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Recent empirical studies of longitudinal earnings and hours data

focus on the contemporaneous correlation between hours of work and

average hourly earnings.L" This focus arises naturally from the life—

cycle labor supply model, which explains movements in hours over time in

terms of changes in the value of work and unanticipated changes in

wealth)' Nonetheless, there is widespread agreement that most of the

observed variation in hours over time is not explained by contem-

poraneous movements in wages)' On one hand, the cross—sectional

correlation between percentage changes in annual hours and percentage

changes in average hourly earnings is apparently dominated by measure-

ment error.' On the other hand, state—of—the—art estimates of the

life—cycle labor supply model yield small and often statistically

insignificant elasticities between hours variation and wage movements.-"

In this paper, we present a more general analysis of the relation

between movements in earnings and movements in hours over time.' Using

longitudinal data from three panel surveys, we catalogue the main

features of the covariance structure of earnings and hours. We then

present an interpretation of these features in terms of both a life—

cycle labor supply model and a model of fixed—wage labor contracts. Our

major findings are: (1) there is remarkable similarity in the

covariance structure of earnings and hours changes across the three data

sources and (2) apart from simple measurement error, the major component

of variance in earnings and hours affects earnings and hours equi—

proportionately.

In the first section of the paper, we describe the covariance
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matrix of changes in annual earnings and annual hours of work for male

household heads in three panel surveys: the Panel Study of Income

Dynamics (PSID); the National Longitudinal Survey of Older Men (NLS);

and the control group of the Seattle and Denver Income Maintenance

Experiment (SINE/DIME). Using method—of—moments estimation techniques,

we test for parsimonious representations of the data from all three sur-

veys. We find that changes in earnings and changes in hours are

uncorrelated at lags in excess of two years in the PSID and the NLS, and

at lags in excess of one year in the SINE/DIME. We also find evidence

of nonstationarity In the covariances of earnings and hours from all

three data sources.

In the second section of the paper, we present a life cycle labor

supply model and derive its Implications for the data described in

Section I. We also discuss the implications of a labor contracting

model in which hours of work are varied by employers with no

corresponding change in average hourly earnings.

In the third section of the paper, we present estimation results

for a simple two—factor model of earnings and hours generation. Th.e

model for earnings and hours consists of a systematic component

(reflecting individual productivity in the labor supply model or changes

in labor demand in the alternative model) and an unsystematic or

measurement error component. The estimation results reveal that both

cnponents are important in the data, and that the systematic component

generally influences earnings and hours equi—proportionare].y. This

leads us to conclude that most observed changes In earnings and hours
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that are not attributable to measurement error occur at fixed average

hrly wage rates.

I. Data Description

The longitudinal earnings and hours data in this paper are drawn

from the Panel Study of Income Dynamics, the National Longitudinal

Survey of Older Men, and the nonexperimental families in the Seattle and

Denver Income Maintenance Experiment. From the PSID, we have drawn

1448 male household heads whose records indicate nonzero earnings and

hairs in each year from 1969 to 1979 (the third through thirteenth waves

of the survey). A brief summary of the characteristics of the sample is

contained in Table 1. We have included only those male household heads

who were between 21 and 64 years of age in each of the sample years.

Average annual hours (at all jobs) are more or less constant throughout

the eleven—year period, while average hourly earnings (adjusted for

inflation) grow erratically. Our data set includes the Survey of

Economic Opportunity subsample of the PSID and consequently overrepre—

sents nonwhite and relatively low income households. The requirement of

eleven continuous years of earnings and hours data, on the other hand,

eliminates proportionately more low income and nonwhite households from

the sample.

Fran the National Longitudinal Survey of Older Men we have drawn

1318 men who where less than 65 years old in 1975 and who reported non-

zero earnings and hours in each of the survey years 1966, 1967, 1969,

1971, 1973 and l975.' Table 2 summarizes the characteristics of the

NLS sample. Average annual hours for this older sample of men decline
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throughout the nine—year sample period, particularly between 1973 and

1975. In interpreting the NLS data, it is important to keep in mind

that the later waves of the survey were administered biennally. As a

consequence, the changes in earnings and hours from 1969 to 1975 refer

to changes in annual totals over two—year intervals.

From the Seattle and Denver Income Maintenance Experiment we have

drawn a sample of 560 male household heads who enrolled in the control

group of the experiment.-" These male heads were between 21 and 64 years

of age during the first four years of the experiment, and reported non-

zero earnings and hours in each of the first eight experimental half—

year periods. We excluded a small number of heads who reported more

than 2500 hours of work in any one of the six month periods. The size

of the SINE/DINE sample reflects the relatively small initial survey and

the reduction in sample size associated with the requirement of eight

periods of labor market data.

The demographic characteristics of the SINE/DIME sample and time

series information on earnings and hours are recorded in Table 3. Labor

market information in the income experiment was collected every four

months and aggregated into six—month data by the experiment's contrac-

tors. Since enrollment dates differ by household, the experimental

periods correspond to different periods of calendar tine for different

households. The first experimentalperiod, for example, contains data

from calendar periods between early 1971 and late 1972.

Like the other two samples the SINE/DIME control group over repre-

sents low—income and nonwhite households. Average hours of work
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(recorded at an annual rate in Table 3) were essentially constant

throughout the first six periods of the expe rinnnt. Hours and real

earnings of the SIME/DB4E control group fell significantly in the eighth

and ninth experimental periods. These periods contain labor market

information from Late 1974 arid early 1975. changes in mean earnings and

hours in the SIME/DIME sample are therefore consistent with changes

observed in the other two samples.

The complete covariance matrices oF changes in the logarithms of

annual earnings and annual hours for the three samples are recorded in

Tables 4, 5, and 6. In order to partially control for differences in

labor force experience in the three samples, we have computrl LiLen

covariances using the residuals from unrestricted multivariate

regressions of changes in earnings and hours on time period indicator

variables and potential experience (age rnLrtus education minus 5). The

characteristics of the data are not signt[icantly affected by removing

the predicted effects of experience, since the explanatory power of the

experience regressions is negligible in all these data sets. The

covariances of the changes in earnings and hours with potential

experience are recorded in the final rows of the Tables.

To control for the fact that the SIME/DIME data are drawn from dif-

ferent calendar periods, depending on the date of assignment into the

experiment, changes in earnings and hours from the SIME/DIME were

regression adjusted using potential experience and a series of indicator

variables for month—of—assignment into the experiment. In none of the

sixteen regressions for the eight changes in earnings and hours were
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these indicator variables jointly statistically significant at conven-

tional significance levels, however.

Table 4 contains the covariances of changes in the logarithms of

annual earnings and annual hours for our sample of household heads from

the PSID. The upper left hand triangle of the table presents the

covariances of changes in earnings and their associated standard errors.

The lower right hand triangle of the table presents the covariances of

changes in annual hours. The lower left hand block contains the cross—

covariances between changes in earnings and hours.

The cross—sectional variation in percentage changes in annual

earnings and hours is large: the standard deviation of the change in

the logarithm of earnings is at least 35 percent, while the standard

deviation of the change in the logarithm of annual hours is at least 25

percent. The variances and covariances of changes in annual earnings

and hours also vary over time. Cross—sectional dispersion in earnings

and hours growth is relatively small in 1972—73 and 1973—74, and rela-

tively large in 1975—76. In contrast to aggregate time series data,

consecutive changes in individual earnings and hours are strongly nega-

tively correlated. The first—order serial correlation coefficients of

the changes in earnings and hours range from —.25 to — .45. The first—

order serial cross—correlations of earnings and hours are also negative,

although smaller in absolute value (between —.15 and —.25) than the

corresponding autocorrelations.

