations by bootstrapping our data.16

The objective is to estimate the impact of the voting rules in a population

for which our samples are representative. The maintained assumption is that

preferences are independent across individuals, but not necessarily across elec-

tions for a single individual. We sample with replacement  individuals from

14Under the constraints that all probabilities be non-negative and smaller than 1, and all

threshold parameters be larger or equal to 1. In the SV model, the estimated probabilities

must sum to 1.
15As described in the appendix, a full 40 percent of subjects choose the single red vote.
16 See the discussion in Casella et al. (2010). For a discussion of bootstrapping, see Davidson

and MacKinnon (2006).
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each of our datasets, where  = 306 for SV and  = 313 for QV. For each

individual, we sample the direction of preferences over each proposition, the

number of points assigned to each, and the votes cast according to either the

SV or the QV scheme. We replicate this procedure 10,000 times for each original

dataset, SV or QV.17 A replication generates a distribution of preferences over

each proposition and a voting decision for all voters, and thus a voting outcome

for all four propositions. The focus is on the fraction of simulations in which the

two voting systems reach different results from majority voting, and on their

welfare properties.

Generating voting outcomes by matching individuals with the SV or QV

voting choices they reported is an obvious option, and the first one we consider.

But an additional goal is to evaluate the robustness of the two voting schemes

to a range of plausible behaviors, and with this in mind, we posit four alterna-

tive rules-of-thumb governing the use of the votes: A, as just mentioned, i.e., as

the individual did in the original sample; B, as in the descriptive models of the

original samples described above; C, as optimal in a simplified environment; D,

introducing randomness in rule C. If the MTurk sample is not fully representa-

tive, the welfare implications of the voting choices reported by our respondents

are difficult to evaluate because they presumably reflect beliefs about the full

electorate. By abstracting from reported choices, rules C and D allow a com-

parative evaluation of SV and QV that is not affected by the possible lack of

representativeness of the MTurk sample.

In the simulations, we implement rule B by having each drawn subject be-

have according to the corresponding estimates in Table 1, given the subject’s

allocation of points and voting system. Rule C supposes that individuals take

their probability of pivotality as constant (across propositions in SV, and across

the number and weight of votes in QV). Under SV, the optimal rule is then to

cast the bonus vote on one’s highest intensity proposition. Under QV, individu-

als choose a vote class so as to minimize the distance between the weights of the

votes they cast and their normalized values. Rule D suppose that individuals

act as under C with probability 1/2, and randomly with probability 1/2.18

17We verified that with 10,000 simulations the sampling error is negligible. Doubling the

number of simulations to 20,000 has barely detectable effects.
18 See the appendix for details.
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Simulation Results

With all four rules, both SV and QV resulted in frequent minority victories

(Figure 3:A). More than one fourth of the 10,000 simulations in each of the two

data sets, using any rule, had at least one minority victory: the average across

rules was 30% for QV and 35% for SV.19 Remarkably, under all four rules both

voting systems consistently delivered welfare gains over majority voting, and

this even though majority voting works well in these data, especially in the QV

samples. Averaging across rules and simulations, the realized share of surplus

was 86% for SV and 98% for QV, compared to 72% and 95% for majority in

the two sets of simulations (Figure 3:B). However, many minority victories also

came with welfare losses. Averaging across all rules, SV causes welfare losses in

11% of all simulations in which it delivers at least one minority victory, while

the percentage rises to 31% for QV (Figure 3:C).
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Figure 3: Bootstrap results. In panel B, note the difference in majority welfare

in the SV and QV samples.

Reporting the realized share of surplus over all simulations, whether or not

any outcome differs from simple majority, (as in Figure 3:B) allows us to give

weight to foregone efficiency gains. But only a fraction of simulations include a

minority victory, and none of the differences in means in panel B are statistically

significant. If we consider only simulations with at least one minority victory,

the probability of a positive increase in welfare is the complement to 1 of the

numbers shown in Figure 3:C. Such probability is significant at conventional

levels for SV-B ( = 0047), SV-C ( = 0019), and SV-D ( = 010), but in no

19Most minority victories were concentrated on the IM and BE initiatives. See the appendix

for details.
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other case.

In the SV simulations, the outlier is rule A, which implements the actual

voting choice indicated by the subject drawn in the simulation (Figure 3:C).

The problem comes from the IM proposition, where, as noted earlier, bonus

votes are predominantly cast against the proposition, while high points are

predominantly attributed by subjects in favor. The asymmetry in behavior

concerns a small number of subjects, and we cannot rule out that it reflects

pure noise20 , but is sufficient to affect the results. Rules B, C, and D implement

voting behavior that is symmetric relative to the direction of preferences, and

inefficient minority victories are fewer.

