ON THE COVARIANCE STRUCTURE OF EARNINGS AND HOURS CHANGES

John M. Abowd

David Card

Working Paper No. 1832

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue
 Cambridge, MA 02138
 February 1986

We are grateful to Gary Chamberlain, Zvi Griliches, and Whitney Newey for comments and suggestions. An earlier version of this paper was circulated under the title "The Covariance Structure of Earnings and Hours Changes in Three Panel Data Sets." We thank the Department of Economics at the Massachusetts Institute of Technology for their hospitality while this paper was completed. The research reported here is part of the NBER's research program in Labor Studies. Any opinions expressed are those of the authors and not those of the National Bureau of Economic Research.

On the Covariance Structure of Earnings and Hours Changes

ABSTRACT

This paper presents an empirical analysis of changes in individual earnings and hours over time. Using longitudinal data from three panel surveys, we catalogue the main features of the covariance structure of changes in earnings and hours. We then present an interpretation of these features in terms of both a life-cycle labor supply model and a fixed-wage labor contract model. Our major findings are: (I) there is a remarkable similarity in the covariance structure of earnings and hours changes across the three surveys; and (2) apart from simple measurement error, the major component of variance in earnings and hours affects earnings and hours equi-proportionately.
John M. Abowd
Department of Economics
MIT
Cambridge, MA 02139
(617) $253-1526$

David Card
Department of Economics
Princeton University
Princeton, NJ 08544
(609) 452-4045

Recent empirical studies of longitudinal earnings and hours data focus on the contemporaneous correlation between hours of work and average hourly earnings. $1 /$ This focus arises naturally from the lifecycle labor supply model, which explains movements in hours over time in terms of changes in the value of work and unanticipated changes in wealth. $2 /$ Nonetheless, there is widespread agreement that most of the observed variation in hours over time is not explained by contemporaneous movements in wages. 3/ On one hand, the cross-sectional correlation between percentage changes in annual hours and percentage changes in average hourly earnings is apparently dominated by measurement error. $4 /$ on the other hand, state-of-the-art estimates of the life-cycle labor supply model yield small and of ten statistically insignificant elasticities between hours variation and wage movements. 5/

In this paper, we present a more general analysis of the relation between movements in earnings and movements in hours over time. ${ }^{6 /}$ Using longitudinal data from three panel surveys, we catalogue the main features of the covariance structure of earnings and hours. We then present an interpretation of these features in terms of both a lifecycle labor supply model and a model of fixed-wage labor contracts. Our major findings are: (1) there is remarkable similarity in the covarlance structure of earnings and hours changes across the three data sources and (2) apart from simple measurement error, the major component of variance in earnings and hours affects earnings and hours equiproportionately.

In the first section of the paper, we describe the covariance
matrix of changes in annual earnings and annual hours of work for male household heads in three panel surveys: the Panel Study of Income Dynamics (PSID); the National Longitudinal Survey of older Men (NLS); and the control group of the Seattle and Denver Income Maintenance Experiment (SIME/DIME). Using method-of-moments estimation techniques, we test for parsimonious representations of the data from all three surveys. We find that changes in earnings and changes in hours are uncorrelated at lags in excess of two years in the PSID and the NLS, and at lags in excess of one year in the SLME/DIME. We also find evidence of nonstationarity in the covariances of earnings and hours from all three data sources.

In the second section of the paper, we present a life cycle labor supply model and derive its implications for the data described in Section I. We also discuss the implications of a labor contracting model in which hours of work are varied by employers with no corresponding change in average hourly earnings.

In the third section of the paper, we present estimation results for a simple two-factor model of earnings and hours generation. The model for earnings and hours consists of a systematic component (reflecting individual productivity in the labor supply model or changes in labor demand in the alternative model) and an unsystematic or measurement error component. The estimation results reveal that both components are important in the data, and that the systematic component generally influences earnings and hours equi-proportionately. This leads us to conclude that most observed changes in earnings and hours
that are not attributable to measurement error occur at fixed average hourly wage rates.
I. Data Description

The longitudinal earnings and hours data in this paper are drawn from the Panel Study of Income Dynamics, the National Longitudinal Survey of O1der Men, and the nonexperimental families in the Seattle and Denver Income Maintenance Experiment. From the PSID, we have drawn 1448 male household heads whose records indicate nonzero earnings and hours in each year from 1969 to 1979 (the third through thirteenth waves of the survey). A brief summary of the characteristics of the sample is contained in Table l. We have included only those male household heads who were between 21 and 64 years of age in each of the sample years. Average annual hours (at all jobs) are more or less constant throughout the eleven-year period, while average hourly earnings (adjusted for inflation) grow erratically. Our data set includes the Survey of Economic Opportunity subsample of the PSID and consequently overrepresents nonwhite and relatively low income households. The requirement of eleven continuous years of earnings and hours data, on the other hand, eliminates proportionately more low income and nonwhite households from the sample.

From the National Longitudinal Survey of Older Men we have drawn 1318 men who where less than 65 years old in 1975 and who reported nonzero earnings and hours in each of the survey years 1966 , 1967, 1969, 1971, 1973 and 1975. 7/ Table 2 sumarizes the characteristics of the NLS sample. Average annual hours for this older sample of men decline
throughout the nine-year sample period, particularly between 1973 and 1975. In interpreting the NLS data, it is important to keep in mind that the later waves of the survey were administered biennally. As a consequence, the changes in earnings and hours from 1969 to 1975 refer to changes in annual totals over two-year intervals.

From the Seattle and Denver Income Maintenance Experiment we have drawn a sample of 560 male household heads who en rolled in the control group of the experiment. $8 /$ These male heads we re between 21 and 64 years of age during the first four years of the experiment, and reported nonzero earnings and hours in each of the first eight experimental halfyear periods. We excluded a small number of heads who reported more than 2500 hours of work in any one of the $s i x$ month periods. The size of the SIME/DIME sample reflects the relatively small initial survey and the reduction in sample size associated with the requirement of eight periods of labor market data.

The demographic characteristics of the SIME/DIME sample and time series information on earnings and hours are recorded in Table 3. Labor market information in the income experiment was collected every four months and aggregated into six-month data by the experiment's contractors. Since enrollment dates differ by household, the experimental periods correspond to different periods of calendar time for different households. The first experimental period, for example, contains data from calendar periods between early 1971 and late 1972.

Like the other two samples the SIME/DIME control group over represents low-income and nonwhite households. Average hours of work
(recorded at an annal rate in Table 3) were essentially constant thoonghout the first six periods of the experiment. Hours and real earnings of the SIME/DIME control group fell significantly in the eighth and ninth experimental periods. These periods contain labor market information from late 1974 and early 1975. Changes in mean earnings and hours in the SIME/DIME sample are therefore consistent with changes observed in the other two samples.

The complete covariance matrices of changes in the logarithms of annual earning and annual hours for the three samples are recorded in Tables 4, 5, and 6. In order to partially control for differences in labor force experience in the three samples, we have compoterl times covariances using the residuals from unrestricted multivariate regressions of changes in earnings and hours on time period indicator variables and potential experience (agr minus education minus 5). The characteristios of the data are not significantly affected by removing the predicted effects of experience, since the explanatory power of the experience regressions is negligible in all these data sets. The covariances of the changes in earnings and hours with potential experience are recorded in the final rows of the Tables.

To control for the fact that the SIME/DIME data are drawn from different calendar periods, depending on the date of assignment into the experiment, changes in earnings and hours from the SIME/DIME were regression adjusted using potential experience and a series of indicator variables for month-of-assignment into the experiment. In none of the sixteen regressions for the eight changes in earnings and hours were
these indicator variables jointly statistically significant at conventional significance levels, however.

Table 4 contains the covariances of changes in the logarithms of anmal earnings and annual hours for our sample of household heads from the PSID. The upper left hand triangle of the table presents the covariances of changes in earnings and their associated standard errors. The lower right hand triangle of the table presents the covariances of changes in annual hours. The lower left hand block contains the crosscovariances between changes in earnings and hours.

The cross-sectional variation in percentage changes in annual earnings and hours is large: the standard deviation of the change in the logarithm of earnings is at least 35 percent, while the standard deviation of the change in the logarithm of annual hours is at least 25 percent. The variances and covariances of changes in annual earnings and hours also vary over time. Cross-sectional dispersion in earnings and hours growth is relatively small in 1972-73 and 1973-74, and relatively large in 1975-76. In contrast to aggregate time series data, consecutive changes in individual earnings and hours are strongly negatively correlated. The first-order serial correlation coefficients of the changes in earnings and hours range from -.25 to -.45. The firstorder serial cross-correlations of earnings and hours are also negative, although smaller in absolute value (between -.15 and -.25) than the corresponding autocorrelations.

The contemporaneous covariances of changes in earnings and hours for household heads in the PSID are significantly positive, although too
small to generate a positive correlation between changes in hours and changes in average hourly earnings. Since the logarithm of average hourly earnings is the difference in the logarithms of annual earnings and annual hours, the covariance between changes in annual hours and changes in average hourly earnings is just the difference between the covariance of changes in earnings and hours and the variance of changes in hours. For all ten changes in Table 4 this difference is negative and well determined.

A final important feature of the covariance matrix in Table 4 is the absence of any large or statistically significant autocovariances at lags greater than two years. Year-to-year changes in earnings and hours in the PSID are apparently well-represented as a nonstationary bivariate second-order moving average process.

Table 5 presents the covariance matrix of five experience-adjusted changes in earnings and hours from the NLS. Overall, the data are very similar to the corresponding data from the PSID, although there is more evidence of nonstationarity in the NLS data. On the other hand, none of the second-order autocovariances or cross-covariances in Table 5 are large or statistically significant, so that the NLS data may perhaps be adequately summarized as a nonstationary bivariate first-order moving average (MA(1)) process. If changes in annual earnings and hours between consecutive years are represented by a second-order moving average process ($\mathrm{MA}(2)$) then changes in hours and earnings at two-year gaps are represented by a first-order moving average. $9 /$ Thus the data in Tables 4 and 5 are potentially consistent with the same underlying model of earnings and hours generation.

Table 6 presents the covariances of experience-adjusted changes in earnings and hours between consecutive six-month intervals in the SIME/DIME survey. Again, these covariances are similar to the covariances of the PSID and NLS samples. There is less evidence of nonstationarity in the SIME/DIME than in the other two surveys, although this may reflect the fact that changes in earnings and hours in the SIME/DIME survey are averaged over several different calendar periods. The firstorder autocorrelations of earnings and hours are similar in all three surveys. The covariances between contemporaneous changes in earnings and hours, on the other hand, are relatively higher in the SIME/DIME. This implies that the simple regression coefficient of changes in the logarithm of annual hours on changes in the logarithm of average hourly earnings is smaller in absolute value in the $\operatorname{SIME} / \operatorname{DIME}(-.17)$ than in the other surveys (-.31 in the PSID and -.32 in the NLS). None of the third-order autocovariances or cross-covariances is statistically significant in Table 6, suggesting that semi-annual changes in 10 g earnings and log hours in the SIME/DIME are close to a bivariate MA(2) process. Since a bivariate $M A(2)$ representation of semi-annual changes in earnings and hours implies only a first-order moving ave rage representation of annual changes, the STME/DIME data exhibit lower order serial correlation than the PSID data.

