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1.  Introduction 
 

A fundamental contribution of Sims (1980) was his constructive argument that 

many of the “incredible” identifying restrictions underlying the structural 

macroeconometric models of the 1960s and 1970s are unnecessary either for forecasting 

or for certain types of policy analysis.  Instead of imposing large numbers of identifying 

restrictions that permitted system estimation by two- or three-stage least squares, Sims 

proposed that the system dynamics be left completely free.  His key insight was that the 

effect of policy interventions – an autonomous increase in the money supply or an 

autonomous decrease in government spending – could be analyzed by examining the 

moving average representation relating macroeconomic reality (outcome variables of 

interest) directly to the structural economic shocks.  To identify these policy effects, one 

only needed to identify the structural economic shocks; then the dynamic policy effects 

could be computed as the impulse response function obtained by inverting the vector 

autoregressive (VAR) representation of the data, linearly transformed to yield the moving 

average representation with respect to the structural shock.  Restrictions on the dynamic 

structure were neither required nor desired – all that was needed was some scheme to sort 

through the VAR forecast errors, or innovations, in just the right way so that one can 

deduce the structural economic shock or shocks desired for undertaking the policy 

analysis. 

This final requirement – moving from the VAR innovations to the structural 

shocks – is the hardest part of so-called structural VAR (SVAR) analysis, for it requires 

first that the structural shocks can in theory be obtained from the innovations, and second 

that there be some economic rationale justifying how, precisely, to distill the structural 

shocks from the innovations.  The first of these requirements can be thought of as 

requiring that there is no omitted variable bias:  if a variable is known to individuals, 

firms, and policy-makers and that variable contains information about a structural 

economic shocks distinct from what is already included in the VAR, then omitting that 

variable means that the VAR innovations will not in general span the space of the 

structural shocks, so the structural shocks cannot in general be deduced from the VAR 

innovations.  This difficulty has long been recognized and indeed has been pointed to as 
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the source of both practical problems in early VARs, including the “price puzzle” of Sims 

(1992) (see Christiano, Eichenbaum, and Evans (1999) for a discussion), and theoretical 

problems, such as the specter of noninvertibility (e.g. Lippi and Reichlin (1994)).  The 

key to addressing these problems is to increase the amount of information in the VAR so 

that the innovations span the space of structural disturbances.  For example, as recounted 

by Sims (1993), disappointing forecasts of inflation from the earliest real-time VAR 

forecasting exercises at the Federal Reserve Bank of Minnesota led Robert Litterman to 

add the trade-weighted exchange rate, the S&P 500, and a commodity price index to the 

original six-variable Minnesota VAR.  This line of reasoning has led Sims and coauthors 

to consider yet larger VARs, such as the 13- and 18-variable VAR in Leeper, Sims, and 

Zha (1996).  But increasing the number of variables in a VAR creates technical and 

conceptual complications, for the number of unrestricted VAR coefficients increases as 

the square of the number of variables in the system. 

One approach to handling the resulting proliferation of parameters, spearheaded 

by Sims and his students, is to impose Bayesian restrictions and to estimate or calibrate 

the hyperparameters, so that the VAR is estimated by (possibly informal) empirical 

Bayes methods (see Doan, Litterman, and Sims (1984), Litterman (1986), Sims (1993), 

Leeper, Sims, and Zha (1996)).  This is not a line of work for the computationally 

challenged.  More importantly, because of the quadratic increase in complexity it is 

unclear that it can be pushed much beyond systems with a score or two of variables 

without, in effect, imposing the incredible (now statistical) identifying restrictions that 

SVAR analysis was designed to eschew.  What if 18 variables are not enough to span the 

space of structural shocks?  After all, in reality Fed economists track hundreds if not 

thousands of variables as they prepare for upcoming meetings of the Open Market 

Committee.  Unless the staff economists are wasting their time, one must assume that 

these hundreds of variables help them isolate the structural shocks currently impacting 

the economy. 

In this paper, we examine VAR methods that can be used to identify the space of 

structural shocks when there are hundreds of economic time series variables that 

potentially contain information about these underlying shocks.  This alternative approach 

is based on dynamic factor analysis, introduced by John Geweke in his Ph.D. thesis 
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(published as Geweke (1977)) under the supervision of Sims.  The premise of the 

dynamic factor model (DFM) is that there are a small number of unobserved common 

dynamic factors that produce the observed comovements of economic time series.  These 

common dynamic factors are driven by the common structural economic shocks, which 

are the relevant shocks that one must identify for the purposes of conducting policy 

analysis.  Even if the number of common shocks is small, because the dynamic factors 

are unobserved this model implies that the innovations from conventional VAR analysis 

with a small or moderate number of variables will fail to span the space of the structural 

shocks to the dynamic factors.  Instead, these shocks are only revealed when one looks at 

a very large number of variables and distills from them the small number of common 

sources of comovement. 

There is a body of empirical evidence that the dynamic factor model, with a small 

number of factors, captures the main comovements of postwar U.S. macroeconomic time 

series data.  Sims and Sargent (1977) examine a small system and conclude that two 

dynamic factors can explain 80% or more of the variance of major economic variables, 

including the unemployment rate, industrial production growth, employment growth, and 

wholesale price inflation; moreover, one of these dynamic factors is primarily associated 

with the real variables, while the other is primarily associated with prices.  Empirical 

work using methods developed for many-variable systems has supported the view that 

only a few – perhaps two – dynamic factors explain much of the predictable variation in 

major macroeconomic aggregates (e.g. Stock and Watson (1999, 2002a), Giannone, 

Reichlin, and Sala (2004)).  These new methods for estimating and analyzing dynamic 

factor models, combined with the empirical evidence that perhaps only a few dynamic 

factors are needed to explain the comovement of macroeconomic variables, has 

motivated recent research on how best to integrate factor methods into VAR and SVAR 

analysis (Bernanke and Boivin (2003), Bernanke, Boivin, and Eliasz (2005; BBE 

hereafter), Favero and Marcellino (2001), Favero, Marcellino, and Neglia (2004), 

Giannone, Reichlin, and Sala (2002, 2004), and Forni, Giannone, Lippi, and Reichlin 

(2004));  we return to this recent literature in Sections 2 and 5. 

This paper has three objectives.  The first is to provide a unifying framework that 

explicates the implications of DFMs for VAR analysis, both reduced-form (including 
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forecasting applications) and structural.  In particular we list a number of testable 

overidentifying restrictions that are central to the simplifications provided by introducing 

factors into VARs. 

Our second objective is to examine empirically these implications of the DFM for 

VAR analysis.  Is there support for the exact factor model restrictions or, if not, for an 

approximate factor model such as that of Chamberlain and Rothschild (1983)?  If so, how 

many factors are needed:  two, as suggested by Sargent and Sims (1977) and more recent 

literature, or more?  Another implication of the DFM is that, once factors are included in 

the VAR, impulse responses with respect to structural shocks should not change upon the 

inclusion of additional observable variables; but is this borne out empirically? 

Our third objective is to provide a unified framework and some new econometric 

methods for structural VAR analysis using dynamic factors.  These methods build on the 

important initial work by Giannoni, Reichlin, and Sala (2002) and BBE (2005) on the 

formulation and estimation of structural VARs using factors obtained from large data 

sets, and we adopt BBE’s term and refer to these system as FAVARs (Factor-Augmented 

VARs).  We consider a variety of identifying schemes, including schemes based on the 

timing of shocks (as considered by BBE), on long run restrictions (as considered by 

Giannoni, Reichlin, and Sala (2002)), and on restrictions on the factor loading matrices 

(as considered by Kose, Otrok and Whiteman (2003), among others).  We present 

feasible estimation strategies for imposing the potentially numerous overidentifying 

restrictions. 

We have three main empirical findings, which are based on an updated version of 

the Stock-Watson (2002a) data set (the version used here has 132 monthly U.S. variables, 

1959 – 2003).  First, it appears that the number of dynamic factors present in our data set 

exceeds two; we estimate the number to be seven.  This estimate is robust to details of the 

model specification and estimation method, and it substantially exceeds the estimates 

appearing in the earlier literature; we suggest that this estimate is not spurious but rather 

reflects the narrow scope of the data sets, combined with methodological limitations, in 

the early studies that suggested only one or two factors. 

Second, we find that many of the implications of the DFM for the full 132-

variable VAR are rejected, however these rejections are almost entirely associated with 
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coefficients that are statistically significantly different from zero but are very small in an 

economic or practical sense.   

Third, we illustrate the structural FAVAR methods by an empirical reexamination 

of the BBE identification scheme, using different estimation procedures.  We find 

generally similar results to BBE, which in many cases accord with standard 

macroeconomic theory; but we also find many rejections of the overidentifying 

restrictions.  These rejections suggest specific ways in which the BBE identifying 

assumptions fail, something not possible in exactly identified SVAR analysis. 

The remainder of the paper is organized as follows.  Section 2 lays out the DFM 

and its implications for reduced-form VAR analysis.  Section 3 provides a treatment of 

identification and estimation in structural factor VARs.  Sections 4 and 5 examine these 

implications empirically using the 132-variable data set, and Section 6 illustrates the 

structural FAVAR methods using the BBE identification scheme.  Section 7 concludes. 

 

2.  The Dynamic Factor Model in VAR Form 
 

This section summarizes the restrictions imposed by the dynamic factor model on 

the VAR representation of the variables.  We do this by first summarizing the so-called 

static representation of the DFM, a representation of interest in its own right because it 

leads to estimation of the space spanned by the dynamic factors using principal 

components when n is large.  The static representation of the DFM is then used to derive 

two VAR forms of the DFM, expressed in terms of the (readily estimated) static factors. 

  

2.1  The DFM and Reduced-Form VARs 

Let Xt be a n×1 vector of stationary time series variables observed for t = 1,…,T.   

The exact dynamic factor model.  The exact DFM expresses Xt as a distributed 

lag of a small number of unobserved common factors, plus an idiosyncratic disturbance 

that itself might be serially correlated: 

 

Xit = iλ% (L)ft + uit, i = 1,…,n,     (1) 

uit = δi(L)uit–1 + νit,      (2) 
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where ft is the q×1 vector of unobserved dynamic factors, iλ% (L) is a 1 × q vector lag 

polynomial, called the “dynamic factor loadings,” and uit is the idiosyncratic disturbance 

which we model as following an autoregression.  The factors and idiosyncratic 

disturbances are assumed to be uncorrelated at all leads and lags, that is, E(ftuis) = 0 for 

all i, t, s.  In addition, the idiosyncratic terms are taken to be mutually uncorrelated at all 

leads and lags, that is,  

 

E(uitujs) = 0 for all i, j, t, s, i ≠ j    (3) 

 

We briefly digress for a word on terminology.  Chamberlain and Rothschild 

(1983) introduced a useful distinction between exact and approximate DFMs.  The exact 

DFM – the version originally developed by Geweke (1977) and Sargent and Sims (1978) 

– adopts the strong uncorrelatedness assumption (3).  In contrast, the approximate DFM 

relaxes this assumption to allow for a limited amount of correlation across the 

idiosyncratic terms for different i and j (see the survey by Stock and Watson (2004) for 

technical conditions).  The focus of this paper is on the implications of the Geweke-

Sargent-Sims exact DFM, and when we refer simply to “the DFM” this should be 

understood to mean the exact DFM; when we discuss instead the approximate DFM, we 

will make this explicit. 

For our purposes it is convenient to work with a DFM in which the idiosyncratic 

errors are serially uncorrelated.  This is achieved by multiplying both sides of (1) by 1 – 

δi(L)L, which yields 

 

Xit = λi(L)ft + δi(L)Xit−1 + νit,     (4) 

 

where λi(L) = (1–δi(L)L) iλ% (L). 

The dynamic factor model consists of equation (4) and an equation describing the 

evolution of the factors, which we model as following a VAR.  Accordingly, the DFM is, 
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The dynamic factor model: 

 Xt = λ(L)ft + D(L)Xt–1 + vt     (5) 

ft = Γ(L)ft–1 + ηt,      (6) 

 

where, 

 

λ(L) = 
1(L)

(L)n

λ

λ

 
 
 
  

M , D(L) = 
1(L) 0

0 (L)n

δ

δ

 
 
 
  

L

M O M

L

, vt = 
1t

nt

v

v

 
 
 
  

M ,   (7) 

 

Γ(L) is a matrix lag polynomial, and ηt is a q×1 disturbance vector, where Eηtνis = 0 for 

all i, t, s. 

The DFM assumptions imply that the spectral density of X has a factor structure: 

 

SX(ω) = λ% (eiω)Sf(ω)λ% (e–iω) + Su(ω),    (8) 

 

where SX(ω), Sf(ω), and Su(ω) are the spectral density matrices of X, f, and u at frequency 

ω, Su is diagonal, and λ% (z) = [ 1λ% (z) … nλ% (z)]′. 

As written in (5) and (6), λ(L) and ft are not separately identified; an 

observationally equivalent model is obtained by inserting a nonsingular q×q matrix and 

its inverse H so that λ(L) is replaced by λ(L)H–1 and ft is replaced by Hft.  In the 

treatment in this section, this ambiguity is handled by adopting an arbitrary statistical 

normalization which (implicitly) imposes an arbitrary H.  In Section 3, we turn to 

structural economic DFMs, in which economic logic is used to identify H, so that H can 

be thought of as embodying an economic model. 

The unknown coefficients of the DFM (5) and (6) (with additional lag length and 

normalization restrictions) can be estimated by Gaussian maximum likelihood using the 

Kalman Filter (Engle and Watson (1981), Stock and Watson (1989, 1991), Sargent 

(1989), and Quah and Sargent (1993)).  When n is very large, however, this method is 

computationally burdensome.  For this reason, alternative methods for estimation of the 
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factors and DFM coefficients have been developed for large n.  One approach is to use 

Brillinger’s (1964, 1981) dynamic principal components; the theory of applying this 

method when n is large is developed by Forni, Hallin, Lippi, and Reichlin (2000).  

However dynamic principal components analysis produces two-sided estimates of the 

factors and thus these estimates are not suitable for forecasting or for structural VAR 

analysis in which information set timing assumptions are used to identify shocks.  This 

problem of two-sided estimates of the dynamic factors can be avoided by recasting the 

DFM in so-called static form. 

The DFM in static form.  In the static form of the DFM (Stock and Watson 

(2002)), there are r static factors, Ft, that consist of current and (possibly) lagged values 

of the q dynamic factors.  

Suppose that λ(L) has finite degree p – 1, and let Ft = [ft′  ft–1′ … ft–p+1′]′ or a 

subset of these lags of ft if not all dynamic factors appear with p lags.  Let the dimension 

of Ft be r, where q ≤ r ≤ qp. Then the DFM (5) and (6) can be written, 

 

Static form of the DFM: 

Xt = ΛFt + D(L)Xt–1 + νt     (9) 

Ft = Φ(L)Ft–1 + Gηt,     (10) 

 

where Λ is a n×r matrix, the ith row of which consists of the coefficients of λi(L), Φ(L) 

consists of the coefficients of Γ(L) and zeros, and G is r×q.  If the order of Γ(L) is at most 

p, then the VAR for Ft has degree one and Φ(L) = Φ.  In the terminology of state space 

models and Kalman filtering, equation (9) is the measurement equation and equation (10) 

is the state equation. 