The difference in performance between SV and QV is largely driven by

the different potential for improvement over majority voting: such potential

is smaller under QV, and as a result errors are more likely and more frequent.

The discrepancy in the performance of majority voting across the two samples is

surprising because the two samples were populated randomly during the MTurk

survey. Again, it is due primarily to the IM proposition, where, as we saw, in

the MTurk data efficiency favors the majority outcome in the QV sample but

not in the SV sample. Over the 10,000 simulations, considering the IM proposi-

tion alone, majority captures 24% of the surplus in the SV sample, versus 85%

in the QV sample. The difference between the two original samples is random,

but persists in the simulations, which draw from the original samples. We can

attempt to correct the problem by recalibrating the bootstrap exercise.

4.1 Comparing SV and QV: Recalibrating the samples

The data are not sufficiently rich to restrict simulations to subjects with similar

preferences over all propositions. We must limit ourselves to simulate electorates

with more similar distributions of preferences over the proposition that appears

most problematic. More precisely, we construct two sets of 10,000 recalibrated

samples by restricting the distributions of preferences over the IM proposition

so as to replicate, on average, the distribution of preferences over IM in the total

population of our original data (that is, over the two MTurk samples combined):

we draw subjects, with replacement, from the IM preference histogram of the

relevant dataset—SV to construct the SV samples, and QV for the QV samples—

but constrain each draw to come from any bin of the histogram with probability

equal to the corresponding frequency in the population IM preference histogram.

20See the appendix.
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The resulting SV and QV samples are more closely comparable: over 10,000

simulations, the average share of surplus appropriated by majority voting in

the IM proposition is now 49% for SV and 54% for QV—a difference of 5%, as

opposed to more than 60% before recalibration. Averaging over all propositions,

majority voting now appropriates 84% of the surplus on average in the SV sim-

ulations (vs. 72% in the non-recalibrated data), and 91% in the QV simulations

(vs. 95%).21

We have verified that the recalibration does not distort the distributions of

preferences over the other propositions, creating new disparities across SV and

QV data: majority voting’s average performance becomes more similar across

both datasets in three of the four propositions; in the fourth (PB), majority

appropriates on average more than 90% of the available surplus in both datasets,

even as the share declines slightly with recalibration in the SV samples.

Three regularities emerge clearly from the recalibrated simulations (Figure

4). First, QV now results in a consistently higher fraction of minority victo-

ries than SV (averaging over all rules, 38% of QV simulations have at least

one minority victory, vs. 29% per SV).22 Second, under any rule, both voting

systems continue to appropriate a higher share of surplus than majority does:

QV captures 98% of surplus on average (vs. 91% with majority), and SV 91%

percent (vs. 84% with majority). Third, as expected, the frequency of welfare

losses mirrors the available room for improvement over simple majority. In the

recalibrated simulations, majority becomes more efficient in the SV sample, and

the frequency of inefficient minority victories increases (averaging over all rules,

22% of all simulations with at least one minority victory induce welfare losses,

up from 11% in the original simulations); majority becomes less efficient in the

QV sample, and the frequency of errors declines (down to 17%, from 30% orig-

inally). Conditional on at least one minority victory, the probability of welfare

improvement over majority is significant at the 10% level for SV-C ( = 008)

and for QV-C ( = 006).

21 In the population, the majority of voters is against the IM proposition, but aggregate

points are higher among voters in favor: majority voting is inefficient.
22Under any rule, the difference is statistically significant at the 1% level.
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Figure 4: Bootstrap results with recalibrated samples. In the D panels, the scale

is constant. The black vertical line separates losses and gains.

SV-A remains an outlier, and again the reason is the impact of the bonus

vote on the IM proposition. The recalibration leads to samples where defeats

of the proposition are more frequent, whether under majority voting, or under

SV-A, or under efficiency. Overall, the frequency with which SV-A leads to

efficient outcomes over the IM proposition increases. However, increasing the

frequency of voters who oppose the proposition also increases the frequency

of voters who, under SV-A, cast their bonus vote against IM at relatively low

intensities, and thus the frequency of inefficient minority victories. As before,

the problem arises from the asymmetry of behavior in the original SV sample

between voters favoring or opposing the IM proposition. Rules B, C, and D,

on the other hand, perform noticeably better, and under these rules SV yields

results comparable to QV (Figure 4, panels B, C, and D).