Tables 7, 8, and 9 present formal test statistics for several restrictive models of the covariance matrices of earnings and hours from the three samples. Details of the method-of-moments estimation frame-
work that we use to obtain these test statistics are presented in Appendix A. Table 7 presents the test results for the PSID sample. The first row of the Table reports the goodness-of-fit statistic for a nonstationary bivariate $M A(2)$ representation of the PSID data. This is a test that the third and higher-order autocovariances and crosscovarlances in Table 4^{-}are jointly equal to zero. The probability value of the test statistic is about six percent. Given the absence of any large or individually significant covariances of third order or higher, we conclude that a second order moving average provides an adequate representation of changes in earnings and hours in the PSID sample. The next three rows of Table 7 present goodness-of-fit statistics associated with further restrictions on the general $M A(2)$ model. These tests are performed on the subset of autocovariances and crosscovariances up to second order, utilizing the sample variance matrix of the selected covariances. $\frac{10 /}{}$ The first test is for a symmetric MA(2) model of earnings and hours. This model imposes symmetry on the block of cross-covariances in the lower left-hand corner of Table 4. The test statistic has a marginal significance level of 2 percent, indicating some evidence against the symmetry hypothesis. The next test statistic reported in Table 7 is a test for an MA(1) representation of earnings and hours changes in the PSID. Against the $M A(2)$ alternative, this is a test that the second-order autocovariances and cross covariances in Table 4 are jointly equal to zero. Again, the test statistic indicates some evidence against the null hypothesis. The final row of Table 7 presents the test statistic for the hypothesis that the covariance
structure of earnings and hours changes is time-stationary (i.e., that all 10 variances of earnings are equal, that all 10 variances of hours are equal, etc.). This hypothesis is strongly rejected by the data.

Tables 8 and 9 present an identical sequence of test statistics for the NLS and SIME/DIME samples. In both samples, the data are consistent with a bivariate $\mathrm{MA}(2)$ representation of earnings and hours changes. In the NLS, the second-order covariances and cross-covariances of earnings and hours are also approximately equal to zero. Like the PSID, the SIME/DIME and NLS covariances exhibit significant nonstationarity. The SIME/DIME and NLS covariance matrices are more nearly consistent with the symmetry restriction than the PSID covariance matrix.

In light of the data presented in Tables 4-6, and the test results in Tables 7-9, we conclude that changes in individual earnings and hours are adequately summarized as a nonstationary bivariate second-order moving average. This description holds for annual data (PSID), semiannual data (SIME/DIME), and annual data at two year gaps (NLS). More restrictive models of the covarlance structure of earnings and hours changes are not generally valid. In particular, nonstationarity is an important feature of the covariances of earnings and hours from all three panel surveys.
II. Alternative Models of the Covariance Structure of Earnings.

In this section we present a simplified life-cycle labor supply model and derive its implications for the covariance matrix of changes in earnings and hours in panel data. We also present an alternative
model of earnings and hours detemination that corresponds to a labor contract with fixed average hourly earnings and employer-determined hours of work. We discuss the econometric identification of these models in the presence of survey measurement error and outline an estimation strategy that decomposes changes in earnings and hours into two components: a systematic component, reflecting individual productivity (In the labor supply model) or employer demand (in the contract model); and a measurement error component.

A. A Life-Cycle Labor Supply Model.

The starting point for our model of life-cycle labor supply is an additively separable utility function of the form
(1) $\quad \sum_{j=0}^{T} \beta^{j}\left[\log c_{i t+j}-a_{i t+j} \frac{\eta}{1+n} h_{i t+j}^{\frac{1+\eta}{\eta}}\right]$
where T is the time horizon of individual i, β is a fixed discount factor, $c_{i t+j}$ represents the consumption of individual i in period $t+j, a_{i t+j}$ represents a preference-shift variable, η is a strictly positive parameter, and $h_{i t+j}$ represents the hours of work of individual i in period $t+j$. We assume that individuals choose their labor supply and consumption in each period in order to maximize the expected value of (1), given the information avallable in that period and subject to the following equation describing the evolution of their nominal assets:

$$
\begin{equation*}
A_{i t+1}=\left(p_{t} \theta_{i t} h_{i t}-p_{t} c_{i t}+A_{i t}\right)\left(l+R_{t}\right) \tag{2}
\end{equation*}
$$

In this equation $A_{i t}$ represents the nominal value of assets held by individual i in period t, R_{t} represents the nominal interest rate, p_{t} represents the price level of consumption goods, and $\theta_{\text {it }}$ represents the real wage rate available to individual i in period t.

Maximization of the expected value of (1) subject to the wealth constraint (2) implies the Bellman equation:
(3) $\quad V_{i t}\left(A_{i t}\right)=\max _{\left(c_{i t}, h_{i t}\right)} \log c_{i t}-a_{i t} \frac{\eta}{1+\eta} h_{i t}^{\frac{1+\eta}{\eta}}+\beta E_{t} V_{i t+1}\left(A_{i t+1}\right)$,
where E_{t} denotes the expectation operator conditional on information available to individual i in period t.

The first-order conditions for consumption and labor supply in period t are
(4a) $\frac{1}{c_{i t}}-\beta p_{t}\left(1+R_{t}\right) E_{t} V_{i t+1}^{\prime}\left(A_{i t+1}\right)=0$
(4b) $a_{i t} h_{t}^{1 / \eta}-\beta \theta_{i t} p_{t}\left(1+R_{t}\right) E_{t} V_{i t+1}^{\prime}\left(A_{i t+1}\right)=0$

In addition, the derivatives of the value function $V_{i t}$ ($A_{i t}$) follow the s tochastic difference equation:

$$
\begin{equation*}
\lambda_{i t} \equiv V_{i t}^{\prime}\left(A_{i t}\right)=\beta\left(1+R_{t}\right) E_{t} \lambda_{i t+1} \tag{5}
\end{equation*}
$$

There is no exact solution to equations (4) and (5) in general. We proceed by using a well-known approximation to equation (5); namely
(6) $\quad \log \lambda_{i t}=\log \beta+R_{t}+E_{t} \log \lambda_{i t+1}+d_{i}$,
where d_{i} is the error of approximation and is assumed to be time stationary. The labor supply equation can be derived from (4b) using the definition of $\lambda_{\text {it }}$ in (5):
(7) $\quad \log h_{i t}=\eta \log \theta_{i t}+\eta \log p_{t}+\eta \log \lambda_{i t}+\xi_{i t}$,
where $\xi_{i t}=-\eta \log a_{i t}$. According to this equation, hours of work are related to the contemporaneous wage rate by the intertemporal substitution elasticity η. Hours of work also depend on the marginal utility of wealth $\lambda_{i t}$, and the preference parameter $\xi_{i t}$.

Making use of the approximation in equation (6), equation (7) can be differenced to yield the following description of the change in the logarithm of hours:

$$
\begin{align*}
\Delta \log h_{i t} & =\log h_{i t}-\log h_{i t-1} \tag{8}\\
& =\eta \Delta \log \theta_{i t}+\eta\left(\rho-r_{t-1}\right) \\
& +\eta\left(\log \lambda_{i t}-E_{t-1} \log \lambda_{i t}\right)+\Delta \xi_{i t},
\end{align*}
$$

where ρ is the discount rate defined by $\beta \equiv 1 /(1+\rho)$ and r_{t} is the real interest rate defined by $r_{t} \equiv R_{t}-\Delta \log p_{t}$. Since labor earnings are the product of the wage rate $\theta_{i t}$ and hours of work $h_{i t}$, the labor supply model implies a similar specification for the change in the logaritho of earnings ($g_{i t}$):

$$
\begin{align*}
\Delta \log g_{i t} & \equiv \Delta \log h_{i t}+\Delta \log \theta_{i t} \tag{9}\\
& =(1+\eta) \Delta \log \theta_{i t}+\eta\left(\rho-r_{t-1}\right) \\
& +\eta\left(\log \lambda_{i t}-E_{t-1} \log \lambda_{i t}\right)+\Delta \xi_{i t}
\end{align*}
$$

Changes in earnings and hours share common components associated with the revision of the marginal utility of income; the change in tastes for leisure; and the difference between the discount rate and real
interest rate. In addition, an individual-specific wage component enters the equations for earnings and hours changes with relative factor loadings of $(1+\eta)$ and η, respectively.

To complete this model of earnings and hours, we need to specify a stochastic process for the wage rate. We assume that individual wages contain a permanent component, an aggregate component, an experiencerelated component, and an idiosyncratic component. Specifically, we a ssume :
(10) $\log \theta_{1 t}=\alpha_{1}+\delta_{t}+\gamma_{1} x_{1 t}+\gamma_{2} x_{1 t}^{2}+z_{1 t}$,
where α_{1} is an individual-specific permanent wage effect, δ_{t} is an economy-wide time effect, $x_{i t}$ is the number of years the individual has been in the labor force, and $z_{i t}$ is an idiosyncratic wage shock. This specification explicitly rules out both individual-specific responses to the aggregate shock and individual-specific experience effects. We defer a detailed discussion of these assumptions to Appendix B. Using equation (10), the change in the wage rate in period t may be expressed as:

$$
\begin{equation*}
\Delta \log \theta_{i t}=k_{t}+\gamma x_{i 0}+\Delta z_{i t} \tag{11}
\end{equation*}
$$

where $k_{t} \equiv \delta_{t}-\delta_{t-1}+\left(\gamma_{1}-\gamma_{2}\right)+2 \gamma_{2} t, \quad \gamma \equiv \gamma_{2}$, and x_{10} is labor force experience at calendar date $t=0$.

Substituting equation (11) into equations (8) and (9) and appending a pair of measurement errors to $\log g_{i t}$ and $\log h_{i t}$ yields a theoretical model for the bivariate stochastic process governing observed changes in individual earnings and hours:
(12a) $\Delta \log _{\mathrm{g}_{\mathrm{t}}}=(1+\eta) \kappa_{t}+n\left(\rho-r_{t-1}\right)$

$$
+(1+\eta) \gamma x_{i 0}+(1+\eta) \Delta z_{i t}+\eta \varepsilon_{i t}+\Delta \xi_{i t}+\Delta u_{i t}^{*}
$$

(12b) $\Delta \log h_{i t}=\eta k_{t}+\eta\left(\rho-r_{t-1}\right)$

$$
+\eta \gamma x_{i 0}+\eta \Delta z_{i t}+\eta \varepsilon_{i t}+\Delta \xi_{i t}+\Delta v_{i t}^{*}
$$

where $\varepsilon_{i t} \equiv \log \lambda_{i t}-E_{t-1} \log \lambda_{i t}$,
$u_{i t}^{*} \equiv$ measurement error in observing $\log g_{i t}$, and
$v_{1}^{*} \equiv$ measurement error in observing $\log h_{i t}$.

The implications of equations (12) for the covariance structure of earnings and hours depend on the serial correlation properties of the productivity shock $z_{i t}$, the taste shock $\xi_{i t}$, the measurement errors $u_{i t}^{*}$ and $v_{i t}^{*}$, and the unexpected change in the marginal utility of income $\varepsilon_{i t}$. We assume that tastes for leisure contain a permanent component, a homogeneous quadratic age effect, and an individual-and-period-specific component. These assumptions imply that the error component $\Delta \xi_{\text {it }}$ associated with the change in tastes for leisure can be written as

$$
\begin{equation*}
\Delta \xi_{i t}=\xi_{1}+\xi_{2} x_{i 0}+\Delta v_{i t} \tag{13}
\end{equation*}
$$

where $v_{i t}$ represents an individual- and period-specific taste shock. We assume that $v_{i t}$ is serially uncorrelated with a constant variance. The change in tastes for leisure is therefore a first-order moving average with a serial correlation coefficient of -.50 .