The contemporaneous covariances of changes in earnings and hours

for household heads in the PSID are significantly positive, although too
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small to generate a positive correlation between changes in hours and

changes in average hourly earnings. Since the logarithm of average

hourly earnings is the difference in the logarithms of annual earnings

and annual hairs, the covariance between changes in annual hours and

changes in average hourly earnings is just the difference between the

covariance of changes in earnings and hours and the variance of changes

in hours. For all ten changes in Table 4 this difference is negative

and well determined.

A final important feature of the covariance matrix in Table 4 is

the absence of any large or statistically significant autocovariances at

lags greater than two years. Year—to—year changes in earnings and hours

in the p510 are apparently well—represented as a nonstationary bivariate

second—order moving average process.

Table 5 presents the covariance matrix of five experience—adjusted

changes in earnings and hours from the NLS. Overall, the data are very

similar to the corresponding data from the PSID, although there is more

evidence of nonstationarity in the NLS data. On the other hand, none of

the second—order autocovariances or cross—covariances in Table 5 are

large or statistically significant, so that the NLS data may perhaps be

adequately suinnarized as a nonstationary bivariate first—order moving

average (MA(l)) process. If changes in annual earnings and hours

between conseaitive years are represented by a second—order moving

average process (NA(2)) then changes in hours and earnings at two—year

gaps are represented by a first—order moving average.2' Thus the data

in Tables 4 and 5 are potentially consistent with the se underlying

model of earnings and hours generation.
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Table 6 presents the covariances of experience—adjusted changes in

earnings and hours between consecutive six—month intervals in the

SINE/DIME survey. Again, these covariances are similar to the covari—

ances of the PSID and NLS samples. There is less evidence of nonsta—

tionarity in the SINE/DINE than in the other two surveys, although this

may reflect the fact that changes in earnings and hours in the SINE/DIME

survey are averaged over several different calendar periods. The first—

order autocorrelations of earnings and hours are similar in all three

surveys. The covariances between contemporaneous changes in earnings

and hours, on the other hand, are relatively higher in the SINE/DINE.

This implies that the simple regression coefficient of changes in the

logarithxo of annual hours on changes in the logarithm of average hourly

earnings is smaller in absolute value in the SINE/DINE (—.17) than in

the other surveys (—.31 in the PSID and —.32 in the NLS). None of the

third—order autocovariances or cross—covariances is statistically

significant in Table 6, suggesting that semi—annual changes in log

earnings and log hours in the SINE/DIME are close to a bivariate MA(2)

process. Since a bivariate MA(2) representation of semi—annual changes

in earnings and hours implies only a first—order moving average repre-

sentation of annual changes, the SINE/DIME data exhibit lower order

serial correlation than the PSID data.

Tables 7, 8, and 9 present formal test statistics for several

restrictive models of the covariance matrices of earnings and hours from

the three samples. Details of the method—of—moments estimation frame—
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work that we use to obtain these test statistics are presented in

Appendix A. Table 7 presents the test results for the PSID sample. The

first rw of the Table reports the goodness—of—fit statistic for a

nonstationary bivariate MA(2) representation of the PSID data. This is

a test that the third and higher—order autocovariances and cross—

covariances in Table 4-are jointly equal to zero. The probability value

of the test statistic is about six percent. Given the absence of any

large or individually significant covariances of third order or higher,

we conclude that a second order moving average provides an adequate

representation of changes in earnings and hours in the PSID sample.

The next three rows of Table 7 present goodness—of—fit statistics

associated with further restrictions on the general MA(2) model. These

tests are performed on the subset of autocovariances and cross—

covariances up to second order, utilizing the sample variance matrix of

the selected covariances..!Q! The first test is for a symmetric MA(2)

model of earnings and hours. This model imposes symmetry on the block

of cros s—covariances in the lower left—hand corner of Table 4. The test

statistic has a marginal significance level of 2 percent, indicating

some evidence against the symmetry hypothesis. The next test statistic

reported in Table 7 is a test for an MA(l) representation of earnings

and hours changes in the P519. Against the MA(2) alternative, this is a

test that the second—order autocovariances and cross—covariances in

Table 4 are jointly equal to zero. Again, the test statistic indicates

some evidence against the null hypothesis. The final row of Table 7

presents the test statistic for the hypothesis that the covariance
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structure of earnings and hours changes is time—stationary (i.e. , that

all 10 variances of earnings are equal, that all 10 variances of hours

are equal, etc.). This hypothesis is strongly rejected by the data.

Tables 8 and 9 present an identical sequence of test statistics for

the NLS and SIME/DIME samples. In both samples, the data are consistent

with a bivariate MA(2) representation of earnings and hours changes. In

the NLS, the second—order covariances and cross—covariances of earnings

and hours are also approximately equal to zero. Like the PSUD, the

SIME/DThIE and NLS covariances exhibit significant nonstationarity. The

SIME/DIME and NLS covariance matrices are more nearly consistent with

the symmetry restriction than the PSID covariance matrix.

In light of the data presented in Tables 4—6, and the test results

in Tables 7—9, we conclude that changes in individual earnings and hours

are adequately summarized as a nonstationary bivariate second—order

moving average. This description holds for annual data (PSID), semi-

annual data (SIME/DIME), and annual data at two year gaps (NLS). More

restrictive models of the covariance structure of earnings and hours

changes are not generally valid. In particular, nonstationarity is an

important feature of the covariances of earnings and hours from all

three panel surveys.

II. Alternative Models of the Covariance Structure of Earnings
and Hours thanges

In this section we present a simplified life—cycle labor supply

model and derive its implications for the covariance matrix of changes

in earnings and hours in panel data. We also present an alternative
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model of earnings and hours determination that corresponds to a labor

contract with fixed average hourly earnings and employer—determined

hours of work. We discuss the econometric identification of these

models in the presence of survey measurement error and outline an esti—

ination strategy that decomposes changes in earnings and hours into two

components: a systematic component, reflecting individual productivity

(in the labor supply model) or employer demand (in the contract nvdel);

and a measurement error component.

A. A Life—Cycle Labor Supply Model.

The starting point for our model of life—cycle labor supply is an

additively separable utility function of the form

T

(1) [log c1+. — a.+.

tqhere T is the time horizon of individual I , is a fixed discount

factor, c1+. represents the consumption of individual i in period

represents a preference—shift variable, n is a strictly

positive parameter, and h.÷. represents the hours of work of indivi-

dual i in period t+j . We assume that individuals choose their labor

supply and consumption in each period in order to maximize the expected

value of (1), given the Information available in that period and subject

to the following equation describing the evolution of their nominal

assets:

(2) A =(p 9 h —p c. -4-A)(l+R).
it-I-i t it it t it it t
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In this equation Alt represents the nominal value of assets held by

individual i in period t Rt represents the nominal interest rate,

Pt represents the price level of consumption goods, and repre-
sents the real wage rate available to individual I in period t

Maximization of the expected value of (1) subject to the wealth

constraint (2) implies the Bellman equation:

l+ii

(3) Vi(A.) max log c1 — alt i-:hi
h.11 + $E

where denotes the expectation operator conditional on information

available to individual i In period t

The first—order conditions for consumption and labor supply in

period t are

(4a) — Sp(l + R) EV!1(A) 0

(4b) a h1 — 80 p (1 + R ) E V' (A ) 0it t it t t t it+l it+1

In addition, the derivatives of the value function V. (A ) follow theit it
stochastic difference equation:

(5) Alt E V(A1) = 8(1 + R) E A11

There is no exact solution to equations (4) and (5) in general. We

proceed by using a well—known approximation to equation (5); namely
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(6) logA = log S +Rt + Et loX1 + d.

where d1 is the error of approximation and is assumed to be time sta-

tionary. The labor supply equation can be derived from (4b) using the

definition of A1 in (5):

(7) log hi = n log + ii log Pt + p log + it
where it = —n log alt . According to this equation, hours of work are

related to the contemporaneous wage rate by the intertemporal subs titu—

tion elasticity n Hours of work also depend on the marginal utility

of wealth , and the preference parameter

Making use of the approximation in equation (6), equation (7) can

be differenced to yield the following description of the change in the

logarithn of hours:

(8) A log hi log hj — log

p A log 0ir + — r1)
+ n(log Alt — Ei log A.) + A it

where p is the discount rate defined by 5 E 11(1 +p) and r is the

real Interest rate defined by r — A log Pt Since labor earn-

ings are the product of the wage rate 8it and hours of work hit

the labor supply model implies a similar specification for the change in

the logarithm of earnings (g):

(9) A log gif E A log hj + A log O

= (l+p)A log + fl(P-r1)
+ ii (log X1 — Etl log Ai) + Ai
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Changes in earnings and hours share common components associated with

the revision of the marginal utility of incane; the change in tastes for

leisure; and the difference between the discount rate and real

interest rate. In addition, an individual—specific wage component

enters the equations for earnings and hours changes with relative factor

loadings of (1-i-n) and n , respectively.

To complete this model of earnings and hours, we need to specify a

stochastic process for the wage rate. We assume that individual wages

contain a permanent component, an aggregate component, an experience—

related component, and an idiosyncratic component. Specifically, we

a Ssume:

(10) log e1 = a1 + + 11x1 + 2 +

where a1 is an individual—specific permanent wage effect, is an

economy—wide time effect, x is the number of years the individual

has been in the labor force, and is an idiosyncratic wage shock.

This specification explicitly rules out both individual—specific respon-

ses to the aggregate shock and individual—specific experience effects.

We defer a detailed discussion of these assumptions to Appendix B.

Using equation (10), the change in the wage rate in period t may

be expressed as:

(11) A log = + yx0 + Az

where c —
6t—l + — ÷ 2y2t , y , and is labor

force experience at calendar date t = 0.
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Substituting equation (11) into equations (8) and (9) and appending

a pair of measurement errors to log g and log hj yields a

theoretical model for the bivariate stochastic process governing

observed changes in individual earnings and hours

(l2a) A log = (l-1-n)c +n(—r1)

+ (l+n)yx10 + (l+) Az + Ai ÷ Mit,

(l2b) A log hj = flK +

+ rryx0 + nAzi +161 + + Av,

where 6it E log — Etl log Alt

uli E measurement error in observing log gft , and

E measurement error in observing log hit

The implications of equations (12) for the covariance structure of

earnings and hours depend on the serial correlation properties of the

productivity shock z1 , the taste shock , the measurement errors

and vi •, and the unexpected change in the marginal utility of

income • We assume that tastes for leisure contain a permanent

component, a hoimgeneous quadratic age effect, and an individual—and—

period—specific component. These assumptions imply that the error com-

ponent Mit associated with the change in tastes for leisure can be

written as

(13) = + 2x0 + Avi

4
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where Uft represents an individual— and period—specific taste shock.

We assume that is serially uncorrelated with a constant variance.

The change in tastes for leisure is therefore a first—order moving

average with a serial correlation coefficient of —.50.

The measurement errors u and v' have a special structure.

They are intended to represent systematic and random deviations of the

survey measures of earnings and hours from their theoretical analogues.

To capture these ideas, we assume that

(14) rut1 tii + [cut

[v7tJ '2iJ Lc2it
where and •2i represent individual— and survey—specific per-
manent response biases, and and 21 represent transitory
measurement errors. We assume that c1 and are serially

uncorrelated with an arbitrary time—stationary covariance matrix. Since

the changes in the measurement errors of earnings and hours reflect only

the changes in the transitory components of these errors, and since the
transitory measurinent errors are serially uncorrelated, Au* and v*

are first—order moving averages with serial correlation coefficients

equal to — .50. Notice that we are unable to separately identify the

variance contribution of the random shock to preferences and the

variance contribution of the transitory measurement errors, since we

have assumed that they have the same serial correlation properties, and

we have not restricted the correlation between the measurement errors.



—17—

We therefore combine these components into an unsystematic component of

the changes in earnings and hours:

r. 1 rAU + i r
(15)) it11 it it11 lit it

L itJ Ltt +

v.J L"21t ÷ Avit

which is a stationary bivariate MA(l) process with an arbitrary

contemporaneous covariance and with first—order autocorrelations equal

to —.50.

On the basis of the evidence that changes in earnings and hours are

adequately represented as a bivariate MA(2) process, we assume that

changes in individual productivity shocks in all three surveys follow a

nonstationary second order moving average. The parameters of this pro-

cess include the variance of the change in individual productivity

shocks in period t (var Az.) , the covariance of changes in individual

productivity shocks in periods t and t—l (cov(Az. , Azj)), and

the covariance of changes in individual productivity shocks in periods

t and t—2 (cov(Az, Az )).it
The final corrrponent of variance in equations (12a) and (12b) is

the unexpected change in the logarithm of the marginal utility of

wealth. In general, is a function of the unanticipated component

of the individual productivity shock Az11 and the unanticipated corn—
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ponent of the aggregate productivity shock. Consider the linear projec-

tion (across individuals at a point in time t):

(16) + bjAz — Eti Azj) +

Since the forecast error of AZft is serially uncorrelated, the serial

correlation propertiesmf c1 depend only on the serial correlation

properties of the projection error e This error depends on both

individual and aggregate productivity shocks, since individuals can vary

in their response to an idiosyncratic shock and in their response to an

aggregate shock. For simplicity, we assume that the projection errors

are serially uncorrelated (in the sense that plim ei e11 = 0 )

This assumption is satisfied if depends only on individual produc-

tivity shocks, or equivalently, if unanticipated aggregate shocks

generate a homogeneous shift in the marginal utility of income that is

incorporated into the cons tant term in (16)

We are now in a position to catalogue the implicationsof equations

(l2a) and (l2b) for the covariance structure of earnings and hours in

panel data. We note that in the absence of prior information these

equations place no restrictions on the mean changes in earnings and

hours observed in a cross—section)-! Depending on the specification of

life—cycle preferences for leisure, however, equations (12) may restrict

the regression coefficients of changes in earnings and hours on poten-

tial experience. Equation (iZa) implies that the regression coefficient

of the change in earnings on potential experience is

(l-e-)y +
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while (l2b) implies that the regression coefficient of the change in

hours on potential experience is

+

If life—cycle preferences exhibit no systematic curvature, then = 0,

and all the curvature in life—cycle hours is due to curvature in wages.

In that case, an estimate of ii is available frcm the ratio of the

covariance of the change in earnings with experience to the covariance

of the change in hours with experience. This is precisely the instru-

mental variables estimate of i fran the labor supply equation (l2b),

using potential experience as an instrument for wages.--'

Table 10 presents the average covariances of changes in earnings

and hours with potential experience from the three data sets. ft is

important to keep in mind that the timing intervals of the changes in

earnings and hours are different in the three surveys. If the

underlying parameters were the same in all three samples, then one would

expect to observe covarlances in the SINE/DIME roughly one—half as large

as those in the PSID, and covariances in the NLS roughly twice as large

as those in th PSID.!±" The first row of the Table presents the

average covariances of the change in earnings with potential experience.