The QV performance is remarkably consistent across rules, and appropri-

ates, on average, close to the totality of the available surplus. QV appears more

sensitive to potential improvements than SV, inducing more minority victories

than SV even though majority performs better in the QV samples. A natural
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question is the extent to which this sensitivity reflects the specific parametriza-

tion we have implemented. For SV we have followed the theory in Casella and

Gelman (2008), where background "regular" votes dull the impact of the bonus

vote. With QV, the convex cost by itself moderates the incentive to cumulate

votes, and formal QV models do not include background votes. With multiple

decisions, however, and the maintained assumption of constant marginal pivot

probability, neither a voter’s optimal choice nor the efficiency properties of the

voting system would change when adding regular votes.23

We report in the appendix how the QV simulations results are affected by

the addition of regular votes. As expected, regular votes strengthen the majority

side and reduce the frequency of minority victories. Because this is particularly

true when the total intensities on the two sides are comparable, the result is a

strong decline in inefficient minority victories, with little if any impact on aver-

age extracted surplus. With our data, the modification is to be recommended.

Conclusions

We report the results of a Mechanical Turk experiment designed to test the

performance of Storable Votes (SV) and Quadratic Voting (QV), two voting

systems designed to incentivize the expression of voters’ intensities of prefer-

ences and allow for minority victories. We elicited subjects’ preferences and

voting choices over four propositions intended for the 2016 California ballot. By

bootstrapping our data, we generated two samples of 10,000 joint elections (i.e.

10,000 instances of voting on all four propositions) on which the performances

of the two voting systems can be compared, and compared to majority voting.

We find that both systems indeed result in non-negligible minority victo-

ries: depending on different details of the bootstrapping procedure, between 30

and 40% of simulations in both samples have at least one proposition won by

the minority side. And while making minority victories possible, both systems

consistently raise our measure of total welfare, appropriating at least 80 and

as much as 99% of the available surplus. In the main parametrizations we im-

plement, QV is more sensitive to minority preferences than SV, inducing more

minority victories and appropriating a larger share of the surplus. When the

scope for improvement over majority voting is small, however, such sensitivity

can have a cost and induce frequent inefficient minority victories. SV is simpler,

23The model sketched in the appendix accommodates background votes with no change in

behavior.
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a strong argument in its favor. However, its performance is less consistent across

plausible subjects’ behaviors.

Minority victories can be desirable not only for their direct impact on wel-

fare, but also because, if preferences are correlated across decisions, the same

part of the electorate can be on the losing side on multiple decisions and come

to feel disenfranchised, questioning the legitimacy of the voting system. An

additional question, important in its own right, is the impact of SV and QV

on the inequality of realized ex post utilities. We show in the appendix that

in our data both SV and QV not only increase welfare but also reduce ex post

inequality. Under both aggregate welfare and inequality criteria, we find their

performance to be desirable.

There is widespread demand for more reliance on direct democracy, together

with justified concerns about possible misuses and abuses. It is important to

understand what the weaknesses of direct democracy are, and to think of better,

more robust designs. Both SV and QV contribute to this discussion and are

sufficiently well understood to be ready for testing. This paper is one step in

that direction.
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5 Online Appendix

5.1 Theory

5.1.1 Storable Votes

We summarize here the main results of Casella and Gelman (2008) (CG), to

which we refer the reader for details. As mentioned in the text, if voters are

endowed with multiple votes to distribute over multiple proposals, in a large elec-

torate with independent values, the optimal strategy is to cumulate all votes on

a single proposal (section 7.11 in CG). Thus a simple design becomes desirable.

Each voter is asked to cast one vote on each proposition, and in addition is

given one extra bonus vote. It is natural to think of the bonus vote as equiv-

alent to a regular vote—and that is indeed the parametrization we use in the

experiment—but we can suppose, more generally, that the bonus vote is worth 

regular votes, with   0 and either an integer or the inverse of an integer. The

optimal value of  is part of the design of the mechanism.

A voter’s strategy is a mapping from the voter’s set of valuations to the vote

or votes cast on each proposition. The theoretical analysis in CG assumes that

valuations are independent across voters and propositions and restricts attention

to symmetric Bayesian equilibria in undominated strategies where, conditional

on their set of valuations, all voters vote sincerely. The only decision is the

proposition on which to cast the bonus vote.

SV behaves well, in the precise sense that ex ante expected utility improves

over majority voting under multiple scenarios, as summarized by different as-

sumptions on the marginal distributions of values over each proposition. CG

show that the result holds in the following environments. (1) If (v) =  (v)

for all , where  (v) is a distribution with known median (the median can be

0, if the distribution is symmetric, or differ from 0, if the distribution is asym-

metric). (2) If 00(v) 6= 0(v) for 
00 6= 0, but (v) is symmetric around a

known median of value 0 for all  ∈ {1 }. (3) If (v) = (v) for all ,

where (v) is symmetric around a random median with expected value at 0.