The measurement errors $u_{i t}^{*}$ and $v_{i t}^{*}$ have a special structure. They are intended to represent systematic and random deviations of the survey measures of earnings and hours from their theoretical analogues. To capture these ideas, we assume that

$$
\left[\begin{array}{c}
u_{i t}^{*} \tag{14}\\
v_{i t}^{*}
\end{array}\right]=\left[\begin{array}{l}
\phi_{1 i} \\
\phi_{2 i}
\end{array}\right]+\left[\begin{array}{l}
\zeta_{1 i t} \\
\zeta_{2 i t}
\end{array}\right]
$$

where $\phi_{1 i}$ and $\phi_{2 i}$ represent individual- and survey-specific permanent response biases, and $\zeta_{1 i t}$ and $\zeta_{2 i t}$ represent transitory measurement errors. We assume that $\zeta_{1 i t}$ and $\zeta_{\text {2it }}$ are serially uncorrelated with an arbitrary time-stationary covariance matrix. Since the changes in the measurement errors of earnings and hours reflect only the changes in the transitory components of these errors, and since the transitory measurment errors are serially uncorrelated, Δu^{*} and Δv^{*} are first-order moving averages with serial correlation coefficients equal to -.50 . Notice that we are unable to separately identify the variance contribution of the random shock to preferences and the variance contribution of the transitory measurement errors, since we have assumed that they have the same serial correlation properties, and we have not restricted the correlation between the measurement errors.

We therefore combine these components into an unsystematic component of the changes in earnings and hours:
(15) $\left[\begin{array}{l}\Delta u_{i t} \\ \Delta v_{i t}\end{array}\right]=\left[\begin{array}{l}\Delta u_{i t}^{*}+\Delta v_{i t} \\ \Delta v_{i t}^{*}+\Delta v_{i t}\end{array}\right]=\left[\begin{array}{l}\Delta \zeta_{1 i t}+\Delta v_{i t} \\ \Delta \zeta_{2 i t}+\Delta v_{i t}\end{array}\right]$
which is a stationary bivariate $M A(1)$ process with an arbitrary contemporaneous covariance and with first-order autocorrelations equal to -. 50 .

On the basis of the evidence that changes in earnings and hours are adequately represented as a bivariate $M A(2)$ process, we assume that changes in individual productivity shocks in all three surveys follow a nonstationary second order moving average. The parameters of this process include the variance of the change in individual productivity shocks in period t (var $\Delta z_{i t}$), the covariance of changes in individual productivity shocks in periods t and $t-1\left(\operatorname{cov}\left(\Delta z_{i t}, \Delta z_{i t-1}\right)\right)$, and the covariance of changes in individual productivity shocks in periods t and $t-2\left(\operatorname{cov}\left(\Delta z_{i t}, \Delta z_{i t-2}\right)\right)$.

The final component of variance in equations (12a) and (12b) is $E_{\text {it }}$, the unexpected change in the logarithm of the marginal utility of wealth. In general, $\varepsilon_{i t}$ is a function of the unanticipated component of the individual productivity shock $\Delta z_{i t}$ and the unanticipated com-
ponent of the aggregate productivity shock. Consider the linear projection (across individuals at a point in time t):

$$
\begin{equation*}
\varepsilon_{i t}=\bar{\varepsilon}_{t}+b_{t}\left(\Delta z_{i t}-E_{t-1} \Delta z_{i t}\right)+e_{i t} \tag{16}
\end{equation*}
$$

Since the forecast error of $\Delta z_{i t}$ is serially uncorrelated, the serial correlation properties"of $\varepsilon_{i t}$ depend only on the serial correlation properties of the projection error $e_{i t}$. This error depends on both individual and aggregate productivity shocks, since individuals can vary in their response to an idiosyncratic shock and in their response to an aggregate shock. For simplicity, we assume that the projection errors $e_{i t}$ are serially uncorrelated (in the sense that plim $\frac{1}{N} \sum_{i=0}^{N} e_{i t} e_{i t-j}=0$). This assumption is satisfied if $e_{i t}$ depends only on individual productivity shocks, or equivalently, if unanticipated aggregate shocks generate a homogeneous shift in the marginal utility of income that is incorporated into the constant term $\bar{\varepsilon}_{\mathrm{t}}$ in (16)., 11/

We are now in a position to catalogue the implications of equations (12a) and (12b) for the covariance structure of earnings and hours in panel data. We note that in the absence of prior information these equations place no restrictions on the mean changes in earnings and hours observed in a cross-section. $\frac{12 /}{}$ Depending on the specification of 1ife-cycle preferences for leisure, however, equations (12) may restrict the regression coefficients of changes in earnings and hours on potential experience. Equation (12a) implies that the regression coefficient of the change in earnings on potential experience is

$$
(1+\eta) \gamma+\xi_{2},
$$

while (12 b) implies that the regression coefficient of the change in hours on potential experience is

$$
\pi \gamma+\xi_{2}
$$

If life-cycle preferences exhibit no systematic curvature, then $\boldsymbol{\xi}_{2}=0$, and all the curvature in life-cycle hours is due to curvature in wages. In that case, an estimate of η is available fron the ratio of the covariance of the change in earnings with experience to the covariance of the change in hours with experience. This is precisely the instrumental variables estimate of η from the labor supply equation (12b), using potential experience as an instrument for wages. $\frac{13 / 1}{}$

Table 10 presents the average covariances of changes in earnings and hours with potential experience from the three data sets. It is important to keep in mind that the timing intervals of the changes in earnings and hours are different in the three surveys. If the underlying parameters were the same in all three samples, then one would expect to observe covariances in the SIME/DIME roughly one-half as large as those in the PSID, and covariances in the NLS roughly twice as large as those in the PSID. $\frac{14 / \text { The first row of the Table presents the }}{}$ average covariances of the change in earnings with potential experience. In all three data sets this covariance is negative, although in the NLS the average covariance is relatively small. The second row of the Table presents the average covariances of changes in hours with experience. In the PSID and SIME/DIME samples the covariance of hours changes with experience is smaller in absolute value than the covariance of earnings changes with experience. In the NLS sample, however, the covariance of
hours changes with experience is larger in absolute value than the covariance of earnings changes with experience. Under the assumption that labor supply preferences exhibit no systematic curvature, the instrumental variables estimate of η is $C_{h} /\left(C_{g}-C_{h}\right)$, where C_{h} and C_{g} represent the average covariances of experience with hours and earnings changes, respectively. The instrumental variables estimates of n for the PSID and SIME/DIME are therefore positive, while the estimate of n for the NLS is negative and significantly different from zero. 15/

The fourth row of Table 10 contains the goodness-of-fit statistics associated with the restriction that the covariances of earnings and hours with potential experience are stable over time. The hypothesis of stationarity is marginally accepted in the PSID and SIME/DIME samples, and strongly rejected in the NLS sample. In view of this finding, for the remainder of our empirical analysis we leave the regression coefficients of the changes in earnings and hours on potential experience unrestricted, and concentrate on the covariance structure of the experience-adjusted changes.

Denote the residuals of individual changes in earnings and hours from a multivariate regression on potential experience and time-specific means by $\Delta \log \tilde{g}_{i t}$ and $\Delta \log \tilde{h}_{i t}$, respectively. Equations (12a) and (12b) imply
(17a) $\Delta \log \tilde{g}_{i t}=(1+\eta) \Delta z_{i t}+\eta\left(\varepsilon_{i t}-\bar{\varepsilon}_{t}\right)+\Delta u_{i t}$, and

$$
\begin{equation*}
\Delta \log \widetilde{h}_{i t}=n \Delta z_{i t}+n\left(\varepsilon_{i t}-\bar{\varepsilon}_{t}\right)+\Delta v_{i t} \tag{17b}
\end{equation*}
$$

Experience adjusted changes in earnings and hours consist of three components: a productivity component ($\Delta z_{i t}$) that enters earnings and
hours with coef ficients $(1+\eta)$ and η, respectively; a serially uncorrelated component associated with the unanticipated change in the marginal utility of income; and a restricted bivariate $\mathrm{MA}(1)$ component reflecting survey measurement error and random shocks to preferences.

Table 11 summarizes the implications of equations (17a) and (17b) for the covariance structure of experience-adjusted changes in earnings and hours. Measurement error components contribute negative first-order autocovariances in direct proportion to their variance contribution. Unanticipated changes in the marginal utility of income contribute a time-specific component to the variances and covariance of earnings and hours, but do not contribute to the autocovariances. Individualspecific productivity shocks contribute a time-varying variance and covariance component, and represent the only source of second-order autocovariance. As indicated in the table, the labor supply model imposes symmetry on the cros s-covariances of earnings and hours--a restriction that is satisfied in the NLS and SIME/DIME samples but marginally rejected in the PSID sample. The labor supply model also restricts the four second-order autocovariances in each year to have the same sign. Inspection of Tables 4,5 and 6 suggests that this restriction is typically satisfied, although the second-order covariances are estimated with relative imprecision.

It is clear from Table 11 that the labor supply elasticity η is generally overidentified. First, ratios of the second-order autocovariances provide estimates of $1+\eta / \eta$, the relative factor loading of productivity shocks in earnings as compared to hours. Second, if the
first-order covariances vary over time, then the non-stationary components of the first-order autocovariance matrix are restricted by the ratio $1+n / \eta$. Let $C^{1}(t)$ denote the estimate of the first-order autocovariance matrix of eamings and hours in period t. Equations (17a) and (17b) imply

$$
C^{1}(t)-C^{1}(s)=\left\{\operatorname{cov}\left(\Delta z_{i t}, \Delta z_{i t-1}\right)-\operatorname{cov}\left(\Delta z_{i s}, \Delta z_{i s-1}\right)\right\}\left[\begin{array}{cc}
(1+\eta)^{2} & \eta(1+\eta) \tag{18}\\
\eta(1+\eta) & \eta^{2}
\end{array}\right] .
$$

Provided that the first-order autocovariances of the productivity shock are not equal, equation (18) identifies the relative contribution of individual productivity shocks in earnings as compared to hours, and thus provides an estimate of the labor supply elasticity n.

In the stochastic model of labor supply represented by equations (17a) and (17b), the zero-order covariances of earnings and hours (the variances of earnings and hours and the contemporaneous covariance) are unrestricted. This is a consequence of the fact that there are three free parameters $\left(\operatorname{var}\left(\Delta z_{i t}\right)\right.$, $\operatorname{var}\left(\varepsilon_{i t}\right)$, and $\left.\operatorname{cov}\left(\Delta z_{i t}, \varepsilon_{i t}\right)\right)$ associated with the three zero-order covariances in each time period. In a perfect foresight model in which the marginal utility of income is constant, on the other hand, $\varepsilon_{i t}$ is zero in every period and the labor supply model restricts the zero-order covariances in the same manner as the first-order autocovariances.

Even in a perfect foresight model, however, the covariances of the measurement error component of earnings and hours are not separately identifiable from the variances and first-order autocovariances of the
productivity shock. $16 /$ It is therefore impossible to provide a unique variance decomposition of the changes in earnings and hours into systematic and unsystematic components. One solution is to impose a prior estimate of the correlation coefficient between the measurement errors in earnings and hours. The estimate of $(1+\eta) / \eta$ is invariant to the choice of correlation coefficients. In this paper we do not compute variance decompositions of the earnings and hours data.

B. A Fixed Wage Contract Model.

The institutional structure of many employment situations is not easily reconciled with a model of the labor market in which employees unilaterally determine their hours of work subject to their current wage rate. In contrast, a wide variety of contractual models emphasize fixity in the labor market and resulting discrepancies between observed average hourly earnings and the marginal rate of substitution of consumption for leisure. ${ }^{17 /}$ A prototypical model is one outlined by Abowd and Ashenfelter (1981). In their model, employers offer job packages consisting of a fixed average hourly wage rate and a probability distribution over hours. Equilibrium in the labor market is obtained by equating expected utilities of job packages. In any particular realization of the random demand shock driving employers' demands for hours, however, employees may prefer to work more or less than required in their contract. The implied correlation between changes in average hourly earnings and changes in labor supply is zero: earnings move in direct proportion to employer-determined hours with no corresponding change in wage rates.