In all three data sets this covariance is negative, although in the NLS

the average covariance is relatively small. The second row of the Table

presents the average covariances of changes in hours with experience.

In the PSID and SINE/DIME samples the covariance of hours changes with

experience is smaller in absolute value than the covariance of earnings

changes with experience. In the NLS sample, however, the covariance of
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hours changes with experience is larger in absolute value than the

covariance of earnings changes with experience. Under the assumption

that labor supply preferences exhibit no systematic curvature, the

instrumental variables estimate of n is
ChI(Cg_Ch)

where and

Cg represent the average covariances of experience with hours and ear-

nings changes, respectively. The instrumental variables estimates of i

for the PSID and SIME/DIME are therefore positive, while the estimate of

n for the NLS is negative and significantly different from zero.!i

The fourth r of Table 10 contains the goodness—of—fit statistics

associated with the restriction that the covariances of earnings and

hours with potential experience are stable over time. The hypothesis of

stationarity is marginally accepted in the PSID and SIME/DIME samples,

and strongly rejected in the NLS sample. In view of this finding, for

the remainder of our empirical analysis we leave the regression coef-

ficients of the changes in earnings and hours on potential experience
unrestricted, and concentrate on the covariance structure of the

experience—adjusted changes.

Denote the residuals of individual changes in earnings and hours

from a multivariate regression on potential experience and time—specific

means by A log and A log , respectively. Equations (12a) and

(12b) imply

(17a) A log it = (lfn)Azi + — ÷ Au.
and

(17b) A log hit = + — + Av1

Experience adjusted changes in earnings and hours consist of three

components: a productivity component (Azit) that enters earnings and
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hours with coefficients (l+) and n , respectively; a serially

uncorrelated component associated with the unanticipated change in the

marginal utility of income; and a restricted bivariate MA(l) component

reflecting survey measurement error and random shocks to preferences.

Table 11 summarizes the implications of equations (l7a) and (17b)

for the covariance structure of experience—adjusted changes in earnings

and hours. Measurement error components contribute negative first—order

autocovariances in direct proportion to their variance contribution.

Unanticipated changes in the marginal utility of income contribute a

time—specific component to the variances and covariance of earnings and

hwrs, but do not contribute to the autocovariances. Individual—

specific productivity shocks contribute a time—varying variance and

covariance component, and represent the only source of second—order

autocovariance. As indicated in the table, the labor supply model im-

poses symmetry on the cross—covariances of earnings and hours——a

restriction that is satisfied in the NLS and STtW/DThIE samples but

marginally rejected in the PSID sample. The labor supply model also

restricts the four second—order autocovariances in each year to have the

same sign. Inspection of Tables 4, 5 and 6 suggests that this restric-

tion is typically satisfied, althcxigh the second—order covariances are

estimated with relative imprecision.

It is clear from Table 11 that the labor supply elasticity ii is

generally overidentified. First, ratios of the second—order autoco—

variances provide estinates of l+/ , the relative factor loading of

productivity shocks in earnings as compared to hours. Second, if the
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first—order covariances vary over time, then the non—stationary com-

ponents of the first—order autocovariance matrix are restricted by the

ratio l+n/n . Let c'(t) denote the estimate of the first—order

autocovariance matrix of earnings and hours in petiod t. Equations

(17a) and (17b) imply

(1+1)2 n(l+n)
(18) c'(t) — C'(s) = {cov(Azi,Azii) — cov(AzjAzi [ 2

p

Provided that the first—order autocovariances of the productivity shock

are not equal, equation (18) Identifies the relative contribution of

individual productivity shocks in earnings as compared to hours, and

thus provides an estimate of the labor supply elasticity i

In the stochastic model of labor supply represented by equations

(17a) and (l7b), the zero—order covariances of earnings and hours (the

variances of earnings and hours and the contemporaneous covariance) are

unrestricted. This is a consequence of the fact that there are three

free paraneters (var (Azit) var it' and coy (A z., €ft2) asso-

ciated with the three zero—order covariances in each time period. In a

perfect foresight model in which the marginal utility of income is

constant, on the other hand, c is zero in every period and the labor

supply model restricts the zero—order covariances in the same manner as

the first—order autocovariances.

Even in a perfect foresight model, however, the covariances of the

measurement error component of earnings and hours are not separately

identifiable fran the variances and first—order autocovariances of the
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productivity shodc)-" It is therefore impossible to provide a unique

variance deccmposition of the changes in earnings and hours into systema-

tic and unsystematic components. One solution is to impose a prior

estimate of the correlation coefficient between the measurement errors

in earnings and hours. The estimate of (l-t-)/ is invariant to the

choice of correlation coefficients. In this paper we do not compute

variance decompositions of the earnings and hours data.

B. A Fixed Wage Contract Model.

The institutional structure of many employment situations is not

easily reconciled with a model of the labor market in which employees

unilaterally determine their hours of work subject to their current

wage rate. In contrast, a wide variety of contractual models emphasize

fixity in the labor market and resulting discrepancies between observed

average hourly earnings and the marginal rate of substitution of consurnp—

tion for leisure)2_" A prototypical model is one outlined by Abowd and

Ashenfelter (1981). In their model, employers offer job packages con-

sisting of a fixed average hourly wage rate and a probability distribu-

tion over hours. Equilibrium in the labor market is obtained by equating

expected utilities of job packages. In any particular realization of

the random demand shodc driving employers' demands for hours, however,

employees may prefer to work more or less than required in their

contract. The implied correlation between changes in average hourly

earnings and changes in labor supply is zero: earnings move in direct

proportion to employer—determined hours with no corresponding change in

wage rates.
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To derive the implications of this model for the covariances of

earnings and hours in panel data, assume that the wage rate received by

individual i in period t contains only a permanent component, a

deterministic experience component, and a period—specific component:

(19) log 9it = a. + + y1xft +

where, as before, x1 indicates the potential experience of i in

period t . Assume that hours of work of individual i in period t

consist of a permanent component ' , a deterministic experience com-

ponent, a period—specific effect Pt and a stochastic component

reflecting employer demand for hours: -

(20) log hi = + + + -Yx + yit

Adding measurement errors u and vj to observed earnings and

hours, respectively, this fixed—wage contract model implies that the

residuals of individual changes in earnings and hours from a regression

on potential experience are given by:

(2la) log g =
AYit +

and

(21b) A log hit = Ayft +

As it happens, this simple fixed wage contract model is indistin-

guishable fran a labor supply model in which the ratio (l+)/ is

unity, or equivalently, in which the elasticity of labor supply is

arbitrarily large. To see this, let
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p = (l+n)/n , = nAzi c = — e)

and rewrite (l7a) and (17b) as

(22a) A log = i.i Az' ÷ +

and

(22b) A log hj = Az + ÷

If p = 1 , (22a) and (22b) are identical to (2la) and (Zlb) with

var(Ay1) = var(Azr) ÷ var(ct) + 2 coy (Azt, e) and

coy (Ay, Ay) = coy (Azr. Az) for • It is therefore

impossible to reject the labor supply model in favor of the fixed

wage contract model. If estimates of p in equation (22a) are

close to unity, however, our interpretation of the data is not that

small changes in wage rates are necessarily driving large changes

in hours, but rather that hours and earnings are moving proportionately

at constant average hourly wage rates.--'

III. Estimates of a Two—Factor Model of Earnings and Hours.

In this section we present estimates of the two—factor model of

earnings and hours generation derived fran the theoretical models in the

previous section. We report estimation results for two versions of

the labor supply model: a perfect foresight version that ignores

changes in the marginal utility of income; and a stochastic version that

allas for unanticipated changes in the marginal utility of income. For

each version of the model, and each of the three panel surveys, we pre—
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sent sumnnry statistics for the goodness—of—fit of the model, as well as

estimates of the relative contribution of productivity shocks in

earnings as compared to hours (the parameter p in equation (22a)), and

the implied elasticity of intertemporal substitution.