With independent voters and large  , assumptions about the shape of the

distributions (v) have immediate implications about the results of the ref-

erenda. In particular, assuming specific medians for the distributions (v)

amounts to assuming that a random voter’s probability of approval of each

proposition is effectively known ex ante. It is then possible to predict the ma-

jority voting outcome with accuracy that converges to 1 as  becomes large.
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The literature has remarked that allowing for a random median, as in environ-

ment (3) above, is a better assumption.24 We report here in more detail the

results that refer to that case.

Suppose that ex ante each voter  has a probability  of being in favor of

proposal  (v  0), and 1− of being against (v  0). The probability 

is distributed according to some distribution  defined over the support [0 1]

and symmetric around 12: the probability of approval is uncertain and there

is no expected bias in favor or against the proposition. Each realized  is an

independent draw from .

Recall that |v| ≡  is ’s intensity over proposal . To rule out system-

atic expected biases in intensities, both within and across proposals, assume

that, regardless of the direction of preferences, the distribution of intensities is

described by (), defined over support [0 1], with () = () for all .

We want to evaluate the welfare impact of the bonus vote, relative to a

scenario with majority voting. We construct the measure:

 ≡  −

 −
(1)

where  is a voter’s ex ante expected utility under majority voting, 

is a floor, given by expected utility under random decision making (when any

proposal passes with probability 1/2), and  is ex ante expected utility

under SV.25

CG show that in equilibrium voters cast their bonus vote in the proposition

to which they attach the highest intensity. It is then possible to derive:

 =
() + ()

()( + )
(2)

24See for example Good and Mayer (1975), Margolis (1977) and Chamberlain and Rothschild

(1981). Gelman et al. (2002) discuss the implications of a number of alternative models.
25 If we denote by  the expected intensity over any proposal, and by () the expected

th order statistic among each individual’s  intensities, we have:

 = 2

 = 

 = () +

−1
=1

()

where  is the ex ante probability of a desired outcome in any referendum under majority

voting, and  and  are the corresponding probabilities under SV when casting and when

not casting the bonus vote. The challenge is characterizing these probabilities in the assumed

stochastic environment.
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It follows that   1 for all   0, for all distributions () and (), and

for all   1.

By using the bonus vote to give weight to the intensity of their preferences,

voters’ actions work towards increasing the probability of achieving their pre-

ferred outcome in the proposition they consider their highest priority, at the

cost of some reduced influence over the resolution of the other proposals. The

result is an increase in expected welfare.

The conclusion, with some minor qualifications, holds in the different envi-

ronments listed earlier.

5.1.2 Quadratic Voting

As described in the text, QV is an auction-type mechanism designed for a large

population faced with a single binary proposal (Goeree and Zhang, 2017, Lalley

and Weyl, 2018a). Each voter is endowed with a numeraire and bids for the

direction in which the proposal is decided. The winning side is the one with

the larger total bid. The important innovation is that each voter’s bid is pro-

portional to the square root of the numeraire the voter commits. Goeree and

Zhang, and Lalley and Weyl show that if values are independent across voters

and the distribution  is common knowledge, the equilibrium strategy for al-

most all voters is to bid an amount proportional to one’s valuation. It then

follows that the decision must be efficient in utilitarian terms: it mirrors the

preferences of the side with higher total valuation.26

The model relies on the use of a numeraire, valuable in the private market,

and the absence of credit constraints. However, Posner and Weyl (2015) first

suggested that the numeraire could be substituted by an "artificial currency"

whose value derives from being the bidding currency over multiple binary pro-

posals. In this formulation, QV becomes equivalent to SV, but with a square

root rule translating the artificial currency budget into bids (or votes) over each

proposal. The theoretical extension to this case has not been worked out and

is likely to be complex. Still, under some approximation its intuition is simply

captured by the following model, suggested to us by Glen Weyl.

There are   1 independent binary proposals; each voter is endowed with

a budget of "voices" , for simplicity set equal to 1 and fully divisible. Voices

26 If  is symmetric, bidding in proportion to one’s values is the unique equilibrium strategy

for all voters. If  is not symmetric, the characterization of the equilibrium is more delicate,

and bids in the tails of distribution need not be proportional to values. Nevertheless the

efficiency results continues to hold (Lalley and Weyl, 2018a).
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are allocated across proposals and are transformed into a number of votes on

each proposal equal to the square root of the dedicated voices. Note that votes

too are fully divisible. If  denotes the votes cast on proposal  by voter , and

 the corresponding voices, then  =
√
, or

P
=1()

2 =
P

=1  = 1.