To derive the implications of this model for the covariances of earnings and hours in panel data, assume that the wage rate received by individual i in period t contains only a permanent component, a deteministic experience component, and a period-specific component:
(19) $\log \theta_{i t}=\alpha_{i}+\delta_{t}+\gamma_{1} x_{i t}+\gamma_{2} x_{i t}^{2}$, where, as before, $x_{i t}$ indicates the potential experience of $i n$ period t. As sume that hours of work of individual in in period t consist of a permanent component Ψ_{i}, a deterministic experience component, a period-specific effect ρ_{t}, and a stochastic component $y_{i t}$ reflecting employer demand for hours:
(20) $\quad \log h_{i t}=\Psi_{i}+\rho_{t}+\gamma_{1}^{*} x_{i t}+\gamma_{2}^{* x_{i t}^{2}}+y_{i t}$.

Adding measurement errors $u_{i t}$ and $v_{i t}$ to observed earnings and hours, respectively, this fixed-wage contract model implies that the residuals of individual changes in earnings and hours from a regression on potential experience are given by:
(21a) $\Delta \log \tilde{g}_{i t}=\Delta y_{i t}+\Delta u_{i t}$,
and
(21b) $\Delta \log \tilde{h}_{i t}=\Delta y_{i t}+\Delta v_{i t}$.

As it happens, this simple fixed wage contract model is indistinguishable fron a labor supply model in which the ratio $(1+n) / n$ is unity, or equivalently, in which the elasticity of labor supply is arbitrarily large. To see this, let

$$
\mu=(1+\eta) / \eta, \quad \Delta z_{i t}^{*}=\eta \Delta z_{i t}, \quad \varepsilon_{i t}^{*}=\eta\left(\varepsilon_{i t}-\bar{\varepsilon}_{t}\right)
$$

and rewrite (17a) and (17b) as

$$
\text { (22a) } \Delta \log \tilde{g}_{i t}=\mu \Delta z_{i t}^{t}+\varepsilon_{i t}^{*}+\Delta u_{i t}
$$

and
(22b) $\Delta \log \tilde{h}_{i t}=\Delta z_{i t}^{*}+\varepsilon_{i t}^{*}+\Delta v_{i t}$.

If $\mu=1,(22 a)$ and (22b) are identical to (21a) and (21b) with $\operatorname{var}\left(\Delta y_{i t}\right)=\operatorname{var}\left(\Delta z_{i t}^{*}\right)+\operatorname{var}\left(\varepsilon_{i t}^{*}\right)+2 \operatorname{cov}\left(\Delta z_{i t}^{*}, \varepsilon_{i t}^{*}\right)$ and $\operatorname{cov}\left(\Delta y_{i t}, \Delta y_{i s}\right)=\operatorname{cov}\left(\Delta z_{i t}^{*}, \Delta z_{i s}^{*}\right)$ for $t \neq s$. It is therefore impossible to reject the labor supply model in favor of the fixed wage contract model. If estimates of μ in equation (22a) are close to unity, however, our interpretation of the data is not that small changes in wage rates are necessarily driving large changes in hours, but rather that hours and earnings are moving proportionately at constant average hourly wage rates. 18 /
III. Estimates of a Two-Factor Mode 1 of Earnings and Hours.

In this section we present estimates of the two-factor model of earnings and hours generation derived from the theoretical models in the previous section. We report estimation results for two versions of the labor supply model: a perfect foresight version that ignores changes in the marginal utility of income; and a stochastic version that allows for unanticipated changes in the marginal utility of income. For each version of the model, and each of the three panel surveys, we pre-
sent sumary statistics for the goodness-of-fit of the model, as well as estimates of the relative contribution of productivity shocks in earnings as compared to hours (the parameter μ in equation (22a)), and the implied elasticity of intertemporal substitution.

The estimates are obtained by method-of-moments techniques, using as data the covariances of experience-adjusted changes in earnings and hours. On the basis of the preliminary data analysis in Section I, we fit the model to the contemporaneous covariances of earnings and hours and their first- and second-order autocovariances, ignoring the higherorder autocovariances.

Two alternative method-of-moments estimates are presented. The first, which we call the equally weighted minimum distance (EWMD) estimator, minimizes the quadratic form

$$
[m-f(b)]^{\prime}[m-f(b)],
$$

where m represents the vector of adjusted covariances to be fit by the model, b represents the vector of parameters of the model, and $f(b)$ represents the yector of predicted values of the fitted moments, conditional on the parameter vector b. The second, which we call the optimal minimum distance ($O M D$) estimator, minimizes the quadratic form

$$
[m-f(b)]^{\prime} V^{-1}[m-f(b)],
$$

where V denotes the sample variance matrix of the data vector m. Chamberlain (1984) shows that the later estimator minimizes the asymptotic covariance matrix of the estimated parameters among the class of minimum distance estimators.

Table 12 sumarizes the structural estimation results for the PSID.

Columns (1) and (2) report equally weighted minimum distance and optimal minimum distance estimates, respectively, for the perfect foresight model, while columns (3) and (4) report EWMD and OMD estimates of the uncertainty model. The individual productivity process ($\Delta z_{i t}$) is estimated as an arbitrary nonstationary MA(2) process. In the PSID, this introduces 27 parameters: 10 variances, 9 first-order covariances, and 8 second-order covariances. The measurement error/preference shock component of variance introduces 3 additional parameters (the variance of the measurement error component in earnings, the variance of the measurement error component in hours, and the correlation of the two measurement errors). The final structural parameter is the relative contribution of the productivity component to earnings (μ). In the uncertainty specification of the model there are 20 additional parameters corresponding to the additional unrestricted zero-order covariances. Since the measurement error components and the productivity components are not separately identifiable, for purposes of estimation we have arbitrarily fixed the correlation of the measurement errors in earnings and hours. The goodness-of-fit of the models and the estimates of μ are invariant to the choice of normalizing assumptions.

The first row of Table 12 shows the goodness-of-fit of the structural models relative to an unestricted model (98 unrestricted moments). The test statistics in the first two columns of the table suggest that the perfect foresight model is not supported by the data. The test statistics in the last two columns of the Table, on the other hand, indicate that the uncertainty model is consistent with the data at
conventional significance levels. The second row of the table reports the estimated values of the productivity contribution parameter μ. All of these estimates are within sampling error of one for the PSID. Even though the perfect foresight model does not fit well, the estimates of μ from this model are essentially the same as the estimates of μ from the uncertainty model. As row 3 of Table 12 shows the implied estimates of the labor supply elasticity η are extremely variable and imprecisely estimated. $\underline{19 /}$

The finding that productivity shocks influence earnings and hours proportionately suggests that systematic changes in individual hours occur at fixed hourly wage rates. There are a variety of possible interpretations of this finding. One possibility is that changes in hours are detemined by employer preferences, and are uncorrelated with changes in ave rage hourly earnings. A second possibility is that the estimate of μ is biased downward by changes in the marginal utility of income ($\varepsilon_{i t}$) that enter earnings and hours proportionately. If we incorrectly fit a perfect foresight model, assuming $\varepsilon_{i t}=0$, then the estimate of μ., in equation (17a) is biased toward one. If crosssectional variability in $\varepsilon_{i t}$ is the source of downward bias in the perfect foresight estimate of μ, however, then we would expect the estimate of μ to increase between the perfect foresight and uncertainty specifications of the labor supply model. Since the perfect foresight and uncertainty versions of the labor supply model yield very similar estimates of μ, we conclude that changes in the marginal utility of income are not a likely source of bias in the estimates of
. Year-to-year changes in earnings and hours are consistent with either a large substitution elasticity, or alternatively with employer determined hours at fixed average hourly wage rates.

The results in Table 12 nonetheless reveal a problem for the fixedwage interpretation of the estimates of μ. Under a stochastic labor supply model, the contemporaneous covariances of earnings and hours are not necessarily consistent with a two-factor model. Under the simple contract model outlined in Section IIB, on the other hand, the zeroorder covariances of earnings and hours are consistent with the same underlying two-factor model as the higher-order autocovariances. The goodness-of-fit statistics for the two-factor model when the contemporaneous covariances are restricted (in columns (1) and (2)) and unrestricted (in columns (3) and (4)) suggest that this is not the case.

Whether the contemporaneous covariances of earnings and hours are restricted by the model or not, the estimate of μ and the corresponding goodness-of-fit statistics are very similar between the OMD and EWMD estimation methods. Differences between the OMD and EWMD parameter estimates have the interpretation of a specification test (Hausman (1978)). Under the hypothesis that the model is correctly specified, both the EWMD and OMD estimates are consistent, and the OMD estimates are efficient. It is straightforward to show that the covariance matrix of the vector of differences between the EWMD and OMD parameter estimates is equal to the difference between the $O M D$ parameter covariance matrix and the EWMD parameter covariance matrix. 20/ The test statistics associated with the difference between the OMD and EWMD esti-
mates of μ are reported in the fourth row of the Table. For both the perfect foresight and uncertainty versions of the labor supply model, the $O M D$ and $E W M D$ estimates of μ are not significantly different.

Table 13 sumarizes the estimation results for the NLS. In fitting the labor supply model to the NLS, the covariances of the underlying productivity shock ($\Delta z_{i t}$) contribute 12 free parameters (five variances, four first-order autocovariances, and three second-order autocovariances). Columns (1) and (2) of the table present estimation results for the perfect foresight version of the labor supply model. Columns (3) and (4) contain the results for the stochastic labor supply model, which adds 10 extra parameters corresponding to the additional unrestricted zero-order covariances.

The equally weighted minimum distance estimates in columns (1) and (3) suggest that the parameter μ is greater than unity, but not significantly so. The associated estimates of η are large and imprecise. The goodness-of-fit of the perfect foresight model is poor: the chi-squared test statistic is 124.1 with 28 degrees of freedom. The fit of the stochastic labor supply model, on the other hand, is considerably better. The optimal minimum distance estimates in columns (2) and (4) of Table 13 provide about the same goodness-of-fit as the corresponding EWMD estimates, but yield very different estimates of the labor supply elasticity. The OMD estimates of the perfect foresight model, in particular, indicate a remarkably stronger productivity component in earnings as compared to hours, and a relatively small estimate of η. The $O M D$ estimates of the stochastic labor supply model are closer to the
corresponding equally weighted minimum distance estimates, but yield a negative point estimate of η.

Our interpretation of the difference in the estimates in columns (1) and (2) of Table 12 is that the perfect foresight labor supply model provides a poor fit to the data, and as a consequence the parameter estimates are sensitive to the relative weight assigned to the deviations of particular moments from their predicted values. The fourth row of Table 4 presents specification tests based on the difference between the EWMD estimates of μ and the corresponding $O M D$ estimates. For the perfect foresight model the statistic cannot be computed because the estimated standard error under $O M D$ is larger than under EWMD. 21/ In any case, the goodness-of-fit statistics providefairly strong evidence against the perfect foresight labor supply model. For the uncertainty model, on the other hand, the difference in the EWMD and OMD estimates of μ is .71, with a standard error of .51. This result and the goodness-of-fit statistics in the third and fourth columns of the Table suggest that the stochastic labor supply model provides a reasonable description of the data.

Table 14 contains goodness-of-fit statistics and parameter estimates obtained from the SIME/DIME sample. The conclusions from this sample are essentially the same as the conclusions from the other data sets. The perfect foresight labor supply model fits relatively poorly. The alternative model that frees up the zero-order covariances of the data is only marginally rejected. The estimates of μ are within sampling error of unity in all cases. In the SIME/DIME data, as in the PSID data, the specification tests based on the difference between the

EWMD and $O M D$ estimates of μ are not significant at conventional significance levels.