The estimates are obtained by method—of—moments techniquS, using

as data the covariances of experience—adjusted changes in earnings and

hairs. On the basis of the preliminary data analysis in Section I, we

fit the model to the contemporaneous covariances of earnings and hours

and their first— and second—order autocovariances, ignoring the higher—

order autocovariances.

Two alternative method—of--moments estimates are presented. The

first, whidi we call the equally weighted minimum distance (EW?e) esti-

mator, minimizes the quadratic form

[m — f(b)J' [m — f(b)]

where m represents the vector of adjusted covariances to be fit by the

model, b represents the vector of parameters of the model, and f(b)

represents the vector of predicted values of the fitted moments, con-

ditional on the parameter vector b • The second, which we call the.

optimal minimum distance (Oft)) estimator, minimizes the quadratic form

[m - f(b)J' V[m - f(b)]
where V denotes the sample variance matrix of the data vector in.

Chamberlain (1984) shows that the latter estimator minimizes the asymp-

totic covariance matrix of the estimated parameters among the class of

minimum distance estimators.

Table 12 sunmarizes the structural estimation results for the PSID.
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Columns (1) and (2) report equally weighted minimum distance and optimal

minimum distance estimates, respectively, for the perfect foresight

model, while columns (3) and (4) report EWFID and 01W estimates of the

uncertainty model. The individual productivity process
(Az1) is

estimated as an arbitrary nonstationary MA(2) process. In the PSID,

this introduces 27 parameters: 10 variances, 9 first—order covariances,

and 8 second—order covariances. The measurement error/preference shock

component of variance introduces 3 additional parameters (the variance

of the measurement error component in earnings, the variance of the

measurement error component in hours, and the correlation of the two

measurement errors). The final structural parameter is the relative

contrihitlon of the productivity component to earnings (1'). In the

uncertainty specification of the model there are 20 additional para-

meters corresponding to the additional unrestricted zero—order covar—

lances. Since the measurement error components and the productivity

components are not separately identifiable, for purposes of estimation

we have arbitrarily fixed the correlation of the measurement errors in

earnings and hours. The goodness—of—fit of the models and the estimates

of u are invariant to the choice of normalizing assumptions.

The first r of Table 12 shows the goodness—of—fit of the struc-

tural models relative to an unrestricted model (98 unrestricted

moments). The test statistics in the first two columns of the table

suggest that the perfect foresight model is not supported by the data.

The test statistics in the last two columns of the Table, on the other

hand, indicate that the uncertainty model is consistent with the data at
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of

the

very

of

conventional significance levels. The second row of the table reports

the estimated values of the productivity contribution parameter i.t . All

of these estimates are within sampling error of one for the PSID. Even

though the perfect foresight model does not fit well, the estimates of

p from this model are essentially the same as the estimates of i.t from

the uncertainty model. As row 3 of Table 12 shows the implied estimates

of the labor supply elasticity n are extremely variable and impre—

19/
cisely estimated.—

The finding that productivity shocks influence earnings and hours

proportionately suggests that systematic changes in individual hours

occur at fixed hourly wage rates. There are a variety of possible

interpretations of this finding. One possibility is that changes in

hcnrs are determined by employer preferences, and are uncorrelated with

changes in average hourly earnings. A second possibility is that the

estimate of p is biased downward by changes in the marginal utility

income that enter earnings and hours proportionately. If we

incorrectly fit a perfect foresight model, assuming eft = 0 , then

estimate of p. , in equation (l7a) is biased toward one. If cross—

sectional variability in e is the source of downward bias in the

perfect foresight estimate of p , however, then we would expect the

estimate of p to increase between the perfect foresight and uncer-

tainty specifications of the labor supply model Since the perfect

foresight and uncertainty versions of the labor supply model yield

similar estimates of ji , we conclude that changes in the marginal

utility, of income are not a likely source of bias in the estimates
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p . Year—to—year changes in earnings and hours are consistent with

either a large substitution elasticity, or alternatively with employer

determined hours at fixed average hourly wage rates.

The results in Table 12 nonetheless reveal a problem for the fixed—

wage interpretation of the estimates of p . Under a stochastic labor

supply model, the contemporaneous covariances of earnings and hours are

not necessarily consistent with a two—factor model. Under the simple

contract model outlined in Section 118, on the other hand, the zero—

order covariances of earnings and hours are consistent with the same

underlying two—factor model as the higher—order autocovariances. The

goodness—of--fit statistics for the two—factor model when the contem-

poraneous covariances are restricted (in columns (I) and (2)) and

unrestricted (in columns (3) and (4)) suggest that this is not the case.

Whether the contanporaneous covariances of earnings and hours are

restricted by the model or not, the estimate of p and the

corresponding goodness—of—fit statistics are very similar between the

OMD and EWMD estimation methods. Differences between the OMD and EWMD

parameter estimates have the interpretation of a specification test

(Hausman (1978)). Under the hypothesis that the model is correctly spe-

cified, both the EWHD and OMD estimates are consistent, and the OND

estimates are efficient. It is straightforward to show that the

covariance matrix of the vector of differences between the EWMD and 01W

parameter estimates is equal to the difference between the OMD parameter

covariance matrix and the EWMO parameter covariance matrix.--' The test

statistics associated with the difference between the 01W and EWMD esti—
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mates of p are reported in the fourth row of the Table. For both the

perfect foresight and uncertainty versions of the labor supply model,

the OMD and EWMD estimates of j are not significantly different.

Table 13 summarizes the estimation results for the NLS. In fitting

the labor supply model to the NLS, the covariances of the underlying

productivity shock (Az.) contribute 12 free parameters (five varian-

ces, four first—order autocovariances, and three second—order

autocovariances). Columns (1) and (2) of the table present estimation

results for the perfect foresight version of the labor supply model.

Columns (3) and (4) contain the results for the stochastic labor supply

model, which adds 10 extra parameters corresponding to the additional

unrestricted zero—order covariances.

The equally weighted minimum distance estimates in columns (1) and

(3) suggest that the parameter i is greater than unity, but not

significantly so. The associated estimates of ii are large and Impre-

cise. The goodness—of—fit of the perfect foresight model is poor: the

chi—squared test statistic is 124.1 with 28 degrees of freedom. The fit

of the stochastic labor supply model, on the other hand, is considerably

better. The optimal minimum distance estimates in columns (2) and (4)

of Table 13 provide about the same goodness—of—fit as the corresponding

EWMD estimates, but yield very different estimates of the labor

supply elasticity. The (ThD estimates of the perfect foresight model, in

particular, indicate a remarkably stronger productivity component in

earnings as compared to hours, and a relatively small estimate of i

The OMD estimates of the stochastic labor supply model are closer to the



—31—

corresponding equally weighted minimum distance estimates, but yield a

negative point estimate of ii.