Each voter  faces the constrained maximization problem:

{}2
X
=1

() subject to

X
=1

()
2 = 1

where 2 is a normalizing constant and () is the probability that proposal 

is decided as  prefers when casting  votes. Voters adopt weakly undominated

strategies and thus vote sincerely over each proposal.

Suppose now that the marginal impact of any additional vote is constant for

any number of votes cast:
()


≡  (3)

Then for each proposal , the first order condition yields:

 =




where  is the Lagrange multiplier linked to the budget constraint. Substituting

the budget constraint
P

=1()
2 = 1, we obtain:




=

s
1P

=1()
2

and thus:

 =
1qP

=1()
2

 (4)

Equation 4 says that the optimal number of votes cast on each proposal

equals the voter’s value, normalized by the Euclidean norm of the voter’s values

across all proposals. If such norms are similar across voters—for example because

the number of issues is very large—or if they are used to normalize cardinal

values in the welfare criterion, then utilitarian efficiency follows immediately by

equation 4: because the number of votes cast in each proposal is proportional

to the voter’s value (or equal to the voter’s normalized value), each proposal is

won by the side with larger total values.

The model relies on two approximations. First, voices and votes are assumed

24



to be fully divisible. Theoretically, the assumption simplifies the analysis by

avoiding the complications caused by discrete vote distributions. In practice,

it suggests giving voters a large number of voices. Experiments, on the other

hand, routinely suggest that subjects have difficulties making decisions when the

set of options is large. In our experimental implementation, we take a different

route and simplify the subjects’ problem by limiting the number of options.

The second approximation is more substantive and is the assumption of

constant marginal impact of additional votes, the simplification embodied in

equation 3 above. Theoretically the simplification is strong and unlikely to

hold in general. The practical question is how large the deviation is and how

is it reflected in voters’ actual choices. As long as voters believe that votes

have constant marginal impact, the characterization of their behavior follows

correctly.

5.2 Experimental data

5.2.1 Cleaning procedures

In designing the survey, we added an attention check to both samples. The

check took the form of a fictitious fifth proposition, titled the "Effective Workers

Initiative", whose accompanying text asked the reader not to hit any of the

three "For", "Against" and "Abstain" buttons and continue directly to the

next screen. The order of this fifth "initiative" was random.

Before analyzing the data, we excluded all subjects who either did not con-

clude the survey or failed the attention check. In addition, we excluded subjects

in the QV sample who chose the red vote and cast it on a proposition on which

they abstained—these subjects effectively abstained on all propositions under the

QV scheme, and left us no alternative. We also excluded all subjects in the SV

sample who cast the bonus vote on a proposition on which they abstained—a

behavior that may correspond to rejecting the use of the bonus vote, but seems

more likely to denote confusion or lack of interest, as in the QV sample. (Results

are effectively unchanged if we maintain these subjects in the sample). These

exclusions reduced the two samples to 306 (from 324) subjects for SV, and 313

(from 323) for QV.

In both samples, we set to zero the number of points assigned by a subject

to a proposition on which the subject abstained (again note that we have no

alternative since we do not know the direction of the subject’s preferences on

such a proposition). Finally, we set to +1 (or -1) the points attached to a
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proposal on which a subject voted in favor (or against) but to which the subject

assigned zero points. Out of 100 total points, this very minor adjustment allows

us to give at least minimal weight to the direction of preferences expressed by

the subject.

5.2.2 Subjects’ preferences

Subjects’ preferences over each proposition are summarized in histograms re-

porting the number of respondents assigning to a proposition different numbers

of points. Points are coded as negative when the subject voted against the pro-

posal, and as positive when the subject voted in favor, with bins of size 10 (0,

colored light blue in the figures, corresponds to abstentions). Figure 5 below

reports the histograms relative to the IM proposition for the two samples. It

says, for example, that in the SV sample 38 respondents assigned it between 1

and 10 points and voted against it, while 27 assigned to the proposition equally

low points but voted in favor (the corresponding numbers for QV are 29 and

20). The figure also reports, for each sample, the total number of subjects for

and against, the abstentions, and the total number of points, for and against

(bold indicates the larger number).

Figures 6, 7, and 8 report the histograms for the other propositions.

Subjects: +125 / ‐129 / abs. 52
Points: +4340 / ‐3468

Subjects: +130 / ‐136 / abs. 47
Points: +4137 / ‐4269

Figure 5: Distribution of preferences: the IM proposition.
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Subjects: +146 / ‐134 / abs. 26
Points: +4350 / ‐2836

Subjects: +159 / ‐139 / abs. 15
Points: +4345 / ‐2776

Figure 6: Distribution of preferences: the BE proposition.