IV. Conclusions

We have presented evidence on the autocovariance structure of earnings and hours changes in three panel data sets: the PSID, which measures hours and earnings annually; the NLS Survey of Older Men, which measures annual hours and earnings at two year intervals; and the SIME/DIME, which measures semi-annual earnings and hours. In spite of these timing differences, and some differences across the surveys in the questionnaire used to measure hours and earnings, the autocovariance structure of all three data sets is remarkably similar. Individual changes in earnings and hours have strong negative first order autocorrelation, weak second order autocorrelation, and negligible higher order autocorrelations. Contemporaneous changes in earnings and hours are positively correlated in all three data sets. This cross-covariance is too small, however, to generate a position covariance between changes in hours and changes in average hourly earnings in any of the data sets. The sparse autocovariance structure of earnings and hours changes makes it difficult to identify models that include general specifications of measurement error, tastes, and economic components. We develop two models of hours and earnings that distinguish between an unsystematic component (attributable to measurement error and/or taste changes), and a systematic component. In the first model, the systematic component is interpreted as an underlying shock to individual productivity
that influences wages directly and hours indirectly through an intertemporal substitution effect. In the second model, the systematic component is interpreted as a shock to employer demand for hours that influences earnings and hours equi-proportionately. Our empirical results suggest that the systematic component of variance effects earnings and hours equi-proportionately in all three panel data sets.

Apart from the zero-order covariances of earnings and hours (the variances of earnings and hours and their contemporaneous covariance), a simple two-factor model provides an adequate description of the covariance structure of earnings and hours changes in all three data sets. A two-factor model is apparently too restrictive as a model of the complete covariance matrix of earnings and hours changes. In the context of a labor supply model, this finding is interpreted as evidence against perfect-foresight. In the context of a fixed-wage contract model the interpretation of this finding is unclear. More work is required to distinguish between the two models, and to develop alternative models of the covariance structure of earnings and hours.

Footnotes

1/ See for example Ashenfelter and Ham (1977), MaCurdy (1981), Altonji (1984), and the surveys by Killingsworth (1983) and Pencavel (1985).
$\underline{2 /}$ The life-cycle labor supply model is described in Ghez and Becker (1975) and Heckman (1976). Browning, Deaton and Irish (1985) provide a useful summary of the theory of consume r behavior over time.

3/ Pencavel (1985, p. 151) concludes that ". . . the focus of most economists' research [on labor supply] has been on a behavioral response that for men appears to be of a relatively small order of magnitude."

4/Altonji (1984) compares the correlation between changes in hours and changes in average hourly earnings (about -. 35 in his sample and in the PSID and NLS data sets used in this paper) with the correlation between changes in hours and changes in reported wage rates of hourly rated workers (about . 01 in Altonji's sample). Altonji interpretes this difference as evidence that me asurement error in hours induces a strong negative correlation between changes in hours and changes in average hourly earnings.

5/MaCurdy (1981) and Altonji (1984) both arrive at estimates of the intertemporal substitution elasticity in the neighborhood of . 10 - . 40 .

6/Our empirical analysis is closely related to work by Hause (1980) and MaCurdy (1982). Hause and MaCurdy both model the serial correlation
structure of earnings in longitudinal data. We extend the analysis to the bivariate process of earnings and hours.

7/ The NLS surveys were administered in July through October of the survey years, and asked questions on earnings and hours in the previous twelve months. Unlike the PSID survey, the NLS collects no auxilliary information on overtime hours or hours of work on secondary jobs. For this and perhaps other reasons, a large fraction (30 percent) of NLS respondents report exactly 2,000 hours per year.

8/ Our SIME/DIME data is drawn from the so-called Work Impact File assembled by SRI from the underlying survey data. The SIME/DIME survey contains detailed questions on overtime and secondary jobs, and is conceptually more similar to the PSID survey than the NLS survey.

9/ Denote the change in earnings between period $t-1$ and period t by Δx_{t}. If Δx_{t} is $\operatorname{MA(2),~then~} \Delta x_{t}=\varepsilon_{t}+b_{1} \varepsilon_{t-1}+b_{2} \varepsilon_{t-2}$, for example, where ε_{t} is serially uncorrelated. The change in earnings between period $t-2$ and period t is $x_{t}-x_{t-2}=\Delta x_{t}+\Delta x_{t-1}$. Therefore, $x_{t}-x_{t-2}=\varepsilon_{t}+\left(1+b_{1}\right) \varepsilon_{t-1}+\left(b_{1}+b_{2}\right) \varepsilon_{t-2}+b_{2} \varepsilon_{t-3}$. Notice that $x_{t}-x_{t-2}$ is correlated with $x_{t-2}-x_{t-4}$, but not with $x_{t-4}-x_{t-6}$ (or Δx_{t-4}).
$\underline{10 /}$ There are at least two alternative ways to test restrictions on subsets of the covariances in Tables 4, 5, and 6, depending on whether we incorporate the restrictions that the third- and higher-order covariances are jointly equal to zero when we test the properties of the lower-order
covariances. Our procedure is to ignore the higher-order covariances in estimating and testing restrictions on the lower-order covariances.
$11 /$ The error $\varepsilon_{i t}$ may be serially correlated, for example, if aggregate shocks have a systematically larger effect on some individuals' marginal utility of income than others'. In this case, however, we would expect to observe nonvanishing covariances between changes in earnings and hours from years with large aggregate shocks, irrespective of the gap between these years. There is no evidence of this phenomenon in Tables 4-6.

12/ There are two time-varying components of the mean changes in earnings and hours in each year: the shift in the aggregate productivity shock $\Delta \delta_{t}$; and the average revision in the marginal utility of i ncome $\bar{\varepsilon}_{t}$.

13/ MaCurdy (1981) and Altonji (forthcoming) present instrumental variables estimators of the intertemporal labor supply elasticity, using polynomi als of age and experience as instruments.

$$
\begin{aligned}
& 14 / \text { Write equation (12a) as } \\
& \qquad \Delta \log g_{i t}=\gamma_{t}+8 x_{i o}+\delta_{i t}
\end{aligned}
$$

where β represents the regression coefficient of the change in earnings on experience, $\quad \gamma_{t}$ is a period-specific constant, and $\delta_{i t}$ includes the stochastic components of earnings changes. If time is measured in years, then the change in annual earnings over the two year interval from $t-1$ to $t+1$ is $\Delta \log g_{i t+1}+\Delta \log g_{i t}=\gamma_{t+1}+\gamma_{t}+$
$2 B x_{i o}+\delta_{i t+1}+\delta_{i t}$. Thus the covariances of changes in earnings and hours with potential experience should be roughly twice as large in the NLS as the PSID. The comparison between changes at six month intervals and changes at annual intervals is similar.
$15 /$ Our instrumental variables estimate of η for the PSID is substantially larger than the estimates reported by MaCurdy (1981) or Altonji (forthcoming). Both authors use overidentified estimators that make use of several instrumental variables for wage changes. Since our primary interest is not in the instrumental variables estimates themselves, we have not explored the estimates of η when other exogenous variables are used as instruments for changes in wages.

16/ It is straightforward to show that each of the variances of the productivity shock can be increased by a fixed factor, the measurement error variances can be decreased, and the first-order autocovariances of the productivity shock can be increased in such a way as to hold constant the predicted covariance matrix of earnings and hours.

17/ Hart (1983) and Rosen (1985) survey most of the theoretical 1iterature on labor contracts.

18/ In other work (Abowd and Card (1984)) we have considered the Implications of labor contracts that smooth individual earnings. Suppose, for example, that observed earnings in period t represent a geometric average of earnings in the absence of contracts ($\mathrm{g}_{\mathrm{t}}^{\mathrm{o}}$) and desired consumption in $t(c)$, which we assume is constant. Then $\log g_{t}=(1-\gamma) \log g_{t}^{0}+\gamma \log c$, where γ represents the extent of
earnings stabilization. Taking first differences and using the notation of equation $(22 a), \Delta \log \tilde{g}_{i t}=\mu \Delta z_{i t}+E_{i t}+\Delta u_{i t}$, where $\mu=(1-\gamma)(1+\eta) / \eta$ and $\Delta z_{i t}$ and $\varepsilon_{i t}$ it are suitably defined. In the presence of earnings smoothing contracts, the parameter μ may fall below unity.

19/The labor supply elasticity η is obtained from the estimate of μ by the formula $\eta=(\mu-1)^{-1}$. Standard errors for η in Tables 12 , 13 , and 14 are calculated by the delta-method.
$20 /$ To derive the covariance matrix of the difference between the OMD estimate b^{o} and the EWMD estimate b^{e}, note that under the hypothesis that the model is correct,

$$
\begin{aligned}
& \sqrt{N}\left(b^{o}-b^{*}\right) \stackrel{a}{\sim} \sqrt{N}\left(F^{\prime} V^{-1} F\right)^{-1} F^{\prime} V^{-1}\left(m-f\left(b^{*}\right)\right) \\
& \sqrt{N}\left(b^{e}-b^{*}\right) \stackrel{a}{\sim} \sqrt{N}\left(F^{\prime} F\right)^{-1} F^{\prime}\left(m-f\left(b^{*}\right)\right),
\end{aligned}
$$

where V is the covariance matrix of the vector of moments $m, f(b *)$ is the predicted vector of moments given the true value b^{*}, N is the sample size, and F represents the Jacobian matrix of f, evaluated at b^{*}. These equations follow from the first order conditions for b^{0} and b^{e}, respectively, and a series of regularity assumptions. Using the fact that V is the variance matrix of $\left(m-f\left(b^{*}\right)\right)$, it is straightforward to derive the asymptotic variance matrix of the difference $\left(b^{o}-b^{e}\right)$.

21/The variance of the OMD parameter estimate is necessarily smaller only when both variances are estimated at the same parameter values.

References

Abowd, John M. and Orley Ashenfelter. "Anticipated Unemployment, Temporary Layoffs and Compensating Wage Differentials." Studies in Labor Markets, ed. Sherwin Rosen. Chicago: Univ. of Chicago Press, 1981.

Abowd, John M. and David Card. "Intertemporal Labor Supply in the Presence of Long-Term Contracts." Unpublished manuscript, Princeton University, June 1984.

Altonji, Joseph A. "Intertemporal Substitution in Labor Supply:
Evidence from Micro Data." The Journal of Political Economy, forthcoming. (Draft paper dated February 1984.)

Ashenfelter, Orley and John C. Ham. "Education, Unemployment, and Earnings," Journal of Political Economy, 87 (October 1979): S99-S116.

Browning, Martin, Angus Deaton, and Margaret Irish. "A Profitable Approach to Labor Supply and Commodity Demand Over the Life-Cycle." Econometrica, 53 (May 1985): 503-543.

Chanberlain, Gary. "Panel Data." Chapter 22 in The Handbook of Econanetrics, Vol. 2, ed. by Zvi Griliches and Michael Intrilligator. New York: North Holland, 1984.

Ghez, Gilbert and Gary S. Becker. The Allocation of Time and Goods Over the Life Cycle. New York: Columbia Univ. Press (for the National Bureal of Economic Research), 1975.

Hart, Oliver D. "Optimal Labor Contracts Under Asymmetric Information: An Introduction." Review of Economic Studies, 50 (January 1983): 3-35.

Hause, J.C. "The Fine Structure of Earnings and the On-the-Job Training Hypothesis." Econometrica (May 1980): 1013-1030.

Hausman, J.A. "Specification Tests in Econometrics." Econometrica, 46 (September 1978): 1251-1272.

Heckman, James J. "A Life-Cycle Model of Earnings, Learning and Consumption." Journal of Political Economy, 84 (August 1976): S11-S44.

Killingsworth, Mark. Labor Supply. New York: Cambridge Univ. Press, 1983.

MaCurdy, Thomas E. "An Empirical Model of Labor Supply in a Life-Cycle Setting." Journal of Political Economy, 89 (December 1981): 1059-1085.

- "The Use of Time Series Processes to Model the Error Structure of Earnings in a Longitudinal Data Analysis." Journal of Econometrics, 18 (Spectal Issue 1982): 83-114.

Newey, Whitney K. "Generalized Method of Moments Specification Tests." Unpublished manuscript, Princeton University, 1985.