The representation (9) and (10) is called the “static” form of the DFM because Ft 

appears in the X equation without any lags, as it does in classical factor analysis in cross-

sectional data.  Note that if there are the same number of static and dynamic factors, that 

is, r = q, then it must be the case that λ(L) in (5) has no lag terms, so Ft = ft, G = I, and 

there is no difference between the static and dynamic forms. 
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The static form of the DFM implies that the variance of prefiltered Xt has a 

conventional factor structure.  Let itX%  = (1 – δi(L)L)Xit, Λ = [Λ1′ … Λn′]′ be the matrix of 

(static) factor loadings, tX%  = [ 1tX%  … ntX% ]′, νt = [ν1t … νnt]′, and let XΣ % , ΣF, and Σν be 

the covariance matrices of tX% , Ft and νt.  Then 

 

XΣ %  = ΛΣFΛ′ + Σν.     (11) 

 

This is the usual variance decomposition of classical factor analysis. 

The DFM in VAR form.  The VAR form of the DFM obtains by substituting (10) 

into (9) and collecting terms.  The equation for Xit in the VAR is, 

 

Xit = ΛiΦ(L)Ft–1 + δi(L)Xit–1 + 
iX tε     (12) 

 

where 
iX tε  = ΛiGηt + νit and εFt = Gηt.  Combining (12) with the factor evolution 

equation yields the complete DFM in VAR form: 

 

 VAR form of the DFM (FAVAR): 

1

1

(L) 0
(L) (L)

t t Ft

t t Xt

F F
X XD

ε
ε

−

−

Φ      
= +      ΛΦ      

   (13) 

where 

 

0Ft
t

Xt t

I
G

ε
η

ε ν
    

= +    Λ    
     (14) 

 

where εXt = [
1X tε  … 

nX tε ]′.  The covariance matrix of εt ≡ [εFt′ εXt′]′ is, 

 

Eεtεt′ ≡ Σε  = 
' ' '
' ' '

G G G G
G G G G

η η

η η ν

Σ Σ Λ 
 Λ Σ Λ Σ Λ + Σ 

    (15) 
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where Ση = Eηtηt′. 

We have adopted Bernanke, Boivin, and Eliasz’s (2005) terminology in referring 

to (13) as a FAVAR; in contrast to their FAVAR, however, (13) incorporates the 

exclusion restrictions implied by the DFM. 

A disciple of Sims (1980) might quibble with our use of the term “VAR form” for 

(13) – (14), for two reasons.  First, this form imposes many restrictions on the lag 

dynamics and on the structure of the covariance matrix of the one-step ahead forecast 

errors; in contrast Sims (1980) introduced VARs as a way to avoid making any such 

restrictions and the term “VAR” typically refers to unrestricted structures.  This said, the 

restrictions studied here are akin to the Bayesian restrictions, developed by Sims and his 

students, in which prior parametric restrictions are used to control the proliferation of 

parameters in high-dimensional VARs.  Second, the Ft variables in the VAR are 

unobserved, however because n is large the factors are consistently estimable so we 

proceed as if they are observable. 

Impulse response functions and variance decompositions.  Inverting the VAR 

representation (13) – (14) yields the moving average representation for Xt in terms of 

current and lagged innovations ηt to the dynamic factors and the idiosyncratic 

disturbances νt: 

 

MA form of the DFM: 

Xt = B(L)ηt + ut,       (16) 

 

where B(L) = [I – D(L)L]-1Λ[I – Φ(L)L]–1G and ut = [I – D(L)L]-1νt.  This moving 

average representation delivers impulse response functions and forecast error variance 

decompositions for Xt+h as a function of the horizon h. 

The impulse responses and variance decompositions based on (16) can be thought 

of as the factor version of impulse responses and variance decompositions with respect to 

Cholesky factorizations of conventional VAR innovations, in the sense that ηt is 

identified using an arbitrary statistical normalization (like that produced by principal 

components analysis), not an economic model of structural shocks.  Section 3 considers 
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the further step from the moving average representation (16), which is in terms of ηt, to 

the structural impulse response function in terms of dynamic factor structural shocks. 

 

2.3  Summary of VAR Restrictions Implied by the DFM 

The static form and VAR form of the DFM incorporates several overidentifying 

restrictions. 

1. Factor structure of Xt.  The covariance matrix XΣ %  has the factor structure 

(11), where the rank of ΛΣFΛ′ is r, the number of static factors.  This 

restriction (under the weaker conditions of an approximate dynamic factor 

model) is used by the Bai-Ng (2002) information criteria methods for 

estimation of r. 

2. Reduced rank of εFt.  The rank of EεFtεFt′ (the (1,1) block of (15)) is q, 

the number of dynamic factors.  Giannone, Reichlin, and Sala (2004) use 

informal methods based on this restriction to make inferences about q.  

Bai and Ng (2005b) develop formal procedures for estimating q using this 

restriction, and we discuss the Bai-Ng (2005b) approach further below. 

3. Factor structure of εXt.  The innovations in Xt, εXt′, obey a classical factor 

model, that is, they are serially uncorrelated and the (2,2) block of (15) has 

a factor structure, where the number of factors is the number of dynamic 

factor innovations, q.  We discuss below how this restriction can be used 

to estimate q. 

4. X does not predict F given lagged F.  That is, the upper right block in 

(13) is zero, a restriction tested in Section 5. 

5. Xj does not predict Xi given lagged F.  That is, D(L) in (7) is diagonal, so 

E(Xit|Ft–1, Ft–2,… Xit–1, Xit–2,…, Xjt–1, Xjt–2,…) = E(Xit|Ft–1, Ft–2,…, Xit–1, Xit–

2,…).  This restriction is tested Section 5. 

6. Xj does not explain Xi given current F. That is, Xj does not appear in(9), 

so E(Xit|Ft, Xit–1, Xit–2,…, Xjt, Xjt–1,…) = E(Xit|Ft, Xit–1, Xit–2,…).  This is a 

key implication for SVAR analysis using factors because it says that, 

given the factors, the VAR need not include any other X’s except the X of 
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interest, that is, excluding other observable variables from the VAR does 

not produce omitted variable bias.  This restriction is tested Section 5. 

7. Cross-equation restrictions in the X equations.  If Φ(L) has degree one 

or more, there are overidentifying cross-equation restrictions across the 

rows in the lower left block of (13).  If however Ft follows a VAR(1) so 

Φ(L) = Φ then there are no overidentifying restrictions.  Because of the 

sensitivity of this restriction to subsidiary lag restrictions we do not 

examine this restriction empirically.  

 

2.4  Estimation of Static Factors, Restricted VAR Coefficients, and Dynamic Factor 

Innovations 

In principle the coefficients of the VAR representation (with additional lag length 

restrictions and normalizations) could all be estimated by restricted quasi-maximum 

likelihood estimation.  However that would be computationally cumbersome and we 

instead adopt a stepwise approach that first entails estimation of the static factors, then 

estimation of the VAR coefficients, and finally estimation of the dynamic factor 

innovations. 

Estimation of static factors and the number of static factors.  The static factors 

Ft can be estimated as the principal components of the filtered observables tX%  (where Xt 

is standardized to have sample mean zero and unit standard deviation).  Specifically the 

estimators of {Ft} and Λ solve the minimization problem, 

 

1

1
,..., , , ( )

1

min [( ( ) ) ]'[ ( ) ) ]
T

T

F F D L t t t t
t

T I D L L X F I D L L X F−
Λ

=

− − Λ − − Λ∑   (17) 

 

where D(L) is given in (7).  The minimization in (17) is conveniently done iteratively.  

Given a preliminary estimator of D(L), {Ft} can be computed as the first r principal 

components of (I – D(L)L)Xt; given the estimate of {Ft}, δi(L) and Λ are estimated by n 

individual regressions of Xit on (Ft, Xit–1,…, 1iit mX − + ), where mi is the order of δi(L).  Each 
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step of this procedure reduces (does not increase) the sum of squares in (17) and the 

procedure can be iterated to convergence.1  This produces estimators t̂F , Λ̂ , and ˆ (L)D . 

The number of static factors can be estimated using the Bai-Ng (2002) 

information criteria.  These can be applied either to the sample covariance matrix of Xt 

(the method proposed by Bai and Ng (2002)) or alternatively to the covariance matrix of 

(I – ˆ (L)D L)Xt. 

Estimation of restricted VAR coefficients.  Given the estimates t̂F , the restricted 

VAR coefficients are estimated by first regressing t̂F  onto the desired number of lags to 

obtain the estimator of Φ(L), ˆ (L)Φ , then using ˆ (L)Φ , Λ̂ , and ˆ ( )D t  to construct the 

restricted VAR coefficient matrix in (13). 

Estimation of the number of dynamic factors.  The number of dynamic factors, 

q, can be estimated in two ways. 

The first method, developed here, exploits restriction #3 in Section 2.3, that 

EεXtεXt′ = ΛGΣηG′Λ′ + Σv so that the innovations of Xt have a factor structure.  First, the 

innovations in Xit, 
iX tε , are estimated by ˆ

iX tε , constructed using (13) as the residuals from 

the regression of Xit onto lags of Xit and lags of t̂F .  Second, the number of dynamic 

factors q is estimated by applying the Bai-Ng (2002) procedure to the sample covariance 

matrix of ˆXtε , yielding an estimator q̂ . 

The second method, developed by Bai and Ng (2005b), exploits restriction #2 in 

Section 2.3, that EεFtεFt′ = GΣηG, so that the r×r matrix of innovations of the static 

factors has rank q.  Their method entails a spectral decomposition on the sample analogue 

of EεFtεFt′ and estimating its rank using an information criterion approach. 

Estimation of space spanned by dynamic shocks.  Given q, there are several 

ways to estimate the dynamic factor innovations.  The algorithm used here chooses G 

such that the innovations are uncorrelated and that they maximize the trace R2 of X, 

ordered so that the first dynamic factor makes the largest variance reduction, the second 

the second-largest, and so forth.  Specifically, write B(L) in equation (16) as B(L) = 
                                                 
1This estimator modifies the static principal components estimator of Stock and Watson 
(2002), in which δi(L) = 0 in the notation here. 
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A(L)G, where A(L) = [I – D(L)L]-1Λ[I – Φ(L)L]–1, and normalize Ση = I; then 

trE[(B(L)ηt)(B(L)ηt)′] = trE[(A(L)Gηt)(A(L)Gηt)′] = tr(
0

' 'j jj
A G G Aη

∞

=
Σ∑ ) = 

tr(
0

' 'j jj
A GG A∞

=∑ ) = tr[ ( )1
' 'j jj

G A A G∞

=∑ ].  Then  

 

tr(ΣX) = tr[ ( )1
' 'j jj

G A A G∞

=∑ ] + tr(Σu)    (18) 

 

so that choosing G to maximize the trace R2 explained by the factors is equivalent to 

choosing G to be the eigenvectors of  
1

'j jj
A A∞

=∑  that correspond to the largest q 

eigenvalues.  The estimator of G, Ĝ , is the sample analog of this matrix of eigenvectors, 

computed using ˆ(L)A  = 1 1ˆˆ ˆ[ (L)L] [ (L)L]I D I− −− Λ −Φ . 

Another way to estimate the dynamic factor innovations, which we do not use, is 

to estimate them as the first q̂  principal components of ˆXtε .  In this case, the dynamic 

factor innovations sequentially maximize the trace R2 of ˆXtε . 

 

2.5  Distribution Theory and Inference 

The foregoing procedures are justified by a body of distribution theory concerning 

the performance of principle components in large panels.  Stock and Watson (2002b) 

proved consistency of the principle components estimator for the space spanned by the 

factors for the approximate DFM for N, T → ∞.  Bai (2003) shows the asymptotic 

normality of ˆ
iΛ  under approximate DFM assumptions and the rate condition N, T → ∞, 

T1/2/N → 0.  Bai and Ng (2005a) consider the distribution of the coefficients of factor-

augmented regressions, in which Xit is regressed against t̂F  and a fixed number of 

additional observed stationary regressors, and show that standard T1/2 inference applies if 

N, T → ∞, T1/2/N → 0.  These final results justify the application of standard testing 

methods to regression tests of the FAVAR exclusion restrictions, in which the estimated 

factors are treated as if they were known and observed. 
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3.  Structural DFMs and Structural FAVARs 
 

Structural VAR analysis requires deducing one or more structural shocks from the 

VAR innovations.  The same requirement arises in structural DFMs, except that the 

innovations and structural shocks are those of the dynamic factors.  Let ζt denote the q 

structural shocks to the dynamic factors.  Analogously to structural VAR analysis, the 

dynamic factor structural shocks are assumed to be linearly related to the reduced form 

dynamic factor innovations ηt by 

 

ζt = Hηt     (19) 

 

where H is an invertible q×q matrix.  In this notation, the task of structural FAVAR 

analysis is to identify H or, if one is interested in just one economic shock, a row of H.  

Throughout we assume that Eζtζt′ = I, so that HΣηH′ = I.  

There are several approaches available for the identification of H in structural 

VAR analysis, and these plus more are available for structural FAVAR analysis.  This 

section begins by laying out the structural DFM and discusses in general identification 

and estimation of structural FAVARs.  The remaining subsections develop special cases, 

several of which provide significant computational gains over the general approach.  

These subsections separately consider identification using exclusion restrictions on the 

contemporaneous incidence of structural shocks; identification using long-run 

restrictions; and identification directly from the factor loadings. 

 

3.1  Identification, Estimation, and Testing in Structural FAVARs 

We adopt the notational convention that “*” denotes a parameter in the structural 

system, for example λ(L) is the (“reduced-form”) DFM lag polynomial in (5) and λ*(L) 

is its counterpart in the structural form of the DFM.  Accordingly, the structural form of 

the DFM is, 

 

The DFM – structural form: 
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 Xt = λ*(L) *
tf  + D(L)Xt–1 + vt     (20) 

*
tf  = Γ*(L) *

tf  + ζt,      (21) 

 

where *
tf  = Hft, λ*(L) = λ(L)H–1, and Γ*(L) = HΓ(L)H–1. 

The moving average representation of the structural form is, 

 

The DFM – structural MA form: 

Xt = B*(L)ζt + ut,       (22) 

 

where B*(L) = B(L)H–1 = [I – D(L)L]-1Λ[I – Φ(L)L]–1GH–1.  The structural moving 

average lag polynomial B*(L) is the impulse response function with respect to the 

structural shocks ζt; this is the primary object of ultimate interest in structural DFM 

analysis. 

Identification of H can be achieved by imposing restrictions on B*(L) and/or on 

λ*(L).  Both these lag polynomial matrices have dimension n×q, so in principle 

identification schemes can range from exact identification to identification using very 

many overidentifying restrictions, which can be tested. 