Subjects: +162 / ‐102 / abs. 49
Points: +4464 / ‐2008

Subjects: +139 / ‐114 / abs. 53
Points: +3779 / ‐2694

Figure 7: Distribution of preferences: the PB proposition.
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Subjects: +112 / ‐176 / abs. 25
Points: +2969 / ‐4391

Subjects: +126 / ‐155 / abs. 25
Points: +3129 / ‐4061

Figure 8: Distribution of preferences: the TT proposition.

5.2.3 The voting choices

SV The optimal selection of the proposition on which to cast one’s bonus vote

is not trivial. If there are asymmetries among the propositions, it should reflect

not only relative valuations, but also pivotality (all else equal, higher if the

proposition is expected to be close and lower if it is salient). If voters are not

well-informed, however, or unable or unwilling to compute equilibria, a plausible

rule-of-thumb is to treat all propositions equally and cast the bonus vote on the

proposal on which one’s preferences are most intense. The approximation is

analogous to the posited behavior under QV. Figure 9 shows, for each of the

four propositions, a measure of the relative intensity of preferences for all voters

who cast their bonus vote on that proposition (with points slightly jittered for

visibility). The vertical axis is the number of points assigned to the proposition;

the horizontal axis is the maximum number of points assigned to any other.27

27A few subjects cast the bonus vote on a proposition to which they had not assigned any

points. As described earlier, if they nevertheless voted on that proposition they are recoded

as assigning +/- 1 point, depending on the direction of preferences.
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SV – IM  (N=97) SV – BE  (N=76)

SV – PB  (N=61) SV – TT  (N=72)

Figure 9: The Bonus Vote Decision.

If all voters had cast their bonus vote on the proposition to which they

assigned the highest number of points, all dots in each panel would be above

the 45 degree line. In total, three fourths of all subjects (74%) did so.

The salience of the IM proposition is supported by the high number of bonus

votes (97, vs. 76 for BE, 61 for PB and 72 for TT) . As noted in the text,

when accounting for bonus votes the margin of victory for opponents of the

proposition increases, although IM supporters report higher average and total

intensity. The result reflects two sources of asymmetry. Of the 23 subjects who

identify the IM proposition as their first priority and yet do not target it with

their bonus vote, more than twice (16) are supporters rather than opponents

(7); of the 20 subjects who cast their bonus vote on IM and yet do not identify

it as their priority, more than twice (14) are opponents rather than supporters

(6). However these differences are numerically very small and in neither case

are the differences in proportions statistically significant.
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QV: fraction of vote classes

Figure 10: QV sample. Frequency of vote classes. The solid columns corre-

spond to the observed frequencies in the MTurk sample. The striped columns

correspond to optimal choices, given the observed distributions of preferences,

if voters perceive the marginal pivotal probability to be constant (as under

rule-of-thumb QV-C, described below).

QV Under QV, voters need to make two choices: the class of votes, and, given

the class, the propositions on which the votes are cast. Figure 10 reports the

frequencies with which subjects chose the different classes.

As the figure shows, even with the convex penalty from cumulating voting

power, a full 40 percent of subjects chose the red vote, and thus cast their vote on

a single proposition; less than 10 percent cast votes on all four propositions. As

described in Table 2 below, we calculated the shares of the different vote classes

subjects would have chosen had they followed the theoretical model sketched

in Section 5.1.2. The corresponding values, with lower vote cumulation, are in

the shaded columns. The theory suggests a lower frequency of red votes, and a

higher frequency of green and blue votes.

Across propositions, IM received the highest total number of votes (97 vs.

76 for BE, 61 for PB and 72 for TT), as well as the highest number of red votes

(45 vs. 19 for BE, 26 for PB and 34 for TT). confirming its salience.

5.3 Bootstrap Simulations

5.3.1 QV: rules C and D

Under rule C, voters act optimally under the belief that the marginal impact of

their votes is constant. As shown in section 5.1.2, assuming constant marginal
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pivot probabilities, the optimal number of votes under QV is proportional to

the voter’s value, or  = . The budget constraint
P

=1()
2 = 4 then

implies  = 2, where  is the Euclidean norm of the voters’ values, or  =qP
=1()

2. Under QV, rule C attributes to each subject a vote class by se-

lecting the vector, out of {2 0 0 0}, {15 15 0 0}, {12 12 12 0}, {1 1 1 1 }
that minimizes the distance from

©
2(4) 2(3) 2(2) 2(1)

ª
.28

Given a vote class, votes should be assigned monotonically.

We reestimated the QV statistical model reported in Table 1 after having

imposed the normative choice on the MTurk sample. As shown in Table 2 below,

estimated thresholds  and  are significantly higher than in Table 1, supporting

the hypothesis that MTurk respondents concentrated votes excessively.