Pencave1, John. "Labor Supply of Men: A Survey." In The Handbook of Labor Economics, ed. by Orley Ashenfelter and Richard Layard. Forthcoming, 1985.

Rosen, Sherwin, "Implicit Contracts". Journal of Economic Literature, 23 (September 1985): 1144-1176.

Appendix A

In this appendix we summarize the estimation and inference procedures used throughout the paper. The basic unit of data for each individual in a particular data set is the vector of experience-adjusted changes in eamings and hours. If we denote these by $\Delta \log \tilde{g}_{i t}$ and $\Delta \log \tilde{h}_{i t}$, then the data vector is

$$
y_{i}=\left[\begin{array}{c}
\Delta \log \tilde{g}_{i l} \\
\Delta \dot{\log } \tilde{g}_{i T} \\
\Delta \log \tilde{h}_{i 1} \\
\dot{\cdot} \\
\Delta \log \tilde{h}_{i T}
\end{array}\right]
$$

which has dimension $2 T$, where T is the number of changes observed in the data set. Let $\vec{y}=\frac{1}{N} \sum_{i} y_{i}$ represent the mean vector of changes and let $C=\frac{l}{N} \sum_{i}\left(y_{i}-\bar{y}\right)\left(y_{i}-\bar{y}\right)$, represent the covariance matrix of these changes. Estimates of C are presented for the three data sets in Tables 4, 5, and 6.

The models we estimate are models for C. Let m represent a vector whose elements are the distinct elements of C. Since C is symmetric, there are only $2 \mathrm{~T}(2 \mathrm{~T}+1) / 2$ elements in m. In the PSID, this corresponds to 210 elements; in the NLS, 55 elements, and in the SIME/DIME, 136. Confomably with m, let m_{i} represent the distinct e lements of the individual cross-products matrix $\left(y_{i}-\bar{y}\right)\left(y_{i}-\bar{y}\right)$, Then $m=\frac{1}{N} \sum_{i} m_{i}$.

The variance matrix V of the vector of covariance elements is estimated by computing the cross-sectional variance of m_{1} in the usual manner:

$$
V=\frac{1}{N} \sum_{1}\left(m_{1}-m\right)\left(m_{i}-m\right)^{\prime}
$$

A typical element of V is $V_{u v}=\operatorname{cov}\left(m_{u}, m_{v}\right)$. If $m_{u}=\operatorname{cov}\left(\Delta \log \tilde{g}_{1 t}, \Delta \log \tilde{h}_{1 t-j}\right) \quad$ and $m_{v}=\operatorname{cov}\left(\Delta \log \tilde{g}_{i s}, \Delta \log \tilde{g}_{1 s-k}\right)$, then

$$
\begin{array}{r}
V_{u v}=\frac{1}{N} \sum_{i}\left[\left(\Delta \log \tilde{g}_{i t}-\Delta \log \tilde{g}_{t}\right)\left(\Delta \log \tilde{h}_{i t-j}-\Delta \log \tilde{h}_{t-j}\right)-m_{u}\right] x \\
\\
{\left[\left(\Delta \log \tilde{g}_{i s}-\Delta \log \tilde{g}_{s}\right)\left(\Delta \log \tilde{g}_{i s-k}-\Delta \log \tilde{g}_{s-k}\right)-m_{v}\right],}
\end{array}
$$

where $\Delta \log \tilde{g}_{t}$ represents the sample average change in the logarithom of earnings in period t. Let Q represent the matrix of fourth moments of y_{i} :

$$
Q=\frac{1}{N} \sum_{i} m_{i} m_{i}^{\prime}
$$

Q and V are related by $V=Q-m m^{\prime}$.
Under fairly general conditions, independence of the y_{i} implies that the sample mean of m_{1} has an asymptotic nomal distribution:

$$
\stackrel{\rightharpoonup}{N}(m-\mu) \stackrel{a}{\sim} N(0, V *),
$$

where μ is the population value of m (i.e., the true covariance matrix of earnings and hours changes) and $V *$ is the population value of V.

Consider a mode 1 for the vector of covariance elements that depends on a lower-dimensional parameter vector b, say $m=f(b)$. Several
estimators are available for b : among these are the optimal minnum distance ($O M D$) estimator b^{0}, which minimizes (m-f(b))' $V^{-1}(m-f(b))$, and the equally weighted minimum distance (EWMD) (or least squares) estimator b^{e}, which minimizes $(m-f(b))^{\prime}(m-f(b))$. Optimality of the former estimator is discussed in Chamberlain (1984).

For the $O M D$ estimator, inference is based on the fact that under the hypothesis of a correct specification, the minimized quadratic form

$$
N \cdot\left(m-f\left(b^{0}\right)\right)^{\prime} v^{-1}\left(m-f\left(b^{0}\right)\right)
$$

has an asymptotic chi-squared distribution with degrees of freedom equal to the difference between the dimension of m and the rank of the Jacobian matrix $F(b)=\frac{\delta f(b)}{\delta b}$, evaluated at b^{\star}, the true value of b. (See Chamberlain (1984)).

If the model for m has the special form

$$
m=\left[\begin{array}{l}
m_{1} \\
m_{2}
\end{array}\right]=f(b)=\left[\begin{array}{l}
b \\
0
\end{array}\right]
$$

in which only the last k elements of m are restricted to zero, it is straightforward to show that the minimized quadratic form reduces to

$$
N \cdot m_{2}^{\prime} v_{22}^{-1} m_{2}
$$

where V_{22} is the block of V corresponding to the elements in m that are restricted to zero. This is the chi-squared test for $m_{2}=0$.

For an estimator b^{A} that minimizes an arbitrary quadratic form

$$
(m-f(b))^{\prime} A(m-f(b))
$$

where A is a positive definite matrix, Newey (1985) shows that the quadratic form

$$
\left(m-f\left(b^{A}\right)^{\prime} R^{-}\left(m-f\left(b^{A}\right)\right)\right.
$$

has an asymptotic chi-squared distribution. Here, R^{-}is a generalized inverse of the matrix $R=P V P^{\prime}$, where $P=I-F\left(F^{\prime} F\right)^{-1} F^{\prime} A$, and F represents the Jacobian matrix of f evaluated at b^{A}. Newey (1985) suggests a generalized inverse of R of the form $S\left(S^{\prime} R S\right)^{-1} S^{\text {', }}$, where S is a selection matrix of rank equal to the difference between the dimension of m (the number of movements $f i t$) and the rank of F. In general, for a nonlinear model, the value of the quadratic form depends on the exact generalized inverse selected for R. In case of a linear model, however, the value of the quadratic form is invariant, and in the simple case of testing the restrictions $m_{2}=0$, with no additional restrictions on m_{1}, the value of the quadratic form can be shown to equal $N \cdot m_{2}^{\prime} V_{22^{-1}} m_{2}$. Tests of zero restrictions are invariant to the choice of $O M D$ or any arbitrary minimum distance estimator.

Our procedure is to first test for zero restrictions and then to work with the nonzero covariances of earnings and hours. In the notation of the previous discussion, once we have accepted the hypothesis $m_{2}=0$, we estimate models for m_{1} and use the covariances matrix V_{11} for inference. This procedure is not fully efficient, since better estimates of the unrestricted elements of m can be formed by taking into account the fact that certain other elements of m (i.e. those in m_{2}) are zero.

Appendix B

In this appendix, we comment on the assumption underlying equation (10) of the text that aggregate shocks and experience effects enter homogeneously into individual productivity. More generally, consider the alternative specification:
(10a) $\log \theta_{i t}=\alpha_{i}+r_{i} \delta_{t}+\gamma_{i} x_{i t}+\gamma_{2} x_{i t}^{2}+z_{i t}$. Here, we have permitted the aggregate productivity shock δ_{t} to affect individual productivity through an individual-specific response coefficient r_{i}. Cross-section dispersion in r_{i} reflects the possibility that individuals have pemanent cyclical attributes: individuals with higher values of r_{i} are more responsive to aggregate shocks. We have also permitted the linear experience coefficient Y_{i} to have an individual component of variance.

Equation (10a) implies that the first difference of wages can be written as:
(1la) $\Delta \log \theta_{i t}=K_{t}^{*}+\gamma_{i}+\gamma_{2} x_{i 0}+\left(r_{i}-r\right) \Delta \delta_{t}+\Delta z_{i t}$, where $\kappa_{t}^{*}=r \Delta \delta_{t}-\gamma_{2}+2 \gamma_{2}^{t}$, and r is the average value of r_{i}. Individual heterogeniety in the experience slope and the response to aggregate shocks introduces two additional components of variance into the first differences of earnings and hours. Both of these components contribute to covariances between lagged changes in earnings and hours. First consider the component of variance associated with ($r_{i}-r$) . If this component is large, then changes in earnings and hours in years with a negative productivity shock should be more highly correlated with
changes in other years with negative shocks, and less correlated with changes in years with aggregate productivity improvements. By most measures aggregate productivity fell with business cycle recessions in 1969-70, 1973-74, and 1980-81. In the PSID data, however, covariances of earnings and hours changes between these years are very similar to covarlances betwe en arbitrary pairs of years at the same gap. We therefore conclude that the component of variance due to individual-specific responses to aggregate shocks is small.

Next, consider the component of variance in (1la) associated with cross-section dispersion in earnings growth rates. This component contributes a fixed positive element to earnings and hours autocovar1ances and cross-covariances of all orders. In the data, autocovariances of third order and higher are all negligible. Again, we conclude that cross-section dispersion in experience growth rates contributes a relatively small component of variance to wage growth.

Characteristics of the PSID Sample of Male Household Heads

	Year ${ }^{\text {a/ }}$	Average Hourly Earnings	Average Annual Hours
1. Annual Hours and Average Hourly Earninga (1967 dollars)	1969	3.62	2308
	1970	3.71	2276
	1971	3.85	2266
	1972	4.00	2302
	1973	4.13	2324
	1974	4.10	2246
	1975	4.02	2220
	1976	4.19	2231
	1977	4.26	2236
	1978	4.26	2244
	1979	4.25	2186
	Change	$\begin{gathered} \text { Change } \\ \text { in Earnings } \end{gathered}$	$\begin{aligned} & \text { Change } \\ & \text { in Hours } \end{aligned}$
2. Changes in Log Real Annual Earnings and Log Annual Hours (x 100)	1969-70	2.5	-0.8
	1970-71	3.0	-0.3
	1971-72	6.9	2.0
	1972-73	4.7	1.9
	1973-74	-5.5	-4.1
	1974-75	-4.2	-2.4
	1975-76	4.1	0.6
	1976-77	2.5	0.3
	1977-78	0.2 -5.5	0.5
	1978-79	-5.5	-4.2

3. Demographic Characteristics

Ave rage Age in 1969
35.8

Percent Nonwhite
Average Potential Experience in 1969
27.3
18.9
4. Sample Size
$1448^{\mathrm{b} /}$

NOTES: ${ }^{a / D a t a}$ are for the calendar years listed.
b/Eight outliers with reported average hourly earnings greater than $\$ 100 /$ hour (1967 dollars) were excluded.