Without additional structure, there is little that can be said about identification and 

estimation.  One approach that is always available is to recognize that the system (20) and 

(21) comprise a linear state space system with unobserved components *
tf .  The 

parameters can be estimated subject to the identifying (or overidentifying) restrictions by 

using the Kalman filter to construct the Gaussian likelihood.  In many cases of interest, 

however, the computational is greatly reduced using a two-step procedure in which 

principal components methods are used in the first step, to estimate the reduced-form 

factor model, G, and {ηt} as described in the previous section; in the second step the 

estimated factors and factor innovations are treated as data and the identifying restrictions 

are used to estimate H, {ζt}, and thus the structural impulse response function B*(L).  

These cases are now described for different families of identifying restrictions. 

 

3.2  Contemporaneous Timing Restrictions 
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Timing restrictions typically are exclusion restrictions stating that certain 

structural shocks do not affect certain X variables contemporaneously, for example, the 

monetary policy shock does not affect output within the month.  This approach, which is 

standard in the structural VAR literature, here implies that the innovations in some of the 

X’s depend on only some of the ζ’s.  Specifically, from (22) we have that 

 

εXt = *
0B ζt + vt       (23) 

 

where *
0B  is the coefficient matrix that is the leading (zero-lag) term in B*(L).  We 

illustrate identification and estimation in three examples of increasing complexity, 

beginning with the factor version of the Sims (1980) Wold causal ordering. 

Example #1:  Exact identification/Cholesky factorization.  Suppose the 

identification scheme is such that *
0B  is lower triangular: 

 

*
0B  = 

0 0
0
0

x
x x
x x
x x x

x x x

 
 
 
 
 
 
 
 
 

L

O

O

L

M M M M

L

      (24) 

 

where x denotes an unrestricted nonzero element.  There are q(q–1)/2 exclusion 

restrictions and H is exactly identified. 

This example is analogous to achieving exact identification by ordering the 

variables in a standard VAR in a particular Wold causal chain, however it is not the same 

thing because there is the additional idiosyncratic innovation vt.  Identification and 

estimation proceeds using a Cholesky factorization of the factor innovation variance 

matrix.  Specifically, let *
0;qB  denote the q×q matrix of the first q rows of *

0B , which 

contain all the identifying restrictions, and let B0;q denote the q×q matrix of the first q 
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rows of B0.  Because *
0B ζt = B0ηt, * *

0; 0; 'q qB B  = B0;qΣη B0;q′.  But *
0;qB  is lower triangular, so 

it must be the case that  

 
*
0;qB  = Chol(B0;qΣη B0;q′).     (25) 

 

Now B*(L) = [I – D(L)L]–1Λ[I – Φ(L)L]–1GH–1, so *
0;qB  = ΛqGH–1, where Λq denotes the 

first q rows of Λ; thus 

 

H = [Chol(B0;qΣη B0;q′)]–1ΛqG.    (26) 

 

The matrices on the right hand side of (26) can all be deduced from the population 

DFM parameters, as discussed in Section 2, showing that the lower triangular assumption 

(24) exactly identifies H and thus (by (19)) {ζt}. 

Estimation of H and of {ζt} proceeds by replacing the population matrices in (26) 

with their sample estimates, computed as described in Section 2.4. 

Example #2:  Partial identification via block lower-triangular exclusion 

restrictions.  BBE introduce a scheme for identifying a single shock in a structural 

FAVAR by adopting a block lower triangular structure for *
0B .  They partition the 

structural shocks and variables into three groups, slow variables, an interest rate, and fast 

variables.  The economic content of the BBE restrictions is discussed in Section 6. 

Denote the three groups of variables “S”, “R,” and “F.”  The structural shocks are 

ζt = ( S
tζ ,′ R

tζ , F
tζ ′)′, where S

tζ  is qS×1, R
tζ  is a scalar, and F

tζ  is qF×1.  The S
tζ  shocks 

potentially can affect all the variables within a period, R
tζ  affects all but nS “slow” 

variables within a period, and F
tζ  affects only the remaining nF = n – nS – 1 “fast” 

variables within the period.  The variables can be organized in the ordered groups S, R, 

and F, so that *
0B  has the block lower triangular form, 
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*
0B  = 

*
0,
* *
0, 0,
* * *
0, 0, 0,

0 0
0

SS

RS RR

FS FR FF

B
B B
B B B

 
 
 
  

     (27) 

 

where *
0,SSB  is nS×qS, *

0,RSB  is 1×qS, *
0,RRB  is a scalar, and *

0,FSB , *
0,FRB , and *

0,FFB  are 

respectively nF×qS, nF×1, and nF×qS. 

The block triangular restrictions in (27) identify R
tζ  (the shock of interest), the 

space spanned by S
tζ , and the space spanned by F

tζ .  Because R
tζ  is identified, the 

column of B*(L) associated with R
tζ  is identified and thus the structural impulse 

response of Xt with respect to R
tζ  is identified.  To show this identification algebraically, 

partition H conformably with ζt so that (19) becomes 

 
S
t
R

t
F
t

ζ
ζ
ζ

 
 
 
  

 = 
'
'
'

S

R

F

H
H
H

 
 
 
  

ηt.     (28) 

 

With the notation in (28) and the restrictions in (27), the innovations expression (23) 

becomes, 

 
*
0,

* *
0, 0,

* * *
0, 0, 0,

'

' '

' ' '

S S
Xt SS S t t

R R
Xt RS S t RR R t t

F F
Xt FS S t FR R t FF F t t

B H v

B H B H v

B H B H B H v

ε η

ε η η

ε η η η

= +

= + +

= + + +

                            (29) 

 

where S
Xtε  is the nS×1 vector of innovations in the S variables, etc.  Because *

0,SSB  is nS×qS 

and HS′ is qS×q, the rank of *
0,SSB HS′ is qS (assuming nS ≥ qS).  Thus the population 

projection of S
Xtε  onto ηt spans a qS-dimensional space, which is the space spanned by 

S
tζ .  Similarly, because *

0,RRB HR′ is 1×q, and because the space spanned by S
tζ  is now 
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identified, R
tζ  is identified (up to scale) as R

tζ  = Proj( R
Xtε |ηt) – Proj( R

Xtε | S
tζ ).  The space 

spanned by F
tζ  is the span of ηt that is orthogonal to S

tζ  and R
tζ . 

One way to estimate H, which imposes the overidentifying restrictions in (27), 

parallels the preceding discussion of identification: 

1. Estimate the innovations to Xt and the dynamic factor innovations ηt as 

described in Section 2.4; denote these ˆS
Xtε  (etc.) and ˆtη . 

2. Estimate (or impose based on a-priori grounds) the number of S shocks, qS.  

The dimension qS can be estimated using the method described in Section 2.4 

for the estimation of q, except applied only to the S variables. 

3. Estimate *
0,SSB  and HS by reduced rank regression of ˆS

Xtε  onto ˆtη , imposing 

the rank qS.  This produces ˆ S
tζ . 

4. Estimate R
tζ  by ˆR

tζ  = Proj( ˆR
Xtε | ˆtη ) – Proj( ˆR

Xtε | ˆ S
tζ ), where the projections are 

implemented by OLS regression.  The OLS regression of ˆR
tζ  onto ˆtη  yields 

the estimated coefficients ˆ
RH . 

This procedure produces the Gaussian maximum likelihood estimator of H based 

on the innovations under the assumption that vt is i.i.d. homoskedastic Gaussian with 

unknown and unrestricted covariance matrix and ηt are observed regressors.  Note that 

these are different assumptions than those that underly exact ML estimation of the DFM 

using the Kalman filter, in which ηt is treated as unobserved.  However, because ηt is 

well estimated when n is large, the approximate ML interpretation of the algorithm 1 – 4 

suggests that it will produce estimates with good sampling properties. 

Example #3:  Partial identification via block lower-triangular exclusion 

restrictions.  The logic of the Wold causal ordering in example #1 could be applied to 

groups of similar variables, for example all employment variables could be in the same 

group.  Let Xt be partitioned into q groups, each with ni elements, where n1 + … + nq = n. 

Under this scheme, *
0B  has the block lower triangular form, 
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*
0B  = 

*
0,11
* *
0,12 0,22

* * *
0,1 0,2 0,

0 0
0
0

q q qq

B
B B

B B B

 
 
 
 
 
  

L

O

M M O

L

,     (30) 

 

where *
0,ijB  in (30) is a ni×1 vector.  Let Hi′ denote the ith row of H.  Partition εXt 

conformably with *
0B .  Then the innovations equations corresponding to (30) are, 

 
1 * 1

0,11 1

2 * * 2
0,21 1 0,22 2

* * *
0, 1 1 0, 2 2 0,

'

' '

' ' '

Xt t t

Xt t t t

q q
Xt q t q t qq q t t

B H v

B H B H v

B H B H B H v

ε η

ε η η

ε η η η

= +

= + +

= + + + +

M

L

   (31) 

 

Identification of 1
tζ  = H1′ηt is achieved (up to scale) by noting that *

0,11 1 'B H  has 

rank 1 so that 1
tζ  = Proj( 1

Xtε |ηt).  Similarly, 2
tζ  is identified (up to scale) as 2

tζ  = 

Proj( 2
Xtε |ηt) – Proj( 2

Xtε | 1
tζ ).  The remaining elements of ζt are identified by extending 

this projection argument.  This entirely identifies H. 

The structural shocks and H can be estimated by an extension of the reduced rank 

regression algorithm presented for example #2.  Specifically: 

1. Estimate ˆXtε  and ˆtη . 

2. Estimate *
0,11B  and H1 by reduced rank regression of 1ˆXtε  onto ˆtη , imposing 

rank 1.  This produces 1Ĥ  and 1
t̂ζ . 

3. Construct the q×(q–1) matrix 1Ĥ ⊥  such that 1Ĥ ⊥ ′ 1Ĥ  = 0 and 1Ĥ ⊥ ′ 1Ĥ ⊥  = I, 

then estimate the reduced rank regression of 2ˆXtε  on 1
t̂ζ  and 1Ĥ ⊥ ′ ˆtη .  The (q–

1)×1 vector of reduced rank weights on 1Ĥ ⊥ ′ ˆtη  from this regression, times 

1Ĥ ⊥ ′, produces the estimators 2Ĥ ′ and 2
t̂ζ  = 2Ĥ ′ ˆtη . 

4. Repeat this process for each of the remaining blocks, yielding Ĥ . 
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Unlike example #2, this algorithm does not have the interpretation of being Gaussian 

maximum likelihood, given ηt (for example, varying H1 affects the fit of the second block 

of equations but only the first block of equations is used to estimate H1). 

General restrictions.  Little can be said about general identification restrictions, 

beyond standard rank and order condition requirements from the theory of simultaneous 

equations.  It is worth noting, however, that working with the innovation equations and 

treating ηt as observed still can result in significant computational advantages relative to 

full Gaussian ML via the Kalman filter.  Specifically, the innovations equations permit a 

computationally efficient iterative algorithm for estimation of H subject to general 

exclusion restrictions: 

1. Estimate ˆXtε  and ˆtη  using all n variables. 

2. Use a subset of exactly identifying restrictions to obtain initial estimates of H and 

ζt, (1)Ĥ  and (1)
t̂ζ . 

3. Regress ˆXtε  onto (1)
t̂ζ , imposing all the identifying restrictions on the matrix of 

coefficients *
0B .  If there are no cross-equation restrictions, this can be done either 

by restricted least squares, equation by equation, which imposes the exact DFM 

restriction that Σv is diagonal, or by SURE, which allows Σv to be unrestricted.  

This produces the value of the Gaussian likelihood given (1)Ĥ , L( (1)Ĥ ). 

4. Search numerically over H to minimize L(H), subject to HΣηH′ = I. 

Testing overidentifying restrictions.  In all but example #1, the structural 

FAVAR is overidentified, and these overidentifying restrictions are testable. 

One approach to testing overidentifying restrictions is to do so equation by 

equation.  As discussed in Section 2.5, under suitable conditions the estimated factors, 

and thus ˆtη , can be treated as observed regressors for the purposes of hypothesis tests on 

the coefficients in a single equation.  In this case the overidentifying restrictions can be 

tested by standard regression methods, treating ˆR
tζ  as observed.  For example, in the 

BBE identifying scheme, each innovation equation in the S block has qF+1 exclusion 

restrictions, that R
tζ  and F

tζ  not enter that equation.  For a given equation, this exclusion 

restriction can be testing by regressing the ith estimated innovation, ,ˆS
Xt iε , onto ˆ S

tζ , ˆR
tζ , 
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and ˆF
tζ , then testing using a standard Wald test to the hypothesis that the coefficients on 

ˆR
tζ  and ˆF

tζ  are zero.  Strictly this test will have an asymptotic 2
1Fqχ +  distribution under 

the assumptions referred to in Section 2.5 if this ith equation was not used in the 

estimation of ˆ S
tζ , ˆR

tζ , and ˆF
tζ ; however, if the number of overidentifying restrictions is 

very large it might reasonably be assumed that the 2
1Fqχ +  is a useful (possibly 

conservative) approximation to the distribution of the Wald statistic. 

Another approach to testing the overidentifying restrictions would be to test all 

the restrictions simultaneously.  In the BBE example, there are (qF+1)(nS –qF/2).  Because 

ηt is not observed and because nS is large, we would not expect the distribution of the 

joint Wald test of these restrictions to be well approximated by a 2
( 1)( / 2)F S Fq n qχ + −  

distribution.  More work on the statistical properties of joint tests of large number of such 

restrictions is warranted.  Based on existing distribution theory, single-equation tests or 

tests of a small number of restrictions seem likely to be more reliable than joint tests of 

very many restrictions. 

Imposing the overidentifying restrictions on the levels regression. Because *
0B = 

ΛGH−1, rank restrictions on *
0B , such as those in examples 2 and 3, imply rank restrictions 

on Λ.  These restrictions can be imposed and tested directly on the levels regression (9), 

and can be used to estimate H.  To implement these restrictions, it is useful to perform an 

additional transformation.  Let W be the r×r matrix 

 
1( ' ) '
'

G G G
W

G

−

⊥

 
=  
 

      (32) 

 

where 'G⊥  is (r–q)×q.  Let Ct = WFt, and let Ct = [C1t′  C2t′]′, where Ct is partitioned 

conformably with W.   Then 

 

Ct = Π(L)Ct−1 + 
0

tη 
 
 

.      (33) 
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where Π(L) = WΦ(L)W–1.  The r–q rotated factors C2t are dynamically redundant, in the 

sense that they are predetermined given Ct–1; equivalently, their innovation is zero.  Thus 

ΛFt = ΛW–1Ct = 1
CΛ C1t + 2

CΛ C2t, so the measurement equation of the static DFM (9) can 

be written, 

 

tX%  = 1
CΛ C1t + 2

CΛ C2t + νt.     (34) 

 

and *
0B  = 1

CΛ H−1.  Constraints on *
0B  are then imposed via reduced rank restrictions on 

1
CΛ  in the regression (34).  

For example, the restrictions in example 2 can be imposed using (34) and the 

following algorithm: 

1. Estimate ηt, Ft, and G as described in Section 2.4, and construct ˆ
tC . 

2. Estimate (or impose based on a-priori grounds) the number of S shocks, qS.   

3. Estimate ,
1
C SΛ  and HS by reduced rank regression (with rank qS) of the slow 

moving elements in tX%  onto 1
ˆ

tC , including without restrictions the additional 

regressor 2
ˆ

tC .  This produces ˆ
SH  and ˆ S

tζ . 