95% CI

 2.35 [2.33, 2.56]

 1.95 [1.85, 2.04]

 1.63 [1.42, 1.79]

 0.05 [0.03, 0.08]

 0.0 [0.0, 0.0]

Table 2. Reestimating the QV statistical model imposing rule C. MLE esti-

mates. The confidence intervals are obtained by bootstrapping and reflect the

distribution of the estimated parameters in 10,000 simulations.

Rule D leaves a larger role to randomness. With QV, it means choosing the

vote class according to rule C with probability 1/2, and choosing any of the

four classes with probability 1/8 each. Given a vote class, the voter casts the

available votes on the propositions with highest values with probability 1/2, and

randomly, treating all propositions equally, otherwise.

5.3.2 Rule E

To evaluate the welfare costs of misusing the voting systems, we have simulated,

for both SV and QV, a fifth rule, E, that captures random behavior. Following

rule E, voters vote in the direction of their preferences but choose randomly

28Requiring subjects to indicate intensity by allocating 100 points among the four initia-

tives implies that values are normalized linearly. It is easy to verify however that the linear

normalization does not affect the transformation described here: if  = 


=1 


,

then 
=1()2 = 


=1()

2
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the proposition on which to cast the bonus vote under SV, and both the vote

class and the propositions under QV. As intuition suggests, over the 10,000

simulations, average welfare under both SV and QV replicates average welfare

under majority voting. (The results are available upon request.)

5.3.3 Results: Differences across propositions

Because both SV and QV constrain the use of the votes across propositions,

each bootstrapped sample corresponds to an outcome for all four propositions.

The discussion in the text focuses on the frequency of samples in which at least

one minority victory is observed, without distinguishing among propositions.

Yet, large differences exist. As the preference histograms in Figures 5, 6, 7, and

8 show, the potential for minority victories is largest in IM and BE, while SV

and QV have a much smaller effect on the other two propositions. Figures 11-14

below report the results.

0

0.1

0.2

0.3

IM BE PB TT

Rule A

non efficient

efficient

0

0.1

0.2

0.3

IM BE PB TT

Rule B

0

0.1

0.2

0.3

IM BE PB TT

Rule C

0

0.1

0.2

0.3

IM BE PB TT

Rule D

SV. Frequency of minority victories by initiative
No recalibration

Figure 11: Minority victories by initiative. SV simulations.The efficient fre-

quency of minority victories by initiative is: 0.52 (IM), 0.24 (BE), 0.05 (PB),

and 0.04 (TT).
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QV.  Frequency of minority victories by initiative
No recalibration

0

0.1
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0.3

IM BE PB TT

Rule B

Figure 12: Minority victories by initiative. QV simulations: bootstrapping the

original QV sample. The efficient frequency of minority victories by initiative

is: 0.18 (IM), 0.12 (BE), 0 (PB), and 0.002 (TT).
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0.2
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Rule C
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Rule D

SV.  Frequency of minority victories by initiative
Simulations calibrated on the population IM preferences

Figure 13: Minority victories by initiative. SV simulations calibrated on the pop-

ulation IM preferences.The efficient frequency of minority victories by initiative

is: 0.37 (IM), 0.16 (BE), 0.09 (PB), and 0.03 (TT).
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QV.  Frequency of minority victories by initiative
Simulations calibrated on the population IM  preferences

Figure 14: Minority victories by initiative. QV simulations calibrated on the

population IM preferences. The efficient frequency of minority victories by ini-

tiative is: 0.34 (IM), 0.14 (BE), 0 (PB), and 0.002 (TT).

5.4 QV cum regular votes

We report here the simulations results when we add to QV four regular votes,

to be cast one on each proposition. Because the MTurk survey described QV

as consisting exclusively of the classes of votes chosen by the respondents, ap-

plying the subjects’ responses to a different environment is not fully legitimate.

We proceed with this caveat in mind, but noting again that if marginal pivot

probability is perceived to be constant, behavior should not change. We sup-

pose that each subject casts the regular votes according to the voter’s declared

preferences in the first part of the survey, as we do for SV. We call the voting

system QVV—QV with Vote.

In both sets of simulations, whether bootstrapping the original raw data

or recalibrating the samples to reflect the population preferences over the IM

proposition, QVV behaves as predicted: relative to QV, the frequency of mi-

nority victories declines; so does the frequency of welfare losses, and the share

of appropriated surplus barely changes.