Our interpretation of the difference in the estimates in columns (1)

and (2) of Table 12 is that the perfect foresight labor supply model pro-

vides a poor fit to the data, and as a consequence the parameter esti-

mates are sensitive to the relative weight assigned to the deviations of

particular moments from their predicted values. The fourth row of Table

4 presents specification tests based on the difference between the EWND

estimates of p and the corresponding OND estimates. For the perfect

foresight model the statistic cannot be computed because the estimated

standard error under OMD is larger than under EWMD.?' In any case, the

goodness—of—fit statistics providefairly strong evidence against the

perfect foresight labor supply model. For the uncertainty model, on the

other hand, the difference in the EWMD and OMP estimates of p is .71,

with a standard error of .51. This result and the goodness—of—fit sta-

tistics in the third and fourth columns of the Table suggest that the

stochastic labor supply model provides a reasonable description of the

data.

Table 14 contains goodness—of—fit statistics and parameter esti-

mates obtained from the SIME/DIME sample. The conclusions from this

sample are essentially the same as the conclusions from the other data

sets. The perfect foresight labor supply model fits relatively poorly.

The alternative model that frees up the zero—order covariances of the

data is only marginally rejected. The estimates of p are within

sampling error of unity in all cases. In the SIME/DII{E data, as in the

PSID data, the specification tests based on the difference between the
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EWMD and aMP estimates of p are not significant at conventional signi-

ficance levels.

IV. Conclusions

We have presented evidence on the autocovariance structure of ear-

nings and hours changes in three panel data sets: the PSID, which

measures hours and earnings annually; the NLS Survey of Older Men, which

measures annual hours and earnings at two year intervals; and the

SIME/DIME, which measures semi—annual earnings and hours. In spite of

these timing differences, and some differences across the surveys in the

questionnaire used to measure hours and earnings, the autocovariance

structure of all three data sets is remarkably similar. Individual

changes in earnings and hours have strong negative first order auto—

correlation, weak second order autocorrelation, and negligible higher

order autocorrelations. Contemporaneous changes in earnings and hours

are positively correlated in all three data sets. This cross—covariance

is too small, however, to generate a position covariance between changes

in hours and changes in average hourly earnings in any of the data sets.

The sparse autocovariance structure of earnings and hours changes

makes it difficult to identify models that include general specifica-

tions of measurement error, tastes, and economic components. We develop

two models of hours and earnings that distinguish between an unsystema-

tic component (attributable to measurement error and/or taste changes),

and a systematic component. In the first model, the systematic com-

ponent is interpreted as an underlying shock to individual productivity
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that influences wages directly and hours indirectly through an intertem—

poral substitution effect. In the second model, the systematic com-

ponent is interpreted as a shock to employer demand for hours that

influences earnings and hours equi—proportionately. Our empirical

results suggest that the systematic component of variance effects ear-

nings and hours equi—pifoportionately in all three panel data sets.

Apart from the zero—order covariances of earnings and hours (the

variances of earnings and hours and their contemporaneous covariance), a

simple two—factor model provides an adequate description of the

covariance structure of earnings and hours changes in all three data

sets. A two—factor model is apparently too restrictive as a model of

the complete covariance matrix of earnings and hours changes. In the

context of a labor supply model, this finding is interpreted as evidence

against perfect—foresight. In the context of a fixed—wage contract

model the interpretation of this finding is unclear. More work is

required to distinguish between the two models, and to develop alter-

native models of the covariance structure of earnings and hours.
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Footnotes

See for example Ashenfelter and Ham (1977), MaCurdy (1981),

Altonji (1984), and the surveys by Killingsworth (1983) and Pencavel

(1985).

VThe life—cycle labor supply model is described in Ghez and Becker

(1975) and Heckman (1976). Browning, Deaton and Irish (1985) provide a

useful summary of the theory of consumer behavior over time.

1"Pencavej (1985, p. 151) concludes that . . . the focus of most

economists' research [on labor supply] has been on a behavioral response

that for men appears to be of a relatively small order of magnitude.

'Altonji (1984) compares the correlation between changes in hours

and changes in average hourly earnings (about — .35 in his sample and in

the PSID and NLS data sets used in this paper) with the correlation bet-

ween changes in hours and changes in reported wage rates of hourly rated

workers (about .01 in Altonji's sample). Altonji interpretes this dif-

ference as evidence that masurement error in hours induces a strong

negative correlation between changes in hours and changes in average

hourly earnings.

'HaCurdy (1981) and Altonji (1984) both arrive at estimates of the

intertemporal substitution elasticity in the neighborhood of .10 — .40.

-"Our empirical analysis is closely related to work by Hause (1980)

and MaCurdy (1982). Hause and MaCurdy both model the serial correlation
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structure of earnings in longitudinal data. We extend the analysis to

the bivariate process of earnings and hours.

1The NLS surveys were administered in July through October of the

survey years, and asked questions on earnings and hours in the previous

twelve months. Unlike the PSID survey, the NLS collects no auxilliary

information on overtime hours or hours of work on secondary jobs. For

this and perhaps other reasons, a large fraction (30 percent) of NLS

respondents report exactly 2,000 hours per year.

!"our SINE/DIME data is drawn from the so—called Work Impact File

assembled by SRI from the underlying survey data. The SIME/Dfl1E survey

contains detailed questions on overtime and secondary jobs, and is

conceptually more similar to the PSID survey than the NLS survey.

.2! Denote the change in earnings between period t—l and period t

by Ax . If Ax is MA(2), then Ax = s + b11 ÷ b2e 2
for

example, where is serially uncorrelated. The change in earnings

between period t—2 and period t is x — x2 = Ax +

Therefore, x — x2 = + (l+bi)e 1
+ (b1 + b2)e2 +

Notice that x — x2 is correlated with x2 — , but not with

x4 — x6 (or Ax4).

!Q!There are at least two alternative ways to test restrictions on

subsets of the covariances in Tables 4, 5, and 6, depending on whether we

incorporate the restrictions that the third— and higher—order covariances

are jointly equal to zero when we test the properties of the lower—order



—36—

covariances. Our procedure is to ignore the higher—order covariances in

estimating and testing restrictions on the lower—order covariances.

i2/The error e may be serially correlated, for example, ifit

aggregate shocks have a systematically larger effect on some

individuals' marginal utility of income than others'. In this case,

however, we would expect to observe nonvanishing covariances between

changes in earnings and hours from years with large aggregate shocks,

irrespective of the gap between these years. There is no evidence of

this phenomenon in Tables 4—6.

il/There are two time—varying components of the mean changes in

earnings and hours in each year: the shift in the aggregate productivity

shock ; and the average revision in the marginal utility of

income

!'MaCurdy (1981) and Altonji (forthcoming) present instrumental

variables estimators of the intertemporal labor supply
elasticity, using

polynomials of age and experience as instruments.

---"Write equation (l2a) as

Alog gft = + io ÷

where represents the regression coefficient of the change in ear-

nings on experience, is a period—specific constant, and

includes the stochastic components of earnings changes. If time is

measured in years, then the change in annual earnings over the two year

interval from t—l to t+l is Alog g.1 ÷ Alog =
1t+l + +
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28x1 + + 6. . Thus the covariances of changes in earnings and

hours with potential experience should be roughly twice as large in the

NLS as the PSID. The comparison between changes at six month intervals

and changes at annual intervals is similar.

instrumental variables estimate of n for the PSID is

substantially larger than the estimates reported by MaCurdy (1981) or

Altonji (forthcoming). Both authors use overidentified estimators that

make use of several instrumental variables for wage changes. Since our

primary interest is not in the instrumental variables estimates them-

selves, we have not explored the estimates of ii when other exogenous

variables are used as instruments for changes in wages.

is straightforward to show that each of the variances of the

productivity shock can be increased by a fixed factor, the measurement

error variances can be decreased, and the first—order autocovariances of

the productivity shock can be increased in such a way as to hold

constant the predicted covariance matrix of earnings and hours.