4. Estimate R
tζ  by ˆR

tζ  = Proj( ˆR
Xtε | ˆtη ) – Proj( ˆR

Xtε | ˆ S
tζ ), where the projections are 

implemented by OLS regression.  The OLS regression of ˆR
tζ  onto ˆtη  yields 

the estimated coefficients ˆ
RH . 

5. The overidentifying restrictions imposed in (4) can tested as exclusion 

restrictions on the regressors 1
ˆˆ

S tH C⊥ (equivalently 1
ˆˆ

R tH C  and 1
ˆˆ

F tH C ) in each 

of the regressions involving slow-moving variables.   

 

3.3  Identification Using Long-Run Restrictions 

A second family of identification methods uses long run restrictions to identify H 

(or rows of H).  These methods build on the VAR identification schemes of Blanchard 

and Quah (1989) and King, Plosser, Stock, and Watson (1991).  These restrictions were 
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first used in FAVAR models by Giannone, Reichlin, and Sala (2002), who considered 

exactly identified systems and systems with a small number of overidentifying 

restrictions by imposing restrictions on only seven of the variables in Xt and leave the 

remaining equations unrestricted.  Here, we discuss structural FAVARs, both in the case 

that the number of identifying conditions is small, and in the case that that the system is 

heavily overidentified. 

Long run restrictions are restrictions, typically exclusion restrictions, on the long-

run effect of individual shocks on groups of Xt variables.  These correspond to restrictions 

on the cumulative (or long-run) structural moving average coefficients, that is, on B*(1).  

The long-run restrictions can be expressed in an innovations representation.  Let ωXt be 

the innovation in the forecast of the cumulative value of Xt into the infinite future, that is, 

let ωXt = | | 10
( )t k t t k tk
X X∞

+ + −=
−∑ .  Then it follows from (22) that 

 

ωXt = B*(1)ζt + [I – D(1)]–1vt.     (35) 

 

The forecast innovations ωXt can be constructed from the reduced form MA 

representation, specifically, ωXt = B(1)ηt + [I – D(1)]–1vt.  Thus in population ωXt can be 

treated as observable.  Because νt in (35) is serially uncorrelated, the discussion of 

identification and estimation in examples 1 – 3 of Section 3.2, as well as the concluding 

discussion about general exclusion restrictions and testing the overidentifying 

restrictions, applies directly, with ωXt replacing Xtε  and with ˆXtω  = 

1ˆ ˆˆ ˆ(1) [ (1)]t tB I D vη −+ −  replacing ˆXtε .  Note that the moments involved in the reduced 

rank regression computations can alternatively be computed directly from the estimated 

reduced-form DFM moments so that it is not actually necessary to construct ˆXtω  to 

compute the desired projections and reduced rank regression eigenvectors. 

 

3.4  Identification from Factor Loading Restrictions 

A different approach is to identify H directly from restrictions on the factor 

loadings λ*(L) in the structural DFM (20).  This is the approach taken in small systems 
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by Sargent (1989) and Stock and Watson (1991), and it has been extended to large 

systems by Kose, Otrok and Whiteman (2003) and by Boivin and Giannoni (2005). 

We are not aware of any general method for fast (one-pass) computation of H 

under general conditions on λ(L), even if ηt is treated as known based on large-n 

asymptotics.  In some leading special cases, however, fast computational methods are 

available, and we now give two examples. 

Example #4. Contemporaneous loadings, block lower triangular structure.  

When λ*(L) has no lags, then the static and dynamic models coincide; thus ft = Ft, *
tf  = 

*
tF , and the measurement equation of the structural DFM (20) and (21) becomes, 

 

tX%  = Λ* *
tf  + vt      (36) 

 

where Λ* = λ*.  Because *
tf  = Hft = HFt (the second equality follows because λ*(L) has 

no lags), because Ft can be estimated consistently, and because vt is serially uncorrelated, 

the system (36) has the same mathematical structure as the innovations representation 

(23) studied in Section 3.2, with tX%  replacing εXt, *
tf  replacing ζt, and ft (or Ft) replacing 

ηt in Section 3.2.  Thus the discussion of identification and estimation in Section 3.2 

(examples 1, 2, and 3, also the concluding remarks) extends directly to block lower 

triangular exclusion restrictions on the dynamic factor loadings when λ*(L) has no lags. 

Example #5:  Contemporaneous loadings on distinct blocks of variables.  As in 

the previous example, suppose that λ*(L) has no lags; in addition, suppose that λ* is 

block diagonal: 

 

λ*(L) =diag( *
11λ ,…, *

qqλ )     (37) 

 

where *
11λ  is a n1×1 vector (etc.), where n1 + … + nq = n.  Thus each factor loads only on 

subset of variables, which can be thought of as indicators (with measurement error) of an 

unobserved economic variable.  Sargent (1989) implemented a low-dimensional version 
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of this identification scheme, and Boivin and Giannoni (2005) recently implemented a 

high-dimensional version. 

Because λ*(L) has no lags, under (37), the DFM and the static form of the DFM 

coincide and the measurement equation is given by (36).  Substituting (37) into (36), we 

have, 

 
1 * 1

11 1

*

'

'

t t t

q q
t qq q t t

X H F v

X H F v

λ

λ

= +

= +

%

M

%

      (38) 

 

The weights H can be estimated using the following algorithm: 

1. Estimate t̂F  using all n variables. 

2. Regress 1
tX%  on t̂F  by reduced rank regression with rank 1, yielding 1Ĥ . 

3. Repeat step 2 for each block of equations, yielding Ĥ . 

4. Ĥ  does not satisfy Ĥ ˆ
ˆ
ηΣ Ĥ ′ = I, however it can serve as the target in method 

of moments estimation of H that imposes this restriction.  

Instead of step 4, Ĥ  from step 3 could be used as a starting value in maximum likelihood 

estimation of the restricted DFM using the Kalman filter. 

 

3.5  Other Identification Schemes 

Uhlig’s (2005) sign identification scheme.  Uhlig (2005) uses an entirely 

different approach to identification, in which identification conditions are imposed on the 

time path of the impulse response functions, not just the impact or long-run cumulative 

effect.  For example, one identifying restriction might be that prices cannot rise in 

response to a contractionary monetary policy shock.  This corresponds to placing sign 

restrictions on the coefficients of B*(L).  Uhlig (2005) implements this approach by 

placing a diffuse prior over (in our notation) B(L) and Ση, drawing realizations of these 

from their posterior distribution, and retaining only those realizations that accord with the 

sign restrictions.  This approach in general yields set identification, and as implemented 

yields realizations and a probability distribution over the set of impulse responses that do 
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not violate the sign conditions.  This can be implemented here, however as a practical 

matter it appears to be inconvenient to compute the posterior distribution of B*(L); a 

modification of Uhlig’s (2005) approach would be to compute the set of impulse 

responses by drawing only from the posterior of Ση, and computing the non-violating set 

for each of those draws.  Computationally this is no more difficult than the computations 

in Uhlig (2005) because the dimension of Ση (and of H) is comparable to the dimension 

of the conventional VARs he considers. 

The Favero and Marcellino (2005)/Favero, Marcellino, Neglia (2004) 

identification scheme.  These authors first estimate the static factors using a large panel 

of data, then construct a low-dimensional VAR that includes these static factors and a 

small number of observable variables; in Favero, Marcellino, and Neglia (2004), these 

additional variables are the output gap, inflation, commodity price inflation, an exchange 

rate, and the monetary policy instrument (the short rate).  The monetary policy shock is 

identified by ordering the interest rate last in a Cholesky decomposition.  In terms of 

Section 2, this scheme relaxes the DFM implications and is equivalent to allowing the 

variables in the VAR to be observable (static) factors.  The Favero, Marcellino, and 

Neglia (2004) scheme orders both slow- and fast shocks ahead of the monetary policy 

shock, and assumes that there is no idiosyncratic or measurement error component R
tν .  

This general approach – augmenting a low-dimensional VAR by estimated factors, then 

performing standard VAR identification – is inconsistent with the primitives of the DFM 

used to compute the factors, and it is unclear how this approach could provide a basis for 

compelling structural identification. 

 

4.  Empirical Results I:  Number of Factors and Reduced-Form 

Variance Decompositions 
 

We begin the empirical analysis by estimating the number of factors, the number 

of dynamic factors, and the dynamic factor innovations, and by computing forecast error 

variance decompositions with respect to the dynamic factor innovations, using the 

methods of Section 2.4. 
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4.1  The Data and Transformations 

The data set consists of monthly observations on 132 U.S. macroeconomic time 

series from 1959:1 through 2003:12.  The predictors include series in 14 categories:  real 

output and income;  employment and hours;  real retail, manufacturing and trade sales;  

consumption;  housing starts and sales;  real inventories; orders;  stock prices;  exchange 

rates;  interest rates and spreads;  money and credit quantity aggregates;  price indexes;  

average hourly earnings;  and miscellaneous.  The series are transformed by taking 

logarithms and/or differencing so that the transformed series are approximately 

stationary.  In general, first differences of logarithms (growth rates) are used for real 

quantity variables, first differences are used for nominal interest rates, and second 

differences of logarithms (changes in growth rates) for price series.  Specific 

transformations and the list of series is given in Appendix A. 

Both outlier-adjusted and outlier-unadjusted versions of the series were used.  The 

outlier adjustment entailed replacing observations of the transformed series with absolute 

median deviations larger than 6 times the inter quartile range by with the median value of 

the preceding 5 observations.  The outlier-adjusted series were used for the estimation of 

the number of static and dynamic factors, the estimation of the static factors, and the 

estimation of the matrix G relating the dynamic and static factor innovations.  All other 

analysis (VAR estimation, estimating structural impulse responses, exclusion tests, etc.) 

was conducted using the outlier-unadjusted series. 

 

4.2  Number of Static and Dynamic Factors 

Number of static factors.  The Bai-Ng information criteria ICp1 and ICp2 were 

computed both for the sample covariance matrix of Xt and for the sample covariance 

matrix of the filtered Xt, [I – ˆ (L)D L]Xt, where the filter was computed using 6 lags for 

δi(L) (mi = 6 for all i).  When applied to Xt, the Bai-Ng criteria estimated there to be 7 

static factors, although the criteria are nearly flat for 6 ≤ q ≤ 10.  When applied to the 

filtered Xt, the criteria estimate 9 static factors, and again the criterion is nearly flat for 6 

≤ q ≤ 10.  These results are robust to using 4 lags in D(L) instead of 6.  Our interest is in 
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the space of dynamic factors, not the number of static factors, so to be conservative we 

choose the larger of these two estimates and adopt q̂  = 9 static factors. 

Number of dynamic factors.  Following the procedure of Section 2.4, the Bai-Ng 

information criteria ICp2 was used to estimated the number of dynamic factors from the 

innovation matrix of ˆXtε .  The results are summarized in Table 1 for the baseline case in 

which the Xt are prefiltered, D(L) having degree 5 (m = 6), and in which the factors Ft 

follow a VAR(2) (Φ(L) has degree one).  For 7 or fewer static factors, the number of 

static and dynamic factors are estimated to be the same, however for more than 7 static 

factors, the number of dynamic factors is estimated to be 7.  These results are robust to 

using instead 4 lags for D(L) or a VAR(1) for Ft. 

We also estimated the number of static factors using unfiltered data (Xt, not tX% ).  

If the number of static factors is taken to be less than or equal to 7, then the number of 

dynamic factors is estimated to equal the number of static factors; if the number of static 

factors is taken to be 8, 9, or 10, then 7 dynamic factors are estimated.  Because the 

number of static factors is estimated to be 7 using the unfiltered data, the use of unfiltered 

data again result in an estimate of 7 dynamic factors. 

In independent work reported contemporaneously with the first draft of this paper, 

Bai and Ng (2005b) developed a different estimator of q (described in Section 2.4) and 

applied it to a similar, but not identical, large U.S. monthly macro data set.  Strikingly, 

they also estimated seven dynamic factors.  For this draft of this paper, we also 

implemented the Bai-Ng (2005b) estimator of q.  Using our unfiltered data and the 

estimated value of 7 static factors, the Bai-Ng (2005b) method estimates 7 dynamic 

factors; using the filtered data and the estimated value of 9 static factors, the Bai-Ng 

(2005b) method estimates 9 dynamic factors. 

Taken together, these results clearly point to a large number of dynamic factors in 

these data, with the modal estimate being 7; none of the estimates produced by any of our 

sensitivity checks or by using other methods is less than 7. 

 

4.3.  Why So Many Factors? 

Our estimates of the number of static and dynamic factors exceeds those typically 

found in the literature (discussed in Section 1) and exceeds those we have found when we 
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have focused on forecasting the main macroeconomic aggregates (Stock and Watson 

(1999, 2002a)).  Is there actually only a few factors but the estimators spuriously indicate 

many?  If not, are we simply detecting factors that are present in a statistical sense but are 

unimportant economically?  If not, what are these extra factors doing?  

To investigate the first question – the possibility that the estimators are biased 

upwards, and/or are quite imprecise –we undertook a Monte Carlo study to examine its 

performance.  The study was calibrated to the data used in this analysis.  In the Monte 

Carlo experiment, the estimator correctly estimated the number of dynamic factors with 

high probability, typically exceeding 94% and never less than 88%, and the estimate was 

within 1 of the true value of q in more than 99% of Monte Carlo realizations.  The design 

and results are presented in Appendix B.  While these results are for just one design and 

more work is needed, they suggest that the performance of this estimator is promising 

and that the estimate of many factors is not spurious. 

This preliminary Monte Carlo evidence suggests that the factors are statistically 

meaningful, but are they economically meaningful?  To address this question, we 

examine the roles played by the various factors in explaining the movement of different 

macro variables.  We begin by computing variance decompositions with respect to the 

different factor innovations.  If only two of the factor innovations were important in an 

economic sense, the remaining five innovations ought to have a negligible role in 

explaining the variation of Xt. 

The results are summarized in Table 2.  Part A presents a summary of the 

cumulative forecast error variance decompositions for the X variables at several horizons, 

and part B provides detailed results for the marginal contribution of each factor to each 

series at the 24 month horizon (similar results obtain at the 48 month horizon, and for a 

bandpass-filtered component over business cycle frequencies).  Several features of these 

variance decompositions stand out.  Although the first two factors explain on average 

42% of the variation of these series at the 24 month horizon, the remaining factors 

together also explain a great deal of the variation, so that the average cumulative fraction 

explained by all seven factors rises to 56%.  The percentages at other horizons are 

similar.  Inspection of part B reveals that the first factor explains nearly all the variation 

in the major aggregates measuring production and hours; for example, the first factor 
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explains 93% of the 24-month ahead forecast error variance of total industrial production, 

91% of this quantity for capacity utilization, and 94% of this quantity for total 

employment.  In contrast, this dynamic factor explains very little of the variation in 

inflation or stock returns at this horizon.  The second factor explains movements in 

interest rates, consumption, and stock prices.  The variation in inflation is mainly 

explained by the second and third factors, which together account for 65% of the forecast 

error variance of overall CPI inflation and 56% of the variance of the PCE deflator.  The 

fourth factor is mainly associated with movements in interest rates.  The fifth factor is 

associated with swings in long-term unemployment. The sixth and seventh factors mainly 

affect exchange rates, stock returns, and average hourly earnings.  Although the factors 

explain much or most of the forecast error variance of most series, some series appear to 

be simply unrelated to these overall economic and financial factors.  For example, 

employment in mining, medical price inflation, services price inflation, and growth of the 

monetary base are in the main unrelated to the overall economic conditions measured by 

the seven dynamic factors. 