In the QV simulations based on the original samples, without recalibration,

majority voting appropriates a full 95% of the available surplus. As noted in

the text, although on average QV improves over majority under each of the four

rules-of-thumb, the small margin for improvement translates into a relatively
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high frequency of inefficient minority victories. QVV addresses this problem

effectively: averaging over all rules, the frequency of minority victories declines

from 30 to 19%, with a corresponding decline (from 31 to 18%) in the frequency

of welfare losses, in the simulations with at least one minority victory. (All

differences in frequencies, for any rule, are significant at the 1 percent level).

The impact on the average realized share of surplus is positive, if very small

and not statistically significant (averaging over all simulations and rules, an

improvement of one percentage point, barely noticeable in Figure 15).

0

0.1
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A: Frequency of at least one 
minority victory
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C: Frequency of welfare losses
(at least one minority victory)
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0.70

0.80

0.90

1.00

A B C D

B: Realized share of surplus

QV QVV
SV maj QV QVV
maj SV

Simulations based on the original samples (no recalibration)

Figure 15: QV, SV, and QVV. Simulations based on the original QV sample.

Figure 16 depicts the results for the recalibrated simulations. Relative to

QV, QVV forfeits minority victories with small welfare changes, whether in

terms of gains or losses. On the whole, it is quite comparable to SV—but for

SV’s weak performance under rule A.
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Figure 16: QV, SV and QVV. Simulations calibrated on the population IM

preferences.

5.5 Inequality

Majority voting becomes problematic when the composition of majority and

minority does not change across decisions. An important question is whether

voting systems that make minority victories possible also reduce the inequality

in voters’ probability of achieving their preferred outcomes. In our data, the

frequency with which voters’ preferences are satisfied is reflected in their ex

post utility: by construction, a voter who loses all propositions has an ex post

utility of 0; and one who wins them all of 100. Thus, under majority voting

(and supposing disagreement), correlation in individual voters’ directions of

preferences across proposals would result into high inequality in ex post utility,

reflecting the disenfranchisement of voters who find themselves on the minority

side disproportionally often.

To evaluate SV and QV’s impact on inequality, we calculate the Gini coef-

ficient of the realized utility distribution for each of our simulations, and under

each of the four rules-of-thumb, under the relevant voting system and simple

majority. Focusing on simulations with at least one minority victory and aver-

aging across the four rules, the frequency of Gini declines, relative to majority
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voting, is 73% for SV and 69% for QV when bootstrapping the original samples,

and 65% for SV and 84% for QV in the simulations recalibrated on the popu-

lation IM preferences. The average Gini decline is 10% for SV and 8% for QV

when the simulations are not recalibrated, and 6% and 12% respectively, when

they are. Figures 17 and 18 report the results.

Simulations bootstrapping the original samples 
(at least one minority victory)
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A: Frequency of Gini declines 
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B: Average Gini change re majority (%) 

Figure 17: Gini coefficients. Simulations based on the original samples.

Simulations calibrated on the population IM preferences
(at least one minority victory)
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Figure 18: Gini coefficients. Simulations recalibrated on the population IM pref-

erences.

The average Gini coefficients are reported in Tables 3 and 4. (The results

for QVV, not reproduced here, are effectively identical to QV).
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SV

95% CI

 0.37 [0.30, 0.43]

 0.35 [0.28, 0.40]

 0.32 [0.28, 0.40]

 0.315 [0.28, 0.39]

 0.33 [0.28, 0.40]

QV

95% CI

 0.325 [0.27, 0.37]

 0.29 [0.26, 0.345]

 0.30 [0.26, 0.35]

 0.30 [0.26, 0.35]

 0.30 [0.26, 0.35]

Table 3. Gini coefficient: Simulations based on the original samples (at least

one minority victory). The confidence intervals are obtained by bootstrapping.

SV

95% CI

 0.36 [0.30, 0.43]

 0.36 [0.29, 0.40]

 0.33 [0.28, 0.39]

 0.33 [0.28, 0.39]

 0.34 [0.28, 0.40]

QV

95% CI

 0.33 [0.28, 0.37]

 0.28 [0.26, 0.34]

 0.29 [0.26, 0.35]

 0.28 [0.26, 0.34]

 0.30 [0.26, 0.35]

Table 4. Gini coefficient: Simulations recalibrated on the population IM

preferences (at least one minority victory). The confidence intervals are obtained

by bootstrapping.

The summary message is that both SV and QV have a positive impact on

ex post inequality. With the exception of SV-A, the probability of a decline

in Gini is statistically significant at any level, for either system and with any

rule in both sets of simulations. The magnitude of the effect, however, is not

statistically significant. Both SV and QV can be compared to majority, but

comparing inequality across the two voting system is more problematic because

the two samples differ. All Gini indices are higher in the SV sample, whether

under SV or majority, reflecting the smaller margins of victory in that sample.
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