!ZiHart (1983) and Rosen (1985) survey most of the theoretical

literature on labor contracts.

!JIn other work (Abowd and Card (1984)) we have considered the

implications of labor contracts that smooth individual earnings.

Suppose, for example, that observed earnings in period t represent a

geometric average of earnings in the absence of contracts (g°) and

desired consumption in t (c) , which we assume is constant. Then

log g = (1—y) log g° + y log c , where 'y' represents the extent of
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earnings stabilization. Taking first differences and using the notation

of equation (22a), log =
ILAz*. + E*i + , where

p = (1—y) (l+n)/n and Az*. and C*1 are suitably defined. In the

presence of earnings smoothing contracts, the parameter i' may fall

below unity.

12!The labor supply elasticity n is obtained from the estimate of

U by the formula ii = (p—l)1 . Standard errors for Ti in Tables 12,

13, and 14 are calculated by the delta—method.

derive the covariance matrix of the difference between the OMD

estimate b° and the EWND estimate be
, note that under the hypothesis

that the model is correct,

a —1 —l —1/N (b — b*) /r(F'V F) FTV (m_f(b*))

/nbe - b*) - /F(F'F)1 F!(m_f(b*))

where V is the covariance matrix of the vector of moments in , f(b)
is the predicted vector of moments given the true value b*

, N is the

sample size, and F represents the Jacobian matrix of f
, evaluated at

b* • These equations follow from the first order conditions for

and be , respectively, and a series of regularity assumptions. Using

the fact that V is the variance matrix of (m_f(b*))
, it is straight-

forward to derive the asymptotic variance matrix of the difference

(ho_be).

li/The variance of the OND parameter estimate is necessarily smaller

only when both variances are estimated at the same parameter values.
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Appendix A

- In this appendix we summarize the estimation and -inference proce-

dures used throughcxit the paper. The basic unit of data for each indi-

vidual in a particular data set is the vector of experience—adjusted

changes in earnings and hours. If we denote these by A log and

A log hj , then the data vector is

A 1g "iT

which has dimension 2T , where

the data set. Let " = 4 f
let C=-t — '—'
these changes.. Estimates of C

in Tables 4, 5, and 6.

The models we estimate are models for C. Let m represent a

vector whose elements are the distinct elements of C • Since C is

symntric, there are only 2T(2T-i-l)/2 elements in in • In the PSID,

this corresponds to 210 elements; in the NLS, 55 elements, and itt the

SIME/DD4E, 136. Conformably with in, let m represent the distinct

elements of the individual cross—products matrix (—)' . Then
in = E in

—41—

V aJi

A log

A log

A log ll

T is the number of changes observed in

represent the mean vector of changes and

represent the covariance matrix of

are presented for the three data sets
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The variance matrix V of the vector of covariance elements is

estimated by computing the cross—sectional variance of m1 in the usual

manner:

v=- (m —in) (m —in)'

A typical elanent of V is V cov(m , m) If

in cov(A log , A log hj.) and = cov(A log g1 , A log

then

= j [(A log it — A log XA log — A log — m] x

(A log — A log ')(A log is—k — A log —

where A log j1 represents the sample average change in the logariti-in

of earnings in period t • Let Q represent the matrix of fourth

moments of

Q=j mimi'
i

Q and V are related by V = Q — in in'

Under fairly general conditions, independence of the y1 implies

that the sample mean of m has an asymptotic normal distribution:

hF Cm — ii) N(O , V*)

where p is the population value of m (i.e. , the true covariance

matrix of earnings and hours changes) and V* is the population value

of V.

Consider a model for the vector of covariance elements that depends

on a lcwyer—djmensional parameter vector b , say m = f(b). Several
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estimators are available for b: among these are the optimal minimum

distance (OIID) estimator b° , which minimizes (m—f(b)) V1 (m—f(b)),

and the equally weighted minimum distance (EWMD) (or least squares)

estimator be , which minimizes (m—f(b) ) '(m—f(b)). Optlinality of the

former estimator is discussed in Chamberlain (1984).

For the OMU estimator, inference is based on the fact that under the

hypothesis of a correct specification, the minimized quadratic form

N • (in — f(b°fl' V1 (m — f(b°))

has an asymptotic chi—squared distribution with degrees of freedom equal

to the difference between the dimension of m and the rank of the

Jacobian matrix F(b) evaluated at b* , the true value of b.

(See Chamberlain (1984)).

If the model for in has the special form

= = f(b) =

H L°i

in which only the last k elements of in are restricted to zero, it is

straightforward to show that the minimized quadratic form reduces to

—lN•
in2 V22 m2

where V22 is the block of V corresponding to the elements in in

that are restricted to zero. This is the chi—squared test for

in2
= 0
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For an estimator bA that minimizes an arbitrary quadratic form

(m — f(bfl' ACm — f(b))
where A is a positive definite matrix, Newey (1985) shows that the

quadratic form

(in - f(b R (mS- f(bA))

has an asymptotic chi—squared distribution. Here, C is a generalized

inverse of the matrix R = pVp' , where p = — F(F'F)1 F'A , and F

represents the Jacobian matrix of f evaluated at hA. Newey (1985)

suggests a generalized inverse of R of the form S(S'RS)1 S , where

S is a selection matrix of rank equal to the difference between the

dimension of in (the number of movements fit) and the rank of F. In

general, for a nonlinear model, the value of the quadratic form depends

on the exact generalized inverse selected for R. In case of a linear

model, however, the value of the quadratic form is invariant, and in the

simple case of testing the restrictions in2 0 , with no additional

restrictions on m1 , the value of the quadratic form can be shown to

equal N in2' V221 in2. Tests of zero restrictions are invariant to

the choice of OMD or any arbitrary minimum distance estimator.

Our procedure is to first test for zero restrictions and then to

work with the nonzero covariances of earnings and hours. In the nota-

tion of the previous discussion, once we have accepted the hypothesis

= 0 , we estimate ndels for m1 and use the covariances matrix

V11 for inference. This procedure is not fully efficient, since

better estimates of the unrestricted elements of m can be formed by

taking into account the fact that certain other elements of at (i.e.
those in in2) are zero.
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Appendix B

In this appendix, we comnnt on the assumption underlying equation

(10) of the text that aggregate shocks and experience effects enter

homogeneously into individual productivity. More generally, consider

the alternative specification:

(ba) log a1 + r16
+ + 2 x + z

Here, we have permitted the aggregate productivity shock to affect

individual productivity through an individual—specific response coef-

ficient
r1

Cross—section dispersion in r reflects the possibility
that individuals have permanent cyclical attributes: individuals with

higher values of r1 are more responsive to aggregate shocks. We have

also permitted the linear experience coefficient to have an indi-

vidual component of variance.

Equation (l0a) implies that the first difference of wages can be

written as:

(ha) A log = K + + Y2x0 + (r —r) Aót +
Az1

where K = rA6 — + 2y2t , and r is the average value of

Individual heterogeniety in the experience slope and the response to

aggregate shocks introduces two additional components of variance into

the first differences of earnings and hours. Both of these components

contribute to covariances between lagged changes in earnings and hours.