Figure 1 plots, for selected series, the business cycle component (computed using 

a bandpass filter with pass band of 24 – 96 months) and that part explained by various 

factors.  These graphs confirm that the first factor explains most of the medium-run 

variation in industrial production, and the second and third factor explain most of the 

variation in price inflation.  The fourth factor explains much of the variation of the 10-

year T-bond rate.  Taken together, the fifth, sixth, and seventh factors explain much of 

the variation in exchange rates and contribute to explaining the largest swings in long-

term unemployment. 

These results provide a more nuanced view of the general findings, surveyed in 

the introduction, that only two or three factors are needed to explain the covariation in 

U.S. economic time series.  For the leading measures of real economic activity and 

prices, this appears to be true.  Starting with Sargent and Sims (1977), many of the papers 

in this literature have focused on these series.  In addition, for the purposes of forecasting 

either inflation or output growth, these forecast error variance decompositions suggest 

that perhaps only two or three factors are needed, a result consistent with the small 

number of factors in Stock and Watson (1999, 2002).  The additional dynamic factors 
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account for additional movements of the remaining series, which are mainly financial 

series such as interest rates, stock returns, and exchange rates.  For the purposes of 

forecasting, it may suffice to use a small number of dynamic (and possibly static) factors, 

but for the purpose of structural VAR modeling the dimension of the space of dynamic 

factor innovations appears to be larger. 

For the rest of the empirical analysis, we adopt a baseline specification of 9 static 

factors and 7 dynamic factors. 

 

5.   Empirical Results II:  Testing VAR exclusion restrictions 
 

This section examines empirically the restrictions on the reduced-form factor 

VAR summarized in section (2.3):  that X does not predict F given lagged F, that Xj does 

not predict Xi given lagged F, and that Xj does not explain Xi given current F. 

 

5.1  Restriction #4: X does not predict F given lagged F 

We examine this restriction by sequentially including Xj in (10), so that the factor 

prediction equation is, 

 

Ft = Φ(L)Ft–1 + Ψj(L)Xjt–1 + εFt,    (39) 

 

where Ψj(L) is a  9×1 vector lag polynomial of degree five (so each row of Ψj(L) has six 

unrestricted coefficients).  Restriction #4 is that Ψj(L) = 0, j = 1,…, 132.  For each of the 

nine equations in (39), we computed the six degree-of-freedom heteroskedasticity-robust 

chi-squared test of the hypothesis that the relevant row of Ψj(L) is zero, along with the 

marginal R2 (the increase in the R2) from including Xjt–1, …, Xjt–6.  This yields 9×132 = 

1188 separate test statistics and marginal R2s.  We do not report p-values for full test of 

Ψj(L) = 0 because of doubts about accuracy of large-sample distribution theory in 

approximating the distribution of this test, which has 54 degrees of freedom. 

The results of these 1188 exclusion tests are summarized in Table 3, which 

reports the percentiles of the marginal empirical distribution of these 1188 p-values and 

marginal R2s.  Under the hypothesis, one would expect 5% of the p-values to be less than 
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.05.  Empirically, however, there are many more rejections than would be expected under 

the null:  10% of the p-values being less than .004 and 25% being less than .057.  But 

these rejections are almost entirely associated with economically small improvements in 

the ability to predict F, with only one percent of the regressions being associated with 

improvements in the R2 by .05 or more; 90% of the regressions have a marginal R2 of.028 

or less. 

We continue the discussion of these results in Section 5.3, after examining the 

other VAR exclusion restrictions. 

 

5.2  Restriction #5: Xj does not predict Xi given lagged F 

We examine this restriction by augmenting (12) with lagged values of Xjt: 

 

Xit = ΛiΦ(L)Ft–1 + δi(L)Xit–1 + δij(L)Xjt–1 + εt    (40) 

 

Restriction #5 is that δij(L) = 0, i, j = 1,…, 132, i ≠ j. 

We examine this restriction by estimating equation (40) for different dependent 

variables where, for each dependent variable, six lags of the remaining 131 X’s were 

included sequentially, yielding 131 separate heteroskedasticity-robust chi-squared 

statistics and marginal R2s for each dependent variable.  The estimation imposes no 

restrictions on ΛiΦ(L).  Taken across all 132 dependent variables, this produces 132×131 

= 17,292 test statistics and marginal R2s.   

The results of these tests are reported in row (b) of Table 4(i) and 4(ii), which 

respectively presents the marginal distribution of these 17,292 p-values and marginal R2s.  

For purposes of comparison, row (a) of the Table presents the corresponding marginal 

distributions of p-values and marginal R2s for the regression specification omitting lagged 

F (that is, omitting  ΛiΦ(L)Ft–1 in (40)).  The results indicate that there many more 

rejections of the exclusion restriction than would be expected under the null hypothesis: 

10% of the p-values are less than .017.  The marginal R2s are generally small, with only 

5% exceeding .026.  Despite this evidence of statistically significant departures from the 

null, these departures are estimated to be quantitatively small.  Moreover, there is 

evidence that including the factors substantially reduces the predictive content of Xj for Xi   
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Inspection of the individual tests (not reported here to save space) revealed only 

one systematic pattern of rejections, which occurred when interest rates were used to 

predict other interest rates.  One interpretation of this finding is that the estimated factors 

might not fully capture the dynamics of interest rate spreads.  It might be that, consistent 

with results in the finance literature, a three-factor model is needed just to explain term 

structure dynamics, and our seven dynamic factors do not completely span these factors. 

 

5.3  Restriction #6: Xj does not explain Xi given current F 

If this restriction fails, then equation (9) becomes 

 

Xit = j
iΛ Ft + ( )j

i Lδ Xit + αij(L)Xjt + j
itν ,    (41) 

 

where the superscript j distinguishes these coefficients from those in (9) without 

Xj.  Restriction #6 is that αij(L) = 0, which we examine by computing heteroskedasticity-

robust chi-squared tests of the hypothesis that Xjt,.., Xjt–6 do not enter equation (41).  The 

results are summarized in Table 4, row (d) of panels (i) and (ii).  For comparison 

purposes, the corresponding results for the specification excluding Ft are presented in row 

(c) of each panel. As is the case for the previous tests, there are an excess of rejections of 

αij(L) = 0 over what would be expected under the null.  At the same time, there are 

substantially fewer rejections of the Xj exclusion restrictions, once the factors are 

included in the regression.  Including the factors produces a very large reduction in the 

marginal R2s in these regressions. 

The importance of restriction 6 is that if it holds, then the impulse responses with 

respect to dynamic factor structural shocks can be computed without including any other 

lags of X in the VAR.  Restriction 6, however, is sufficient but not necessary to justify the 

exclusion of Xjt from (41).  The necessary condition is simply that j
iΛ  = Λi, in which case 

the impulse responses and variance decompositions with respect to the dynamic factor 

structural shocks will not change upon inclusion of Xjt–1 in the VAR even if  αij(L) ≠ 0. 

We therefore test directly the hypothesis that j
iΛ  = Λi for all 17,292 case using a 

Hausman test testing for significant changes in the estimated values of Λi when Xjt,.., Xjt–6 
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are included or excluded from the regression. The results are summarized in the final line 

of Table 4.  There are many fewer excess rejections of this hypothesis than of the 

exclusion restriction hypotheses.  Thus there is statistically significant evidence that the 

Xj exclusion restrictions in the factor equations do not hold, but that these departures from 

the exact DFM result in few statistically significant changes in the coefficients on the 

factors in these equations; by implication, the impulse response functions with respect to 

the dynamic factor structural shocks would not change were Xj to be included in (41). 

 

5.4  Discussion 

Taken at face value, the results of this section indicate widespread rejection of the 

exclusion restrictions of the DFM, yet at the same time the economic importance of these 

violations – as measured by marginal R2s or statistically significant changes in the factor 

loadings Λ upon including observable variables in the Xj equations – generally is small. 

There are at least three possible sources for these many violations:  certain 

features of the data might make the exact DFM inapplicable, at least to some series; these 

many rejections might be statistical artifacts of the tests rejecting too often under the null; 

or the exact DFM might in fact not hold.  We consider these possibilities in turn. 

The first possibility is that these results reflect weaknesses in the data set.  One 

specific weakness is that these data contain some series with overlapping coverage, for 

example the data set contains some series with several overlapping levels of aggregation 

(IP for consumer durables, IP for manufacturing, and Total IP), and mean unemployment 

duration is approximately a weighted average of the unemployment rate by length of 

spell.  In the original units, if the DFM holds at the disaggregated level then the 

idiosyncratic disturbance in the aggregate will equal the sum of the idiosyncratic 

disturbances in the subaggregates, and the idiosyncratic terms will be correlated across 

series with overlapping scope.  Thus the exact DFM might hold at a disaggregated level 

and we would still expect to see violations of the DFM within blocks of variables in this 

data set.  For this reason, the approximate DFM might be a better description of these 

data than the exact DFM. 

The second possibility is that these apparent violations might in fact be statistical 

artifacts.  There are three reasons to believe that this might be an important issue.  First, 
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these regressions all involve estimated factors.  Although the factor estimates are 

consistent, in finite samples the factors will contain estimation error.  Standard errors-in-

variables reasoning suggests that the estimation of the factors will reduce their predictive 

content and as a result the individual variables will retain some predictive content, even if 

in population they follow an exact DFM.  This interpretation is consistent with the large 

fraction of rejections combined with the small marginal R2s when individual X’s are 

included in either the F or X static DFM equations. 

Second, most of these regressions contain quite a few regressors, which raises 

concerns about the applicability of conventional large-sample asymptotic theory. 

Third, although some of the predictive relations uncovered by these tests – such as 

short rates having additional predictive content for long rates, given the factors – make 

economic sense, many do not.  For example, residential building permits in the South has 

a relatively large marginal R2 for predicting the first factor, but building permits in the 

Northeast or the Midwest, or housing starts in the south, do not.  Although building 

permits in the South might in fact contain special information useful for forecasting this 

aggregate real output factor, its relatively high in-sample marginal R2 could just be a 

statistical artifact. 

The final possibility is that these tests have correctly detected violations of DFM 

restrictions.  In this regard, we make three comments. 

First, if Xjt enters the Ft equation only with a lag (restriction #4 fails), then this can 

still be consistent with estimating 9 static factors using the Bai-Ng (2002) criterion.  

Specifically, consider the modified model (9) and (39), where εFt = Gηt.  Then EFtνt = 0 

and the covariance matrix of tX%  still has the factor structure (11) and the Bai-Ng (2002) 

will estimate the dimension of the factor matrix to be r, the number of static factors.  

However, the spectral density matrix of Xt does not have a factor structure (exact or 

approximate) at every frequency and in this sense the DFM fails.  Moreover, the 

covariance matrix of Xt (as opposed to tX% ) does not have a factor structure (exact or 

approximate), so the estimated number of factors should differ, possibly substantially, 

depending on whether the series are filtered.  But our estimates of the number of static 

factors are comparable whether the series are filtered or not, in fact the estimate is 

slightly less (not more) when the series are unfiltered. 
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Second, if current or lagged Xjt enters the Xit equation after conditioning on Ft 

(restriction #5 fails), then neither the covariance matrices of Xt nor that of tX%  will have a 

factor structure.  In this case statistically significant evidence against restriction #5 is 

inconsistent with estimation of a handful of factors, at least in large samples.  If there are 

only a few observable variables that predict Ft, then then those variables would be 

observable static factors;  however the rejections are widespread, so this interpretation is 

not consistent with the empirical evidence. 

Third, perhaps the series in fact obey a DFM but the Bai-Ng (2002) procedure has 

identified too few static factors.  This would be consistent with the widespread rejections, 

and would indicate a difference between the Bai-Ng (2002) information criterion 

approach to the estimation of the factors and the significance testing approach of this 

section.  But changing the number of static factors in this analysis does not substantially 

change the number of rejections of the DFM restrictions, so this explanation also is not 

fully consistent with the empirical results. 

Taken together, these considerations and the results of Sections 4 and 5 lead us to 

conclude that the exact DFM model is an imperfect description of these data: many of its 

restrictions are violated.  This said, there is strong evidence that there are a reduced 

number of linear combinations of the data – seven factors – that have considerable 

explanatory content for all the series.  Given the factors, the violations of the exact DFM 

are small in an economic and quantitative sense.  These findings are consistent with these 

series following an approximate DFM, in which there is some small correlation among 

the idiosyncratic components, given the factors. 

As discussed in Section 2.5, the conceptual basis for the estimation of the factors 

and the factor innovations, and the associated distribution theory, has been developed for 

the approximate factor model.  Moreover, the structural FAVAR innovation identification 

schemes and the associated two-step estimates (based on preliminary estimation of the 

factor innovations) hold under the approximate DFM, assuming Λi = j
iΛ  in the notation 

of (41), a restriction that we found to be infrequently violated using the Hausman test.  

Although there remain some loose ends, such as the substantial rejections of the DFM 

restrictions among interest rate equations, we therefore interpret these results as 

supporting taking the next step of identifying and estimating structural FAVARs. 
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6.  Empirical Results III:  The BBE Structural FAVAR 
 

This section illustrates the use of structural FAVARs by adopting the BBE 

identification scheme discussed in Section 4.2.  We briefly review the economics of the 

BBE identification scheme, then turn to the empirical results. 

 

6.1  The BBE Identification Scheme 

The purpose of the BBE identification scheme is to identify a single structural 

shock, the monetary policy shock.  Their scheme entails partitioning the series into three 

groups, slow, the interest rate, and fast.  The slow moving variables, such as output and 

employment, are assumed to be unaffected within the month by the monetary policy 

shock or by shocks to financial markets.  The qS shocks to the slow variables are the 

“slow shocks,” S
tζ .  These slow shocks are assumed to be observed by the Fed, so that 

the monetary policy instrument (the Federal Funds rate) is a function of S
tζ , the monetary 

policy shock R
tζ , and an idiosyncratic disturbance.  Finally, the remaining fast variables 

– stock returns, other interest rates, exchange rates, etc. – are assumed to be affected by 

the slow and monetary policy shocks and, in addition, to qF additional “fast” structural 

shocks to financial markets.  These assumptions produce the identification scheme 

discussed in Section 4.2.2 

Although most of this reasoning is conventional, one noteworthy point is that the 

Fed Funds specification allows for an idiosyncratic disturbance, a feature not present in a 

standard structural VAR implementation.  This allows for institutional features that 

introduce slippage between monetary policy and monthly movements in the Fed Funds 

rate, for example the fact that the Fed Funds rate moves in 25 basis point increments and 

the tendency of the Fed to smooth a large interest rate movement over several quarters 

rather than to implement a large movement after a single meeting of the FOMC.  Whether 

                                                 
2 In a precursor to this large-n approach, Leeper, Sims, and Zha (1996) identify the 
monetary policy shock as not affected by a large number of “sluggish” private sector 
variables in their 13- and 18-variable VARs. 
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the idiosyncratic disturbance is small or large quantitatively is an empirical matter that 

can be determined by applying the BBE identification scheme to the structural FAVAR. 