Table 2

Characteristics of the NLS Sample of Older Men

	Year	Average Hourly Earnings	Ave rage Annual Hours
1. Anmual Hours and Average Hourly Earnings (1967 dollars)	$\begin{aligned} & 1966 \\ & 1967 \\ & 1969 \\ & 1971 \\ & 1973 \\ & 1975 \end{aligned}$	$\begin{aligned} & 3.50 \\ & 3.46 \\ & 3.55 \\ & 3.66 \\ & 3.63 \\ & 3.50 \end{aligned}$	$\begin{aligned} & 2209 \\ & 2190 \\ & 2190 \\ & 2161 \\ & 2160 \\ & 2003 \end{aligned}$
	Change	$\begin{gathered} \text { Change } \\ \text { in Earnings } \end{gathered}$	Change in Hours
2. Changes in Log Real Annual Earninge and Log Annual Hours ($\mathbf{x ~ 1 0 0) ~}$	$\begin{aligned} & 1966-67 \\ & 1967-69 \\ & 1969-71 \\ & 1971-73 \\ & 1973-75 \end{aligned}$	$\begin{array}{r} 4.5 \\ 4.0 \\ 3.1 \\ -0.2 \\ -16.8 \end{array}$	$\begin{array}{r} 0.0 \\ 0.0 \\ -0.1 \\ -1.5 \\ -11.6 \end{array}$

3. Demographic Characteristics

Average Age in $1969 \quad 49.2$
Percent Nonwhite 29.8
Average P.otential Experience in 196934.4
4. Sample Size 1318

NOTE: Data are for twelve-month periods preceeding the interview date. Changes in earnings and hours over the two year intervals are not at annual rates.

Table 3

Characteristics of the SIME/DIME Sample
of Male-Heads of Dual-Headed Households

Experimental Period	Average Hourly Earnings	Average Annual Hours
1. Anmual Hours and Average 1 Hourly Earnings 2 (1971 dolla rs) 3 4 5 6 7 8 9	$\begin{aligned} & 3.47 \\ & 3.53 \\ & 3.63 \\ & 3.73 \\ & 3.83 \\ & 3.88 \\ & 3.88 \\ & 3.85 \\ & 3.88 \end{aligned}$	$\begin{aligned} & 2093 \\ & 2098 \\ & 2087 \\ & 2117 \\ & 2135 \\ & 2104 \\ & 2131 \\ & 2074 \\ & 2059 \end{aligned}$
Change	$\begin{gathered} \text { Change } \\ \text { in Earnings } \end{gathered}$	Change in Hours
$\begin{array}{ll} \text { 2. Changes in Log Real Semi-Annual } & 1-2 \\ \text { Earninge and Log Semi-Anmual } & 2-3 \\ \text { Hours (} x \text { 100) } & 3-4 \\ & 4-5 \\ & 5-6 \\ & 6-7 \\ & 7-8 \\ & 8-9 \end{array}$	$\begin{array}{r} 1.2 \\ -1.3 \\ 2.8 \\ 1.6 \\ -1.3 \\ 0.7 \\ -3.5 \\ -3.0 \end{array}$	$\begin{array}{r} 3.9 \\ 1.0 \\ 5.8 \\ 4.0 \\ 0.2 \\ 0.6 \\ -4.5 \\ -2.7 \end{array}$
3. Demographic Characteristics		
Average Age at start of experiment	34.7	
Percent Nonwhite	48.8	
Ave rage Potential Experience at start of experiemnt	18.2	
4. Sample Size	560	

NOTE: Data are for six-month periods following assignment into the income experiment. The changes in earnings and hours between consecutive six-month intervals are not at annual rates.

$$
\text { Table } 4
$$

3/ Covartance of potential labor force experfence with the change in iog earninga (columen: (1)-(10)) and the
ehange in log anmual hours (columa (11)-(20)).

 (

$\begin{gathered} \left(8 \angle 0^{\circ}\right) \\ 162^{\circ}- \end{gathered}$	$\begin{gathered} \left(I \dagger 0^{\circ}\right) \\ 8 S I^{\circ}- \end{gathered}$	$\begin{gathered} \left(980^{\circ}\right) \\ Z 50^{\circ} \end{gathered}$	$\begin{gathered} \left(870^{\circ}\right) \\ 000^{\circ} \end{gathered}$	$\begin{array}{r} \left(670^{\circ}\right) \\ 810^{\circ}- \end{array}$	$\left(980^{\circ}\right)$	$\left(950^{\circ}\right)$	$\left(\angle S 0^{\circ}\right)$	($¢ 90^{\circ}$)	(IS0*)	
							910°	810°	290*	
$\begin{gathered} \left(8 z 0^{\circ}\right) \\ \varsigma \varepsilon z^{\circ} \end{gathered}$	(010*)	(500*)	(900*)	(500*)	(220°)	(010*)	(600*)			
	OS0*-	$110{ }^{\circ}$	EI0*-	$500{ }^{*}$	$86{ }^{*}$	+180*-	$900{ }^{\circ}-$	600°	$\left(\angle 00^{\circ}\right)$	$4 \stackrel{S L-\varepsilon L}{80 I \nabla} \cdot 0 \tau$
	$\begin{gathered} \left(710^{\circ}\right) \\ 160^{\circ} \end{gathered}$	(200°)	(500°)	(800°)	(600 ${ }^{\circ}$)	(ヶ10*)	(500*)	(700.)		
		820*-	L00'	[00*-	920.-	090°	L00*-	1000-	$100{ }^{\circ}$	$48 \circ T \nabla \cdot 6$
		$\begin{gathered} \left(110^{\circ}\right) \\ 990^{\circ} \end{gathered}$	$\begin{array}{r} \left(800^{\circ}\right) \\ 8 \varepsilon 0^{\circ}- \end{array}$	$\begin{gathered} \left(\varepsilon 00^{\circ}\right) \\ 200^{\circ}- \end{gathered}$	$\begin{gathered} \left(500^{\circ}\right) \\ \varepsilon r 0^{\circ} \end{gathered}$	$\begin{gathered} \left(900^{\circ}\right) \\ 200^{\circ} \end{gathered}$	$\begin{gathered} \left(700^{\circ}\right) \\ 510^{\circ} \end{gathered}$	$\begin{gathered} \left(500^{\circ}\right) \\ 100^{\circ}- \end{gathered}$	$\begin{gathered} \left(\varepsilon 00^{\circ}\right) \\ 200^{\circ} \end{gathered}$	IL-69
			$\begin{gathered} \left(\mathrm{S} 10^{\circ}\right) \\ {\left[80^{\circ}\right.} \end{gathered}$	$\begin{aligned} & \left(Z I 0^{\circ}\right) \\ & 9 E 0^{\circ}- \end{aligned}$	$\begin{gathered} \left(\angle 00^{\circ}\right) \\ \angle 10^{\circ}- \end{gathered}$	$\begin{gathered} \left(500^{\circ}\right) \\ 100^{\circ} \end{gathered}$	$\begin{aligned} & \left(+00^{\circ}\right) \\ & 700^{\circ}- \end{aligned}$	$\begin{gathered} \left(700^{\circ}\right) \\ 910^{\circ} \end{gathered}$	$\begin{gathered} \left(500^{\circ}\right) \\ 200^{\circ}- \end{gathered}$	$\begin{array}{r} 69-\angle 9 \\ 4 \text { 8ัO } \end{array}$
				$\begin{gathered} \left(E Z 0^{\circ}\right) \\ \ni I I^{\circ} \end{gathered}$	$\begin{gathered} \left(900^{\circ}\right) \\ 500^{\circ} \end{gathered}$	$\begin{array}{r} \left(+500^{\circ}\right) \\ 800^{\circ}- \end{array}$	$\begin{gathered} \left(\varepsilon 00^{\circ}\right) \\ 200^{\circ} \end{gathered}$	$\begin{gathered} \left(\varsigma 00^{\circ}\right) \\ 200^{\circ} \end{gathered}$	$\begin{gathered} \left(210^{\circ}\right) \\ 8 \in 0^{\circ} \end{gathered}$	
					$\begin{gathered} \left(9 \varepsilon 0^{\circ}\right) \\ O \varepsilon \varepsilon^{\circ} \end{gathered}$	$\begin{gathered} \left(810^{\circ}\right) \\ \varepsilon \angle 0^{\circ}- \end{gathered}$	$\begin{gathered} \left(010^{\circ}\right) \\ 110^{\circ}- \end{gathered}$	$\begin{gathered} \left(010^{\circ}\right) \\ L 00^{\circ} \end{gathered}$	$\begin{gathered} \left(900^{\circ}\right) \\ +00^{\circ} \end{gathered}$	$\begin{gathered} S L-\varepsilon L \\ 8 \text { צoIV } \cdot \varsigma \end{gathered}$
						$\begin{gathered} \left(\eta 20^{\circ}\right) \\ 8 \angle I^{\circ} \end{gathered}$	$\begin{gathered} \left(800^{\circ}\right) \\ 0 \div 0^{\circ}- \end{gathered}$	$\begin{gathered} \left(700^{\circ}\right) \\ 000^{\circ} \end{gathered}$	$\begin{array}{r} \left(500^{\circ}\right) \\ 500^{\circ}- \end{array}$	$\begin{gathered} \varepsilon L-I L \\ 80 \mathrm{IV} \cdot \eta \end{gathered}$
							$\begin{gathered} \left(0 \neq 0^{\circ}\right) \\ Z \varepsilon I^{\circ} \end{gathered}$	$\begin{array}{r} \left(8 £ 0^{\circ}\right) \\ 890^{\circ} \end{array}$	$\begin{array}{r} \left(700^{\circ}\right) \\ 000^{\circ}- \end{array}$	$8_{8}^{\mathrm{T} L-69} \cdot$
								$\begin{gathered} \left(6 \varepsilon 0^{\circ}\right) \\ \varepsilon \varepsilon I^{\circ} \end{gathered}$	$\begin{aligned} & \left(010^{\circ}\right) \\ & \text { Z }) \end{aligned}$	$\begin{gathered} 69-\angle 9 \\ 8: 8017 \cdot Z \end{gathered}$
									$\begin{gathered} \left(910^{\circ}\right) \\ 601^{\circ} \end{gathered}$	$8 \begin{gathered} \angle 9-99 \\ 80 \tau \end{gathered}$
SL-EL 48017 (0I)	ELTLL 4 8०โจ (6)	1 $1-69$ 4801∇ (8)	69-19 4 80IV (L)	29-99 48010 (9)	SL-EL 8 BOTV (S)	$\begin{aligned} & \text { EL-TL } \\ & \text { 8 SoIp } \\ & \text { (ך) } \end{aligned}$	$\begin{aligned} & \mathrm{T} \angle-69 \\ & 880 \mathrm{I} \nabla \end{aligned}$ (E)	$69-19$ 88017 (2)	$\begin{aligned} & 19-99 \\ & 88018 \end{aligned}$ (I)	:431^
				: 30	188400					

[^0]

[^1]
Table
Summary of Estimated Bivariate MA(2) Representation
of Experience-Adjusted Changes in Earnings and Hours:
Anmual Data from the PSID

1. Goodness-of-fit statistic - MA(2) 137.19
(probability value - 112 degrees of freedom) (.062)
2. Test statistic for symmetric MA(2) ${ }^{\text {// }}$ 31.02
(probability value - 17 degrees of freedom) (.020)
3. Test statistic for $M A(1)^{1 /}$ 50.39
(probability value - 32 degrees of freedom) (.020)
4. Test statistic for stationary MA(2) ${ }^{1 / /}$ 143.69
(probability value - 87 degrees of freedom) (.000)
NOTE: 1/Against the alternative hypothesis of a nonstationary bivariate MA(2).

Table 8

Summary of Estimated Bivariate MA(2) Representation
of Experience-Adjusted Changes in Earnings and Hours:

Annual Data from NLS

1. Goodness-of-fit statistic - MA(2) 12.89(probability value - 12 degrees of freedom) (.377)
2. Test statistic for symmetric MA(2) ${ }^{1 /}$ 14.47(probability value - 7 degrees of freedom)(.047)
3. Test statistic for MA(1) ${ }^{1 /}$ 14.64
(probability value - 12 degrees of freedom) (.263)
4. Test statistic for stationary MA(2) ${ }^{1 /}$ 68.14
(probability value - 21 degrees of freedom) (.000)

NOTE: 1/Against the alternative hypothesis of a nonstationary bivariate MA(2).