First consider the component of variance associated with (r — r) If

this component is large, then changes in earnings and hours in years

with a negative product [vity shock should be more highly correlated with
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changes in other years with negative shocks, and less correlated with

changes in years with aggregate productivity improvements. By most

measures aggregate productivity fell with business cycle recessions in

1969—70, 1973—74, and 1980—81. In the PSID data, however, covariances

of earnings and hours changes between these years are very similar to

covariances between arbitrary pairs of years at the same gap. We there-

fore conclude that the component of variance due to individual—specific

responses to aggregate shocks is small.

Next, consider the component of variance in (ha) associated with

cross—section dispersion in earnings growth rates. This component

contrihites a fixed positive element to earnings and hjrs autocovar—

iances and cross—covariances of all orders. In the data, autocovariances

of third order and higher are all negligible. Again, we conclude that

cross—section dispersion in experience growth rates contrihites a

relatively small component of variance to wage growth.



Table 1

Characteristics of the PSID Sample of Male Household Heads

atYear—
Average
Hourly
Earnings

Average
Annual
Hours

1. Annual Hours and Average 1969 3.62 2308
Hourly Earnings 1970 3.71 2276
(1967 dollars) 1971

1972
1973
1974
1975
1976
1977
1978
1979

3.85
4.00
4.13
4.10
4.02
4.19
4.26
4.26
4.25

2266
2302
2324
2246
2220
2231
2236
2244
2186

Change
Change

.in Earnings
Change
in Hours

2. Changes in Log Real Annual 1969—70 2.5 —0.8
Earnings and Log Annual 1970—71 3.0 -0.3
Hours (x 100) 19 71—72

1972—73
6.9
4.7

2.0
1.9

. 1973—74 —5.5 —4.1
1974—75
1975—76
1976—77
1977—78
1978—79

—4.2
4.1
2.5
0.2

—5.5

—2.4
0.6
0.3
0.5

—4.2

3. Demographic Characteristics

Average Age in 1969 35.8
Percent Nonwhite 27.3
Average Potential Experience in 1969 18.9

4. Sample Size 1448-"

NOTES: a/Data are for the calendar years listed.

.1Eight outliers with reported average hourly earnings greater
than $100/hour (1967 dollars) were excluded.



Table 2

Characteristics of the NLS Sample of Older Men

Year
Average
Hourly

Earnings

Average
Annual
Hours

1. Annual Hours and Average 1966 3.50 2209
Hourly Earnings 1967 3.46 2190
(1967 dollars) 1969

1971
1973
1975

3.55
3.66
3.63
3.50

2190
2161
2160
2003

.
Change

Change
in Earnings

Change
in Hours

2. Changes in Log Real Annual 1966—67 4.5 0.0
Earnings and Log Annual 1967-69 4.0 0.0
Hours (x 100) 1969—71

1971—73
1973—75

3.1

—0.2
—16.8

—0.1
—1.5

—11.6

3. Demographic Characteristics

Average Age in 1969 49.2

Percent Nonwhite 29.8

Average P.otential Experience in 1969 34.4

4. Sample Size 1318

NOTE: Data are for twelve—month periods preceeding the interview date.
Changes in earnings and hours over the two year intervals are not
at annual rates.



Table 3

Characteristics of the SINE/DIME Sample

of Male—Reacts of Dual—Headed Households

Experimental
Period

Average
Hourly

Average
Annual

1. Mm..] Hours and Average i

Earnings

3.47

Hours

Hourly Earnings 2 3.53
2093

(1971 dollars) 3 3.63
2098

4 3.73
2087

5 3.83
2117

6 3.88
2135

7 3.88
2104

8 3.85
2131

9 3.88
2074
2059

Change
Change

in
Change

2. Changes in Log Real Semi—Annual 1—2

Earninjs

1.2

Hours

3.9
Earnings and Log Semi—Annual 2-3 —1 .3
Hours (z 100) 3—4 2.8 5.8

4—5 1.6
5—6 —1.3

4.0

6—7 0.7
7—8 —3.5

0.6

8—9 —3.0 —2.7

3. Demographic Characteristics

Average Age at start of experiment 34.7

Percent Nonwhite 48.8

Average Potential Experience at start 18.2
of experiemnt

4. Sample Size 560

NOTE: Data are for six—month periods following assignment into the
income experiment. The changes in earnings and hours between
consecutive six—month intervals are not at annual rates.
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Table 7

Summary of Estimated Bivariate MA(2) Representation

of Experience—Adjusted Changes in Earnings and Hours:

Annual Data from the PSID

1. Goodness—of—fit statistic — MA(2) 137.19
(probability value — 112 degrees of freedom) (.062).

2. Test statistic for symmetric MA(2)' 31.02
(probability value — 17 degrees of freedom) (.020)

3. Test statistic for MA(l)--" 50.39.
(probability value — 32 degrees of freedom) (.020)

4. Test statistic for stationary MA(2)1' 143.69
(probability value — 87 degrees of freedom) (.000)

NOTE: "Against the alternative hypothesis of a nonstationary
bivariate MA(2).



Table 8

Summary of Estimated Bivariate MA(2) Representation

of Experience—Adjusted Changes in Earnings and Hours:

Annual Data from NLS

1. Goodness—of—fit statistic — MA(2) 12.89

(probability value — 12 degrees of freedom) (.377)

2. Test statistic for symmetric MA(2)uI' 14.47
(probability value — 7 degrees of freedom) (.047)

3. Test statistic for MA(l)" 14.64
(probability value — 12 degrees of freedom) (.263)

4. Test statistic for stationary MA(2)11 68.14

(probability value — 21 degrees of freedom) (.000)

NOTE: !iAgainst the alternative hypothesis of a nonstationary
bivariate MA(2).



Table 9

Summary of Estimated Bivariate MA(2) Representation

of Experience—Adjusted Changes in Earnings and Hours:

Semi—Annual Data from SIME/DIME

1. Goodness—of—fit statistic — MA(2) 74.98
(probability value — 60 degrees of freedom) (.092)

2. Test statistic for symmetric tfA(2)L" 5.90
(probability value — 2 degrees of freedon) (.434)

3. Test statistic for MA(1)- 39.95
(probability value — 24 degrees of freedom) (.022)

4. Test statistic for stationary MA(2)" 100.70
(probability value — 65 degrees of freedom) (.000)

NOTE: VAgainst the alternative hypothesis of a nonstationary
bivariate MA(2).
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Table 11

Implied Covariances of Experience — Adjusted Changes in

Earnings and Hours: Labor Supply Model

1. var (A log gft) (1+1)2 var (Azj) + var

+ 2n(l+n) coy (Azj, jt + 202

2. var (A log hit) var (Azi) + var
(cit)

+ 21,2 coy (Azi, e) + 202

3. coy (A log A log n(1+n) var (Azi) + var
(cit

+ n(l+2n) coy (Azj. 12 + 2paa

- — 2 24. coy (A log A log 11) (l+ri) coy (Azj, Azii) —

5. coy (A log A log 1itl coy (Azj, Azit_1) —

6. coy (A log A log hii), n(l+n) coy (Azi, Azi1) — uv0u0v
coy (A log it' A log j1)

7. coy (A log A log gj_) (1+1)2 coy (Azt, Azi_2)

8. coy (A log hi A log h2) coy (Azj, Az.2)

9. coy (A log A log hi2), n(l+n) coy (Azi, Az12)

coy (A log hi A log

Notation: A log g and A log h refer to the residuals of the changes in

the logarithm of earnings and hours from regressions on potential experience.

represents the variance of the measurement error of earnings, 2 repre-

sents the variance of the measurenent error of hours, and uy represents their

correlation.
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