The two differences between our implementation and BBE are differences in the 

data (which we believe to be minor) and differences in the estimation method.  The 

estimation method used here is that described in Section 4.2; for the BBE estimation 

method, see their paper. 

 

6.2  Baseline Empirical Results 

Following BBE, our slow variables are output, employment, inventories, and 

broad-based price indexes (for a total of 67 slow variables) and the fast variables are 

interest rates, exchange rates, commodity prices, and stock returns (64 fast variables).  

The list is in Appendix A. 

The first step is to estimate the number of dynamic factors among the slow 

variables, qS.  Like the estimation of the total number of dynamic factors (reported in 

Table 1), this was done by applying the Bai-Ng (2002) ICp2 criterion to the sample 

covariance matrix of the estimated innovations ˆS
Xtε  in the slow variables.  The results for 

the filtered data are summarized in Table 5.  If fewer than four static factors are used, qS  

is estimated to be the number of static factors; if four or more static factors are used, qS is 

estimated to be 4.  These estimates were computed for a VAR(2) for F and 6 lags for 

D(L), and are robust to using either a VAR(1) for F or 4 lags for D(L).  The total number 

of possible static factors cannot exceed the total for the full panel, 9, and application of 

the Bai-Ng (2002) criterion to only the slow variables yields an estimate of 6 static 

factors; these statistics taken together therefore estimate ˆSq  = 4 dynamic factors among 

the slow variables.  This said, the Bai-Ng (2004) criterion is fairly flat in the region of 2 ≤ 

qS ≤ 4 so these results are consistent with the Sims-Sargent (1977) finding of only two 

quantitatively important dynamic factors among the slow variables.   

As a robustness check, we also estimated the number of dynamic factors using the 

unfiltered data.  For the unfiltered slow data, the number of static factors is estimated to 

be three, and the number of dynamic factors is estimated to be three.  If we allow instead 

for up to 9 static factors to enter the unfiltered slow variables, the estimate of qS is either 

4 or 5, depending on the number of static factors.  These results suggest some ambiguity 
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about qS, which is estimated to be between 3 and 5; for the sequel, we adopt the modal 

estimate, based on the filtered data, of ˆSq  = 4; the estimated number of fast shocks 

therefore is ˆFq  = q̂  – ˆSq  – 1 = 2. 

Empirical results for the structural FAVAR with qS = 4 and qF = 2 are 

summarized in Table 6.  The first block of columns reports impulse responses to a 

monetary policy shock, normalized so to correspond to a 1 percentage point increase in 

the Federal Funds rate.  The second block of columns reports the fraction of the forecast 

error variance explained by the monetary policy shock at different horizons.  The next 

block of columns examines the overidentifying restrictions, equation by equation.  The 

final two columns report the fraction of the innovation variance explained by the slow 

and fast shocks, respectively.  The results in Table 6 were computed using the “levels” 

algorithm for the BBE identification scheme of Section 4.3.  The overidentifying 

restrictions were imposed for identification of the shocks, however the impulse response 

functions were not estimated subject to that restriction; that is, the impulse response 

function was estimated as *ˆ (L)B  = 1 1 1ˆ ˆˆ ˆ ˆ[ (L)L] [ (L)L]I D I GH− − −− Λ −Φ , where all 

matrices except Ĥ  were estimated using the methods of Section 2.  Thus the first 

column, the impact effect of the monetary policy shock, can be estimated to be nonzero 

even though the shock is identified by assuming this effect is nonzero.  Repeating the 

estimation using the “innovations” algorithm of Section 4.3 yielded results similar to 

those from the “levels” algorithm, so to save space the discussion here focuses on the 

results in Table 6. 

Although we use a somewhat different identification strategy and a different 

estimation method, the results in Table 6 generally accord with those of BBE and, as do 

theirs, with standard theory.  A monetary policy shock that initially increases the Fed 

Funds rate by 100 basis points is estimated to be highly persistent, with the Fed Funds 

rate still elevated by 80 basis points after three years.  Output and employment contract, 

with total employment falling by 0.5%, and IP falling by 1.0% after one year, relative to 

the no-shock benchmark.  The contraction is felt more strongly in some sectors, for 

example construction and goods-producing sectors, than in others, for example finance 

and services.  The stock market enters a pronounced decline in response to the 
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contraction, with the S&P500 loosing 11% of its value within 6 months.  As in 

Eichenbaum and Evans (1995), a contractionary monetary policy shock leads to a large 

and persistent appreciation of the dollar relative to other currencies. 

On the other hand, there are some curious features of the responses.  There 

remains some puzzling price behavior: while PCE inflation responds immediately by 

falling .2% (annual rate) and continues to fall at the rate of 0.2% per year thereafter, CPI 

inflation initially rises by 0.2% and does not appear to fall thereafter. Also, the 

contraction is associated with a temporary steepening of the yield curve.   

The fraction of the variance explained by the monetary policy shock is estimated 

to be small for most of the real quantity variables and for prices.  These estimates are 

somewhat smaller than results found in conventional (observable variable) SVAR 

analysis (see Christiano, Eichenbaum, and Evans (1999), for example). The monetary 

policy shocks are estimated to account for a substantial fraction of the variability of 

interest rates and, at horizons of one to three years, for substantial fractions of the 

variability of retail sales, residential building permits, and the growth of M2. 

The tests of the identifying restrictions in the final columns, along with the 

estimated impact effect of the monetary policy shock on the slow variables, provides a 

way to assess how well the BBE overidentifying assumptions fit the data.  For most of 

the slow-moving variables, the assumption that the shock has no immediate effect is not 

rejected at the 5% significance level, and the estimated impact effect of the monetary 

policy shock is small.  Exceptions to this general statement include the NAPM production 

and employment indexes and the short-term unemployment rate (but, oddly, not 

unemployment insurance claims).  Notably, the PCE deflator for durables increases 

sharply within the month in response to the monetary policy shock (p-value = .026).  

Also, there are widespread rejections of the restriction that the fast shocks not enter the 

slow variables.  For the slow variables, such as total consumption, retail sales, and IP for 

consumer durables, the fast shocks explain nearly 10% or more of the innovation 

variance. 

 

7.  Summary 
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One of our three main empirical findings is that there seem to be a relatively large 

number of dynamic factors that account for the movements in these data:  between two 

and four that account for the movement in output, employment, and price inflation, and 

between 3 and 5 more that account for additional movements in financial variables.  

These are many more factors than have been found by previous researchers, starting with 

Sims and Sargent (1977).  A partial resolution of this conflict is that early researchers, 

including Sims and Sargent (1977), mainly focused on output, employment, and inflation, 

for which a small number of factors is plausible, but conflicts remain between our results 

and those of researchers (e.g. Giannone, Reichlin, and Sala (2004)) who have also used 

large data sets with a diverse range of variables. 

A second empirical finding is evidence against the VAR restrictions implied by 

the exact DFM.  Although many of these violations are estimated to be small from an 

economic perspective, a few of them are large enough to suggest possible 

misspecification in our base model.  We interpret these results as suggesting that these 

data are well described by an approximate factor model, but not an exact factor model, 

however further work along the lines indicated at the end of Section 5 is needed. 

Our third main finding is that the support for the BBE identification scheme is 

mixed.  On the one hand, most of the impulse responses accord with standard 

macroeconomic theories.  The full set of impulse responses in Table 6 demonstrate, as do 

BBE, that these methods can be used to map out the path for many variables after a single 

shock, thereby addressing the common criticism of structural VARs that they are silent 

about many of the variables of interest to policymakers.  On the other hand, many of the 

overidentifying restrictions are violated, and some of the estimated impulse responses do 

not accord with monetary theory.  This situation could be a statistical artifact, it could be 

a feature readily addressed by modifying the data set (perhaps changing the composition 

of the slow variables), or it might be a fundamental flaw in the recursive identification 

scheme.  Understanding the source of these rejections is an obvious next step for 

structural FAVAR research.  From a methodological perspective, finding mixed support 

for the BBE identification scheme represents an advance over exactly identified structural 

VAR analysis:  the structural FAVAR framework permits examination of overidentifying 

restrictions and diagnosis of modeling problems. 
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Appendix A: Data 

 

Table A.1 lists the short name of each series, its mnemonic (the series label used 

in the source database), the transformation applied to the series, and a brief data 

description. All series are from the Global Insights Basic Economics Database, unless the 

source is listed (in parentheses) as TCB (The Conference Board’s Indicators Database) or 

AC (author’s calculation based on Global Insights or TCB data).  In the transformation 

column, ln denotes logarithm, ∆ln and ∆2ln denote the first and second difference of the 

logarithm, lv denotes the level of the series, and ∆lv denotes the first difference of the 

series. 
 

Table A.1  Data sources, transformations, and definitions 
 

Short name Mnemonic Fast 
or 

Slow? 

Tran Description 

PI a0m052  S ∆ln    Personal Income (AR, Bil. Chain 2000 $) (TCB) 
PI less transfers a0m051  S ∆ln    Personal Income Less Transfer Payments (AR, Bil. Chain 2000 $) (TCB) 
Consumption a0m224_r  S ∆ln    Real Consumption (AC) a0m224/gmdc (a0m224 is from TCB) 
M&T sales a0m057  S ∆ln    Manufacturing And Trade Sales (Mil. Chain 1996 $)  (TCB) 
Retail sales a0m059  S ∆ln    Sales Of Retail Stores (Mil. Chain 2000 $) (TCB) 
IP: total ips10  S ∆ln    Industrial Production Index -  Total Index 
IP: products ips11  S ∆ln    Industrial Production Index -  Products, Total 
IP: final prod ips299  S ∆ln    Industrial Production  Index -  Final Products 
IP: cons gds ips12  S ∆ln    Industrial Production Index -  Consumer Goods 
IP: cons dble ips13  S ∆ln    Industrial Production Index -  Durable Consumer Goods 
IP: cons nondble ips18  S ∆ln    Industrial Production Index -  Nondurable Consumer Goods 
IP: bus eqpt ips25  S ∆ln    Industrial Production Index -  Business Equipment 
IP: matls ips32  S ∆ln    Industrial Production Index -  Materials 
IP: dble matls ips34  S ∆ln    Industrial Production Index -  Durable Goods Materials 
IP: nondble matls ips38  S ∆ln    Industrial Production Index -  Nondurable Goods Materials 
IP: mfg ips43  S ∆ln    Industrial Production Index -  Manufacturing (Sic) 
IP: res util ips307  S ∆ln    Industrial Production  Index -  Residential Utilities 
IP: fuels ips306  S ∆ln    Industrial Production  Index -  Fuels 
NAPM prodn  pmp  S lv      Napm Production Index (Percent) 
Cap util a0m082  S ∆lv   Capacity Utilization (Mfg) (TCB) 
Help wanted indx lhel  S ∆lv   Index Of Help-Wanted Advertising In Newspapers (1967=100;Sa) 
Help wanted/emp lhelx  S ∆lv   Employment: Ratio; Help-Wanted Ads:No. Unemployed Clf 
Emp CPS total lhem  S ∆ln    Civilian Labor Force: Employed, Total (Thous.,Sa) 
Emp CPS nonag lhnag  S ∆ln    Civilian Labor Force: Employed, Nonagric.Industries (Thous.,Sa) 
U: all lhur  S ∆lv   Unemployment Rate: All Workers, 16 Years & Over (%,Sa) 
U: mean duration lhu680  S ∆lv   Unemploy.By Duration: Average(Mean)Duration In Weeks (Sa) 
U < 5 wks lhu5  S ∆ln    Unemploy.By Duration: Persons Unempl.Less Than 5 Wks (Thous.,Sa) 
U 5-14 wks lhu14  S ∆ln    Unemploy.By Duration: Persons Unempl.5 To 14 Wks (Thous.,Sa) 
U 15+ wks  lhu15  S ∆ln    Unemploy.By Duration: Persons Unempl.15 Wks + (Thous.,Sa) 
U 15-26 wks lhu26  S ∆ln    Unemploy.By Duration: Persons Unempl.15 To 26 Wks (Thous.,Sa) 
U 27+ wks lhu27  S ∆ln    Unemploy.By Duration: Persons Unempl.27 Wks + (Thous,Sa) 
UI claims a0m005  S ∆ln    Average Weekly Initial Claims, Unemploy. Insurance (Thous.) (TCB) 
Emp: total ces002  S ∆ln    Employees On Nonfarm Payrolls: Total Private 
Emp: gds prod ces003  S ∆ln    Employees On Nonfarm Payrolls - Goods-Producing 
Emp: mining ces006  S ∆ln    Employees On Nonfarm Payrolls - Mining 
Emp: const ces011  S ∆ln    Employees On Nonfarm Payrolls - Construction 
Emp: mfg ces015  S ∆ln    Employees On Nonfarm Payrolls - Manufacturing 
Emp: dble gds ces017  S ∆ln    Employees On Nonfarm Payrolls - Durable Goods 
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Emp: nondbles ces033  S ∆ln    Employees On Nonfarm Payrolls - Nondurable Goods 
Emp: services ces046  S ∆ln    Employees On Nonfarm Payrolls - Service-Providing 
Emp: TTU ces048  S ∆ln    Employees On Nonfarm Payrolls - Trade, Transportation, And Utilities 
Emp: wholesale ces049  S ∆ln    Employees On Nonfarm Payrolls - Wholesale Trade 
Emp: retail ces053  S ∆ln    Employees On Nonfarm Payrolls - Retail Trade 
Emp: FIRE ces088  S ∆ln    Employees On Nonfarm Payrolls - Financial Activities 
Emp: Govt ces140  S ∆ln    Employees On Nonfarm Payrolls - Government 
Emp-hrs nonag a0m048  S ∆ln    Employee Hours In Nonag. Establishments (AR, Bil. Hours) (TCB) 
Avg hrs  ces151  S lv      Avg Weekly Hrs of Prod or Nonsup Workers On Private Nonfarm Payrolls -  

Goods-Producing 
Overtime: mfg ces155  S ∆lv   Avg Weekly Hrs of Prod or Nonsup Workers On Private Nonfarm Payrolls -    