Summary of Estimated Bivariate MA(2) Representation of Experience-Adjusted Changes in Earnings and Hours:

Semi-Annual Data from SIME/DIME

1. Goodness-of-fit statistic - MA(2) 74.98
(probability value - 60 degrees of freedom) (.092)
2. Test statistic for symmetric MA(2) ${ }^{1 /}$ 5.90
(probability value - 2 degrees of freedom) (.434)
3. Test statistic for MA(1)-1/ 39.95
(probability value - 24 degrees of freedom) (.022)
4. Test statistic for stationary MA(2) ${ }^{1 /}$ 100.70
(probability value - 65 degrees of freedom) (.000)
NOTE: $1 /$ Against the alternative hypothesis of a nonstationary bivariate MA(2).
Table 10
Covariances of Changes in Log Earnings and Changes in Log Hours
with Potential Experience: PSID, NLS, and SIME/DIME

		$\begin{gathered} \text { PSID } \\ \text { (annual changes) } \end{gathered}$	\qquad	SIME/DIME (six-month changes)
	Ave rage Covariance of Change	-. 21	-. 03	-. 13
	in Earnings with Experience (C_{g})	(.03)	(.02)	(.04)
2.	Average Covariance of	-. 13	-. 09	-. 05
	Change in Hours with Experience (C_{h})	(.02)	(.02)	(.04)
	Implied Estimate of	1.52	-1.62	. 56
	Substitution Elasticity (n)	(.44)	(.61)	(.47)
4.	Goodness-of-fit Statistic	25.80	40.96	20.78
	(probability value)	(.104)	(.000)	(.107)
	[degrees of freedom]	[18]	[8]	[14]

[^2]1. $\operatorname{var}\left(\Delta \log \tilde{g}_{i t}\right)$
$(1+\eta)^{2} \operatorname{var}\left(\Delta z_{i t}\right)+\eta^{2} \operatorname{var}\left(\varepsilon_{i t}\right)$
$+2 \eta(1+\eta) \operatorname{cov}\left(\Delta z_{i t}, \varepsilon_{i t}\right)+2 \sigma_{u}^{2}$
2. $\operatorname{var}\left(\Delta \log \bar{h}_{1 t}\right)$
$\eta^{2} \operatorname{var}\left(\Delta z_{i t}\right)+\eta^{2} \operatorname{ver}\left(\varepsilon_{i t}\right)$
$+2 \eta^{2} \operatorname{cov}\left(\Delta z_{i t}, \varepsilon_{i t}\right)+2 \sigma_{v}^{2}$
3. $\operatorname{cov}\left(\Delta \log \tilde{g}_{1 t}, \Delta \log \tilde{h}_{1 t}\right)$
$n(1+\eta) \operatorname{var}\left(\Delta z_{i t}\right)+\eta^{2} \operatorname{var}\left(\varepsilon_{i t}\right)$
$+\eta(1+2 \eta) \operatorname{cov}\left(\Delta z_{i t}, \varepsilon_{i t}\right)+2 \rho_{u v} \sigma_{u} \sigma_{v}$
4. $\operatorname{cov}\left(\Delta \log \bar{g}_{i t}, \Delta \log \tilde{g}_{1 t-1}\right)$
$(1+\eta)^{2} \operatorname{cov}\left(\Delta z_{i t}, \Delta z_{i t-1}\right)-\sigma_{u}^{2}$
5. $\operatorname{cov}\left(\Delta \log \tilde{h}_{i t}, \Delta \log \tilde{h}_{1 t-1}\right)$
$\eta^{2} \operatorname{cov}\left(\Delta z_{i t}, \Delta z_{i t-1}\right)-\sigma_{v}^{2}$
6. $\operatorname{cov}\left(\Delta \log \tilde{g}_{1 t}, \Delta \log \tilde{h}_{1 t-1}\right), \quad \eta(1+\eta) \operatorname{cov}\left(\Delta z_{i t}, \Delta z_{i t-1}\right)-\rho_{u v} \sigma_{u} \sigma_{v}$ $\operatorname{cov}\left(\Delta \log \overline{\mathrm{h}}_{\mathrm{it}}, \Delta \log \tilde{\mathrm{g}}_{1 t-1}\right)$
7. $\operatorname{cov}\left(\Delta \log \tilde{g}_{1 t}, \Delta \log \tilde{g}_{1 t-2}\right)$
$(1+\eta)^{2} \operatorname{cov}\left(\Delta z_{i t}, \Delta z_{i t-2}\right)$
8. $\operatorname{cov}\left(\Delta \log \tilde{h}_{1 t}, \Delta \log \tilde{h}_{i t-2}\right)$
$\eta^{2} \operatorname{cov}\left(\Delta z_{i t}, \Delta z_{i t-2}\right)$
9. $\operatorname{cov}\left(\Delta \log \tilde{g}_{1 t}, \Delta \log \tilde{h}_{i t-2}\right)$,
$n(1+\eta) \operatorname{cov}\left(\Delta z_{i t}, \Delta z_{i t-2}\right)$
$\operatorname{cov}\left(\Delta \log \tilde{h}_{i t}, \Delta \log \tilde{g}_{1 t-2}\right)$

Notation: $\Delta \log \vec{g}_{i t}$ and $\Delta \log \tilde{h}_{i t}$ refer to the residuals of the changes in the logarithm of earnings and hours from regressions on potential experience. σ_{u}^{2} represents the variance of the measurement error of earnings, σ_{v}^{2} represents the variance of the measurement error of hours, and $\rho_{u v}$ represents their correlation.
Table 12
Summary of Estimated Two-Factor Mode 1 of Changes in

	Perfect Foresight Model (Zero-Order Covariances Restricted)		Uncertainty Model(Zero-Order Covariances Unrestricted)	
	Equally Weighted Minimum Distance	Optimal Minimum Distance	Equally Weighted Minimum Distance	$\begin{gathered} \text { Optimal } \\ \text { Minimum Distance } \end{gathered}$
1. Goodness-of-Fit Statistic (probability value) [degrees of freedom]	$\begin{array}{r} 261.15 \\ (.000) \\ {[68]} \end{array}$	$\begin{array}{r} 261.12 \\ (.000) \\ {[68]} \end{array}$	$\begin{aligned} & 62.26 \\ & (.026) \\ & {[48]} \end{aligned}$	$\begin{gathered} 61.38 \\ (.027) \\ {[48]} \end{gathered}$
2. Relative Contribution of MA(2) Productivity Component to Earnings($\mu)^{2 /}$ (standard error)	$\begin{gathered} 1.14 \\ (0.09) \end{gathered}$	$\begin{gathered} 1.11 \\ (0.03) \end{gathered}$	$\begin{gathered} 1.09 \\ (0.11) \end{gathered}$	$\begin{gathered} 0.95 \\ (0.08) \end{gathered}$
3. Implied Intertemporal Substitution Elasticity (standard error)	$\begin{gathered} 7.27 \\ (4.81) \end{gathered}$	$\begin{gathered} 8,83 \\ (2.63) \end{gathered}$	$\begin{gathered} 11.30 \\ (14.59) \end{gathered}$	$\begin{aligned} & -19.11 \\ & (28.45) \end{aligned}$
4. Specification test of EWMD vs. OMD estimate of μ (probability value)	---	$\begin{gathered} 0.29 \\ (0.772) \end{gathered}$	---	$\begin{aligned} & 1.68 \\ & (0.093) \end{aligned}$
NOTES: ${ }^{1 /}$ Model is fit to aut $\underline{2 /}$ Productivity compon	variances of chan is normalized	s in earnings and ave a unit contri	rs up to second on to hours.	

Table 13
Summary of Estimated Two-Factor Model of Changes in
Earnings and Hours: Annual Data from NLS ${ }^{1 /}$

	Perfect Foresight Model (Zero-Order Covariances Restricted)		Uncertainty Model (Zero-Order Covariances Unrestricted)	
	Equally Weighted Minimum Distance	Optimal Minimum Distance	Equally Weighted Minimum Distance	Optimal Minimum Distance
1. Goodness-of-Fit Statistic (probability value) [degrees of freedom]	$\begin{gathered} 124.13 \\ (0.000) \\ {[28]} \end{gathered}$	$\begin{gathered} 94.49 \\ (0.000) \\ {[28]} \end{gathered}$	$\begin{gathered} 31.38 \\ (0.026) \\ {[16]} \end{gathered}$	$\begin{gathered} 31.21 \\ (0.027) \\ {[16]} \end{gathered}$
2. Relative Contribution of MA(2) Productivity Component to Earnings ($\mu)^{2 /}$ (standard error)	$\begin{gathered} 1.17 \\ (0.12) \end{gathered}$	$\begin{gathered} 7.71 \\ (2.79) \end{gathered}$	$\begin{gathered} 1.56 \\ (0.59) \end{gathered}$	$\begin{gathered} 0.85 \\ (0.29) \end{gathered}$
3. Implied Intertemporal Substitution Elasticity (standard error)	$\begin{gathered} 5.88 \\ (4.11) \end{gathered}$	$\begin{gathered} 0.15 \\ (0.06) \end{gathered}$	$\begin{gathered} 1.61 \\ (1.53) \end{gathered}$	$\begin{gathered} -6.80 \\ (13.45) \end{gathered}$
4. Specification test of EWMD vs. OMD estimate of μ (probability value)	---	$n / a^{3 /}$	---	$\begin{aligned} & 1.38 \\ & (0.167) \end{aligned}$

NOTES: $1 /$ Model is fit to autocovariances of changes in earnings and hours up to second order.

- Productivity component is normalized to have a unit contribution to hours.
3/ Test statistic cannot be computed.
Table 14

	Perfect Foresight Model (Zero-Order Covariances Restricted)		Uncertainty Model (Zero-Order Covariances Unrestricted)	
	Equally Weighted Minimum Distance	Optima1 Minimum Distance	Equally Weighted Minimum Distance	Optimal Minimum Distance
1. Goodness-of-Fit Statistic (probability value) [degrees of freedom]	$\begin{gathered} 229.36 \\ (0.000) \\ {[52]} \end{gathered}$	$\begin{gathered} 227.19 \\ (0.000) \\ {[52]} \end{gathered}$	$\begin{gathered} 56.98 \\ (0.014) \\ {[36]} \end{gathered}$	$\begin{gathered} 58.86 \\ (0.009) \\ {[36]} \end{gathered}$
2. Relative Contribution of MA(2) Productivity Component to Earnings ($\mu)^{2 /}$ (standard error)	$\begin{gathered} 0.98 \\ (0.06) \end{gathered}$	$\begin{gathered} 1.06 \\ (0.03) \end{gathered}$	$\begin{gathered} 1.01 \\ (0.07) \end{gathered}$	$\begin{gathered} 1.01 \\ (0.03) \end{gathered}$
3. Implied Intertemporal Substitution Elasticity (standard error)	$\begin{gathered} -55.55 \\ (178.98) \end{gathered}$	$\begin{aligned} & 16.67 \\ & (7.23) \end{aligned}$	$\begin{gathered} 125.00 \\ (1140.63) \end{gathered}$	$\begin{gathered} 123.00 \\ (438.74) \end{gathered}$
4. Specification test of EWMD vs. OMD estimate of μ (probability value)	---	$\begin{gathered} 1.54 \\ (0.124) \end{gathered}$	--	$\begin{gathered} 0.002 \\ (0.998) \end{gathered}$

NOTES: $1 /$ Model is fit to autocovariances of changes in earnings and hours up to second.order.
$\underline{2 /}$ Productivity component is normalized to have a unit contribution to hours.

[^0]: (sasaчวuased uf sioxsa pappue7s)
 /TSL-996T BTE STN :SATOH pue sfuturen
 Covariances of Experience-Adjusted Changes in

[^1]: /1

[^2]: NOTE: 1- Changes in earnings and hours between 1966 and 1967 are expressed at two-year rates for comparability with later changes.