Mfg Overtime Hours 
Avg hrs: mfg aom001  S lv      Average Weekly Hours, Mfg. (Hours) (TCB) 
NAPM empl pmemp  S lv      Napm Employment Index (Percent) 
Starts: nonfarm hsfr  S ln Housing Starts:Nonfarm(1947-58);Total Farm&Nonfarm(1959-)(Thous.,Saar) 
Starts: NE hsne  F ln Housing Starts:Northeast (Thous.U.)S.A. 
Starts: MW hsmw  F ln Housing Starts:Midwest(Thous.U.)S.A. 
Starts: South hssou  F ln Housing Starts:South (Thous.U.)S.A. 
Starts: West hswst  F ln Housing Starts:West (Thous.U.)S.A. 
BP: total hsbr  F ln Housing Authorized: Total New Priv Housing Units (Thous.,Saar) 
BP: NE hsbne*  F ln Houses Authorized By Build. Permits:Northeast(Thou.U.)S.A 
BP: MW hsbmw*  F ln Houses Authorized By Build. Permits:Midwest(Thou.U.)S.A. 
BP: South hsbsou* F ln Houses Authorized By Build. Permits:South(Thou.U.)S.A. 
BP: West hsbwst*  F ln Houses Authorized By Build. Permits:West(Thou.U.)S.A. 
PMI pmi  F lv      Purchasing Managers' Index (Sa) 
NAPM new ordrs pmno  F lv      Napm New Orders Index (Percent) 
NAPM vendor del pmdel  F lv      Napm Vendor Deliveries Index (Percent) 
NAPM Invent pmnv  F lv      Napm Inventories Index (Percent) 
Orders: cons gds a0m008  F ∆ln    Mfrs' New Orders, Consumer Goods And Materials (Bil. Chain 1982 $) (TCB) 
Orders: dble gds a0m007  F ∆ln    Mfrs' New Orders, Durable Goods Industries (Bil. Chain 2000 $) (TCB) 
Orders: cap gds a0m027  F ∆ln    Mfrs' New Orders, Nondefense Capital Goods (Mil. Chain 1982 $) (TCB) 
Unf orders: dble a1m092  F ∆ln    Mfrs' Unfilled Orders, Durable Goods Indus. (Bil. Chain 2000 $) (TCB) 
M&T invent a0m070  F ∆ln    Manufacturing And Trade Inventories (Bil. Chain 2000 $) (TCB) 
M&T invent/sales a0m077  F ∆lv   Ratio, Mfg. And Trade Inventories To Sales (Based On Chain 2000 $) (TCB) 
M1 fm1  F ∆2ln Money Stock: M1(Curr,Trav.Cks,Dem Dep,Other Ck'able Dep)(Bil$,Sa) 
M2 fm2  F ∆2ln Money Stock:M2(M1+O'nite Rps,Euro$,G/P&B/D Mmmfs&Sav&Sm Time 

Dep(Bil$,Sa) 
M3 fm3  F ∆2ln Money Stock: M3(M2+Lg Time Dep,Term Rp's&Inst Only Mmmfs)(Bil$,Sa) 
M2 (real) fm2dq  F ∆ln    Money Supply - M2 In 1996 Dollars (Bci) 
MB fmfba  F ∆2ln Monetary Base, Adj For Reserve Requirement Changes(Mil$,Sa) 
Reserves tot fmrra  F ∆2ln Depository Inst Reserves:Total, Adj For Reserve Req Chgs(Mil$,Sa) 
Reserves nonbor fmrnba  F ∆2ln Depository Inst Reserves:Nonborrowed,Adj Res Req Chgs(Mil$,Sa) 
C&I loans fclnq  F ∆2ln Commercial & Industrial Loans Oustanding In 1996 Dollars (Bci) 
∆C&I loans fclbmc  F lv      Wkly Rp Lg Com'l Banks:Net Change Com'l & Indus Loans(Bil$,Saar) 
Cons credit ccinrv  F ∆2ln Consumer Credit Outstanding - Nonrevolving(G19) 
Inst cred/PI a0m095  F ∆lv   Ratio, Consumer Installment Credit To Personal Income (Pct.) (TCB) 
S&P 500 fspcom  F ∆ln    S&P's Common Stock Price Index: Composite (1941-43=10) 
S&P: indust fspin  F ∆ln    S&P's Common Stock Price Index: Industrials (1941-43=10) 
S&P div yield fsdxp  F ∆lv   S&P's Composite Common Stock: Dividend Yield (% Per Annum) 
S&P PE ratio fspxe  F ∆ln    S&P's Composite Common Stock: Price-Earnings Ratio (%,Nsa) 
Fed Funds fyff  F ∆lv   Interest Rate: Federal Funds (Effective) (% Per Annum,Nsa) 
Comm paper cp90  F ∆lv   Cmmercial Paper Rate (AC) 
3 mo T-bill fygm3  F ∆lv   Interest Rate: U.S.Treasury Bills,Sec Mkt,3-Mo.(% Per Ann,Nsa) 
6 mo T-bill fygm6  F ∆lv   Interest Rate: U.S.Treasury Bills,Sec Mkt,6-Mo.(% Per Ann,Nsa) 
1 yr T-bond fygt1  F ∆lv   Interest Rate: U.S.Treasury Const Maturities,1-Yr.(% Per Ann,Nsa) 
5 yr T-bond fygt5  F ∆lv   Interest Rate: U.S.Treasury Const Maturities,5-Yr.(% Per Ann,Nsa) 
10 yr T-bond fygt10  F ∆lv   Interest Rate: U.S.Treasury Const Maturities,10-Yr.(% Per Ann,Nsa) 
Aaa bond fyaaac  F ∆lv   Bond Yield: Moody's Aaa Corporate (% Per Annum) 
Baa bond fybaac  F ∆lv   Bond Yield: Moody's Baa Corporate (% Per Annum) 
CP-FF spread scp90  F lv      cp90-fyff (AC) 
3 mo-FF spread sfygm3  F lv      fygm3-fyff (AC) 
6 mo-FF spread sfygm6  F lv      fygm6-fyff (AC) 
1 yr-FF spread sfygt1  F lv      fygt1-fyff (AC) 
5 yr-FF spread sfygt5  F lv      fygt5-fyff (AC) 
10 yr-FF spread sfygt10  F lv      fygt10-fyff (AC) 
Aaa-FF spread sfyaaac  F lv      fyaaac-fyff (AC) 
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Baa-FF spread sfybaac  F lv      fybaac-fyff (AC) 
Ex rate: avg exrus  F ∆ln    United States;Effective Exchange Rate(Merm)(Index No.) 
Ex rate: Switz exrsw  F ∆ln    Foreign Exchange Rate: Switzerland (Swiss Franc Per U.S.$) 
Ex rate: Japan exrjan  F ∆ln    Foreign Exchange Rate: Japan (Yen Per U.S.$) 
Ex rate: UK exruk  F ∆ln    Foreign Exchange Rate: United Kingdom (Cents Per Pound) 
EX rate: Canada exrcan  F ∆ln    Foreign Exchange Rate: Canada (Canadian $ Per U.S.$) 
PPI: fin gds pwfsa  F ∆2ln Producer Price Index: Finished Goods (82=100,Sa) 
PPI: cons gds pwfcsa  F ∆2ln Producer Price Index: Finished Consumer Goods (82=100,Sa) 
PPI: int mat’ls pwimsa  F ∆2ln Producer Price Index:I ntermed Mat.Supplies & Components(82=100,Sa) 
PPI: crude mat’ls pwcmsa  F ∆2ln Producer Price Index: Crude Materials (82=100,Sa) 
Spot market price psccom F ∆2ln Spot market price index: bls & crb: all commodities(1967=100) 
Sens mat’ls price psm99q  F ∆2ln Index Of Sensitive Materials Prices (1990=100)(Bci-99a) 
NAPM com price pmcp  F lv      Napm Commodity Prices Index (Percent) 
CPI-U: all punew  S ∆2ln Cpi-U: All Items (82-84=100,Sa) 
CPI-U: apparel pu83  S ∆2ln Cpi-U: Apparel & Upkeep (82-84=100,Sa) 
CPI-U: transp pu84  S ∆2ln Cpi-U: Transportation (82-84=100,Sa) 
CPI-U: medical pu85  S ∆2ln Cpi-U: Medical Care (82-84=100,Sa) 
CPI-U: comm. puc  S ∆2ln Cpi-U: Commodities (82-84=100,Sa) 
CPI-U: dbles pucd  S ∆2ln Cpi-U: Durables (82-84=100,Sa) 
CPI-U: services pus  S ∆2ln Cpi-U: Services (82-84=100,Sa) 
CPI-U: ex food puxf  S ∆2ln Cpi-U: All Items Less Food (82-84=100,Sa) 
CPI-U: ex shelter puxhs  S ∆2ln Cpi-U: All Items Less Shelter (82-84=100,Sa) 
CPI-U: ex med puxm  S ∆2ln Cpi-U: All Items Less Midical Care (82-84=100,Sa) 
PCE defl gmdc  S ∆2ln Pce, Impl Pr Defl:Pce (1987=100) 
PCE defl: dlbes gmdcd  S ∆2ln Pce, Impl Pr Defl:Pce; Durables (1987=100) 
PCE defl: nondble gmdcn  S ∆2ln Pce, Impl Pr Defl:Pce; Nondurables (1996=100) 
PCE defl: service gmdcs  S ∆2ln Pce, Impl Pr Defl:Pce; Services (1987=100) 
AHE: goods ces275  S ∆2ln Avg Hourly Earnings of Prod or Nonsup  Workers  On Private Nonfarm 

Payrolls - Goods-Producing 
AHE: const ces277  S ∆2ln Avg Hourly Earnings of Prod or Nonsup  Workers  On Private Nonfarm 

Payrolls - Construction 
AHE: mfg ces278  S ∆2ln Avg Hourly Earnings of Prod or Nonsup  Workers  On Private Nonfarm 

Payrolls - Manufacturing 
Consumer expect hhsntn  F ∆lv   U. Of Mich. Index Of Consumer Expectations(Bcd-83) 
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Appendix B: Monte Carlo Results on the Estimation of q 

 

This Monte Carlo study examines the statistical performance of the new 

estimator, described in Section 2.4, of the number of dynamic factors q.  The values of T 

and N are the same as those in the data (T = 528 [1960:1-2003:12], N = 132).  The factor 

loadings Λ were set at the fitted values from the data, and D(L) was set at the fitted value.  

The static factors Ft were generated by AR(2) with parameter values set to fitted values 

from data.  The idiosyncratic disturbance follows the process, 

 

vit = 
ivσ × [0.2×ei−1,t + (0.92)1/2eit + 0.2ei+1,t] 

where  

eit = 1/ 2
itσ ait ; ait iid N(0,1); σit = 0.1 + 0.45×σit−1 + 0.45× 2

1ite −  

 

where 
ivσ  is the estimated standard deviation of vit in the data.  (The parameters are such 

that var(eit) = 1 in the simulations.)  Note that the unconditional correlation between 

adjacent uniquenesses is 0.4, slightly greater than the correlation of 0.3 in the data. 

Ten cases were considered, in which the true number of factors was set to r = 

1,…,10.  The maximum number of dynamic factors considered in each case was 10.  The 

procedure of Section 2.4 was then applied, in brief: the static factors, filters, and factor 

loadings were estimated; the Xt innovations were estimated; and the Bai-Ng (2002) ICp2 

procedure was used to estimate q.  The number of Monte Carlo replications was 500 (the 

slow step in this process is the estimation of the filter D(L)). 

The results are summarized in Table B.1.  In all cases, the true number of factors 

was correctly estimated with high probability. 
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Table B.1 Monte Carlo distribution of the estimated number of dynamic factors 

 
True Number of Factors Estimated 

Number 
of 

Factors 

   1      2      3      4      5      6      7      8      9     10  

   1    1.00    0.02    0.00   0.00   0.00   0.00   0.00   0.00    0.00    0.00 
   2    0.00    0.98    0.00   0.00   0.00   0.00   0.00   0.00    0.00    0.00 
   3    0.00    0.00    1.00   0.01   0.00   0.00   0.00   0.00    0.00    0.00 
   4    0.00    0.00    0.00   0.99   0.01   0.00   0.00   0.00    0.00    0.00 
   5    0.00    0.00    0.00   0.00   0.99   0.00   0.00   0.00    0.00    0.00 
   6    0.00    0.00    0.00   0.00   0.00   0.98   0.00   0.00    0.00    0.00 
   7    0.00    0.00    0.00   0.00   0.00   0.02   0.97   0.00    0.00    0.00 
   8    0.00    0.00    0.00   0.00   0.00   0.00   0.03   0.96    0.00    0.00 
   9    0.00    0.00    0.00   0.00   0.00   0.00   0.00   0.04    0.88    0.00 
  10    0.00    0.00    0.00   0.00   0.00   0.00   0.00   0.00    0.12    1.00 
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Table 1 

Estimation of the Number of Dynamic Factors q 
 

# 
dynamic 
factors 

(q) 

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 

1 -0.577 -0.589 -0.593 -0.604 -0.615 -0.624 -0.630 -0.637 -0.642 -0.649 
2  . -0.637 -0.641 -0.649 -0.659 -0.664 -0.668 -0.677 -0.680 -0.686 
3  .  . -0.676 -0.683 -0.694 -0.699 -0.703 -0.710 -0.714 -0.719 
4  .  .  . -0.693 -0.704 -0.708 -0.713 -0.720 -0.724 -0.730 
5  .  .  .  . -0.712 -0.717 -0.722 -0.729 -0.733 -0.739 
6  .  .  .  .  . -0.719 -0.723 -0.731 -0.735 -0.741 
7  .  .  .  .  .  . -0.726 -0.734 -0.738 -0.744 
8  .  .  .  .  .  .  . -0.732 -0.738 -0.743 
9  .  .  .  .  .  .  .  . -0.734 -0.740 
10  .  .  .  .  .  .  .  .  . -0.736 

 
Notes:  Entries are the Bai-Ng (2002) ICp2 criterion, evaluated using the sample 
covariance matrix of the estimated innovations in Xt from the restricted VAR implied by 
the DFM.  Each entry reports the ICp2 for the number of static factors r given in the 
column heading and the number of dynamic factors q given in the row.  Estimates of q 
given r (the column maximum of ICp2) are presented in bold. 
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Table 2 
Forecast Error Variance Decomposition with respect to Factor Innovations 

 
A. Forecast Error Variance Decompositions, Averaged over All Series 

 
Cumulative fraction of the variance explained by dynamic 

factors 1, …, q: 
Horizon Idiosyncratic 

q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 
6 month 0.49   0.28      0.36      0.40      0.44      0.47       0.49       0.51     
12 month 0.45   0.33      0.40      0.45      0.47      0.51       0.53       0.55     
24 month 0.44   0.35      0.42      0.46      0.49      0.52       0.54       0.56     
48 month 0.43   0.36      0.43      0.47      0.50      0.53       0.55       0.57     
         
Bus cycle 
freqs 

0.42   0.37      0.44      0.49      0.52      0.55       0.56       0.58     

Notes:  For the first four rows of the table, the entry in the first numeric column is the 
fraction of the variance of the forecast error explained by the idiosyncratic disturbance νit.  
The entries in the remaining columns are the cumulative fraction of the variance 
explained by the dynamic innovations, up to and including the dynamic innovation in the 
column heading.  The final row presents analogous results for the business cycle band-
passed series.  The seven dynamic factors were computed as described in Section 2.4. 
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Table 2 (Continued) 
 

B. 24 Month Ahead Forecast Error Decompositions for Individual Series 
 

Fraction of variance explained by dynamic factors 1, …, q: Xi Series Idio- 
syncratic 1 2 3 4 5 6 7 Total 

PI   0.53 0.40 0.01 0.01 0.00 0.03 0.02 0.00 0.47 
PI less transfers  0.41 0.55 0.00 0.01 0.00 0.01 0.02 0.00 0.59 
Consumption  0.32 0.48 0.14 0.01 0.00 0.04 0.01 0.01 0.68 
M&T sales  0.12 0.81 0.05 0.01 0.00 0.01 0.00 0.00 0.88 
Retail sales  0.29 0.47 0.15 0.01 0.00 0.05 0.00 0.02 0.71 
IP: total  0.02 0.93 0.01 0.00 0.01 0.02 0.00 0.01 0.98 
IP: products  0.03 0.92 0.01 0.00 0.02 0.01 0.01 0.01 0.97 
IP: final prod  0.04 0.89 0.01 0.00 0.04 0.01 0.01 0.01 0.96 
IP: cons gds  0.07 0.76 0.01 0.01 0.06 0.04 0.03 0.02 0.93 
IP: cons dble  0.12 0.73 0.01 0.00 0.05 0.06 0.00 0.04 0.88 
IP:cons nondble  0.38 0.44 0.01 0.01 0.07 0.02 0.09 0.00 0.62 
IP:bus eqpt  0.15 0.82 0.01 0.00 0.01 0.00 0.00 0.01 0.85 
IP: matls  0.10 0.85 0.01 0.00 0.01 0.03 0.00 0.01 0.90 
IP: dble mats  0.11 0.82 0.00 0.00 0.01 0.03 0.00 0.02 0.89 
IP:nondble mats  0.24 0.74 0.01 0.01 0.00 0.01 0.00 0.00 0.76 
IP: mfg  0.02 0.94 0.01 0.00 0.01 0.01 0.00 0.01 0.98 
IP: res util  0.78 0.00 0.01 0.01 0.04 0.00 0.12 0.04 0.22 
IP: fuels  0.88 0.03 0.00 0.07 0.00 0.01 0.00 0.00 0.12 
NAPM prodn  0.35 0.56 0.03 0.00 0.02 0.02 0.00 0.01 0.65 
Cap util  0.03 0.91 0.00 0.00 0.01 0.03 0.00 0.01 0.97 
Hlp want. indx  0.30 0.65 0.02 0.00 0.02 0.00 0.00 0.00 0.70 
Hlp want./emp  0.18 0.77 0.01 0.00 0.01 0.01 0.00 0.01 0.82 
Emp CPS total  0.12 0.76 0.01 0.00 0.01 0.06 0.01 0.03 0.88 
Emp CPSnonag  0.12 0.76 0.01 0.00 0.01 0.07 0.00 0.03 0.88 
U: all  0.08 0.85 0.01 0.00 0.00 0.06 0.00 0.00 0.92 
U: mean dur.  0.31 0.31 0.01 0.01 0.00 0.30 0.01 0.06 0.69 
U < 5 wks  0.49 0.46 0.01 0.00 0.01 0.00 0.00 0.02 0.51 
U 5-14 wks  0.22 0.74 0.00 0.00 0.01 0.04 0.00 0.00 0.78 
U 15+ wks  0.06 0.70 0.00 0.00 0.00 0.21 0.00 0.02 0.94 
U 15-26 wks  0.15 0.67 0.01 0.00 0.00 0.16 0.00 0.02 0.85 
U 27+ wks  0.15 0.58 0.00 0.01 0.00 0.23 0.01 0.02 0.85 
UI claims  0.22 0.71 0.03 0.01 0.01 0.02 0.00 0.01 0.78 
Emp: total  0.04 0.94 0.00 0.00 0.00 0.01 0.00 0.01 0.96 
Emp: gds prod  0.04 0.94 0.01 0.00 0.00 0.00 0.00 0.00 0.96 
Emp: mining  0.94 0.03 0.01 0.00 0.00 0.00 0.00 0.02 0.06 
Emp: const  0.24 0.66 0.00 0.00 0.01 0.01 0.02 0.06 0.76 
Emp: mfg  0.07 0.92 0.01 0.00 0.00 0.00 0.00 0.00 0.93 
Emp: dble gds  0.10 0.88 0.01 0.00 0.00 0.00 0.00 0.01 0.90 
Emp: nondbles  0.19 0.78 0.01 0.00 0.00 0.02 0.00 0.01 0.81 
Emp: services  0.20 0.73 0.00 0.00 0.00 0.01 0.00 0.06 0.80 
Emp: TTU  0.15 0.79 0.00 0.00 0.01 0.01 0.01 0.03 0.85 
Emp: wholesale  0.23 0.72 0.01 0.00 0.01 0.02 0.00 0.01 0.77 
Emp: retail  0.26 0.65 0.00 0.00 0.01 0.00 0.01 0.07 0.74 
Emp: FIRE  0.79 0.18 0.00 0.00 0.00 0.00 0.00 0.03 0.21 
Emp: Govt  0.90 0.00 0.01 0.01 0.00 0.00 0.00 0.07 0.10 
Emp-hrs nonag  0.11 0.84 0.00 0.00 0.00 0.01 0.00 0.03 0.89 
Avg hrs  0.33 0.62 0.01 0.01 0.01 0.01 0.00 0.01 0.67 
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Overtime: mfg  0.36 0.61 0.01 0.00 0.00 0.01 0.00 0.01 0.64 
Avg hrs: mfg  0.30 0.66 0.01 0.01 0.01 0.01 0.00 0.00 0.70 
NAPM empl  0.28 0.66 0.02 0.00 0.01 0.00 0.00 0.02 0.72 
HStarts: Total  0.57 0.21 0.10 0.03 0.01 0.04 0.02 0.01 0.43 
HStarts: ne  0.80 0.08 0.03 0.01 0.00 0.03 0.02 0.03 0.20 
HStarts: MW  0.72 0.17 0.04 0.01 0.01 0.01 0.03 0.01 0.28 
HStarts: South  0.64 0.18 0.07 0.02 0.02 0.05 0.01 0.00 0.36 
HStarts: West  0.79 0.10 0.05 0.03 0.01 0.01 0.00 0.01 0.21 
BP: total  0.63 0.12 0.13 0.05 0.01 0.06 0.00 0.00 0.37 
BP: ne  0.71 0.19 0.04 0.02 0.00 0.03 0.01 0.01 0.29 
BP: MW  0.64 0.12 0.10 0.07 0.01 0.03 0.02 0.01 0.36 
BP: South  0.74 0.05 0.09 0.03 0.01 0.08 0.00 0.00 0.26 
BP: West  0.80 0.06 0.10 0.01 0.00 0.02 0.00 0.00 0.20 
PMI  0.29 0.58 0.03 0.00 0.03 0.03 0.00 0.03 0.71 
NAPM ordrs  0.37 0.47 0.04 0.01 0.03 0.05 0.00 0.03 0.63 
NAPM vend. del  0.65 0.31 0.01 0.00 0.01 0.01 0.00 0.02 0.35 
NAPM Invent  0.61 0.36 0.01 0.00 0.01 0.01 0.00 0.00 0.39 
Orders: con. gds  0.12 0.80 0.02 0.01 0.00 0.02 0.00 0.02 0.88 
Orders: dble gds  0.16 0.78 0.02 0.01 0.00 0.00 0.01 0.03 0.84 
Orders: cap gds  0.46 0.49 0.00 0.00 0.00 0.02 0.00 0.01 0.54 
Unf orders: dble  0.52 0.41 0.02 0.00 0.00 0.01 0.01 0.04 0.48 
MT invent  0.43 0.39 0.04 0.01 0.02 0.11 0.00 0.00 0.57 
MT invent/sales  0.16 0.55 0.12 0.02 0.00 0.13 0.00 0.01 0.84 
M1  0.80 0.06 0.03 0.00 0.01 0.00 0.09 0.00 0.20 
M2  0.65 0.12 0.04 0.00 0.03 0.00 0.14 0.01 0.35 
M3  0.85 0.03 0.01 0.00 0.01 0.00 0.09 0.01 0.15 
M2 (real)  0.52 0.07 0.16 0.09 0.06 0.00 0.10 0.01 0.48 
MB  0.90 0.01 0.01 0.00 0.00 0.00 0.07 0.00 0.10 
Reserves tot  0.93 0.01 0.02 0.00 0.00 0.00 0.03 0.00 0.07 
Reser. nonbor  0.83 0.04 0.00 0.01 0.03 0.01 0.05 0.02 0.17 
C&I loans  0.87 0.10 0.00 0.01 0.00 0.01 0.00 0.00 0.13 
C&I loans  0.92 0.04 0.01 0.01 0.00 0.01 0.00 0.00 0.08 
Cons credit  0.78 0.16 0.01 0.00 0.00 0.01 0.00 0.03 0.22 
Inst cred/PI  0.80 0.06 0.02 0.00 0.00 0.08 0.03 0.01 0.20 
S&P 500  0.22 0.06 0.42 0.04 0.14 0.00 0.12 0.01 0.78 
S&P: indust  0.22 0.06 0.40 0.03 0.16 0.00 0.11 0.01 0.78 
S&P div yield  0.26 0.02 0.46 0.05 0.11 0.00 0.09 0.01 0.74 
S&P PE ratio  0.47 0.02 0.29 0.05 0.08 0.02 0.07 0.00 0.53 
FedFunds  0.29 0.48 0.10 0.05 0.03 0.03 0.01 0.00 0.71 
Commpaper  0.21 0.42 0.19 0.09 0.08 0.01 0.01 0.00 0.79 
3 mo T-bill  0.21 0.39 0.16 0.07 0.17 0.00 0.01 0.00 0.79 
6 mo T-bill  0.14 0.40 0.18 0.08 0.18 0.00 0.01 0.00 0.86 
1 yr T-bond  0.10 0.38 0.20 0.10 0.21 0.00 0.00 0.01 0.90 
5 yr T-bond  0.13 0.21 0.22 0.09 0.31 0.04 0.00 0.01 0.87 
10 yr T-bond  0.18 0.12 0.24 0.08 0.31 0.05 0.01 0.01 0.82 
Aaabond  0.24 0.06 0.33 0.08 0.22 0.05 0.02 0.00 0.76 
Baa bond  0.29 0.02 0.35 0.10 0.16 0.05 0.03 0.00 0.71 
CP-FF spread  0.71 0.11 0.03 0.01 0.02 0.10 0.00 0.00 0.29 
3 mo-FF spread  0.57 0.24 0.02 0.01 0.05 0.11 0.00 0.01 0.43 
6 mo-FF spread  0.58 0.24 0.01 0.00 0.05 0.11 0.00 0.01 0.42 
1 yr-FF spread  0.63 0.18 0.01 0.00 0.06 0.11 0.01 0.00 0.37 
5 yr-FFspread  0.51 0.34 0.02 0.01 0.01 0.09 0.01 0.00 0.49 
10yr-FF spread  0.45 0.40 0.03 0.02 0.00 0.07 0.02 0.00 0.55 
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Aaa-FF spread  0.40 0.46 0.03 0.03 0.01 0.06 0.02 0.00 0.60 
Baa-FF spread  0.35 0.51 0.03 0.03 0.01 0.05 0.02 0.00 0.65 
Ex rate: avg  0.27 0.00 0.04 0.11 0.00 0.11 0.18 0.28 0.73 
Ex rate: Switz  0.40 0.00 0.01 0.05 0.02 0.11 0.20 0.19 0.60 
Ex rate: Japan  0.55 0.02 0.02 0.09 0.00 0.05 0.12 0.15 0.45 
Ex rate: UK  0.53 0.00 0.01 0.06 0.00 0.07 0.12 0.22 0.47 
EX rate: Canada  0.77 0.00 0.07 0.03 0.01 0.07 0.00 0.06 0.23 
PPI: fin gds  0.56 0.05 0.12 0.23 0.02 0.00 0.01 0.00 0.44 
PPI: cons gds  0.56 0.03 0.10 0.27 0.02 0.00 0.01 0.01 0.44 
PPI: int mat’ls  0.54 0.18 0.07 0.18 0.02 0.00 0.00 0.00 0.46 
PPI: crd mat’ls  0.77 0.02 0.04 0.16 0.01 0.00 0.00 0.01 0.23 
Com. spot price  0.78 0.10 0.01 0.02 0.04 0.00 0.00 0.03 0.22 
Sen mat’ls price  0.75 0.11 0.03 0.02 0.06 0.02 0.01 0.01 0.25 
NAPM com prce  0.56 0.32 0.05 0.04 0.01 0.00 0.01 0.00 0.44 
CPI-U: all  0.23 0.09 0.28 0.37 0.02 0.00 0.00 0.01 0.77 
CPI-U: apparel  0.88 0.04 0.03 0.04 0.00 0.00 0.01 0.00 0.12 
CPI-U: transp  0.44 0.02 0.16 0.36 0.01 0.00 0.00 0.00 0.56 
CPI-U: medical  0.96 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.04 
CPI-U: comm.  0.21 0.05 0.25 0.45 0.02 0.00 0.00 0.01 0.79 
CPI-U: dbles  0.90 0.01 0.07 0.01 0.01 0.01 0.00 0.00 0.10 
CPI-U: services  0.81 0.12 0.04 0.01 0.00 0.02 0.00 0.00 0.19 
CPI-U: ex food  0.40 0.09 0.24 0.25 0.01 0.00 0.00 0.01 0.60 
CPI-U: ex shltr  0.23 0.05 0.25 0.43 0.02 0.00 0.00 0.01 0.77 
CPI-U: ex med  0.24 0.09 0.26 0.38 0.02 0.00 0.00 0.01 0.76 
PCE Deflator  0.34 0.05 0.19 0.37 0.04 0.00 0.01 0.00 0.66 
PCE D: dlbes  0.91 0.03 0.04 0.01 0.02 0.00 0.00 0.00 0.09 
PCE D: nondble  0.24 0.05 0.22 0.46 0.02 0.00 0.00 0.01 0.76 
PCE D: services  0.96 0.00 0.01 0.02 0.01 0.00 0.00 0.00 0.04 
AHE: goods  0.82 0.04 0.01 0.00 0.00 0.01 0.00 0.11 0.18 
AHE: const  0.94 0.01 0.01 0.01 0.00 0.01 0.01 0.02 0.06 
AHE: mfg  0.73 0.07 0.02 0.00 0.01 0.02 0.00 0.16 0.27 
Cons.  expect  0.68 0.03 0.11 0.01 0.06 0.04 0.05 0.02 0.32 
Notes: Entries are the marginal contribution of each column variable to the 24-month 
ahead forecast error variance decomposition of the row variable.  Marginal contributions 
of individual factors that exceed 0.10 appear in bold. 
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Table 3 
Percentiles of p-values and Marginal R2 from X → F Granger Causality Tests 

 
Percentile  

Series  0.010   0.050   0.100  0.250 0.500  0.750  0.900   0.950  0.990 
p-value 0.000   0.001   0.004  0.057  0.252  0.555  0.833   0.908   0.981 
Marginal R2 0.002   0.003   0.004  0.007  0.012  0.018  0.028   0.036   0.050 
 
Notes: The table summarizes results from 1188 Granger-causality tests for each of the 
132 X variables as a potential predictor for each of the 9 static factors. The first row of 
the table shows the percentiles of the 1188 p-values for the Granger-causality tests. The 
final row shows the percentiles for the marginal R2 associated with including lags of Xj in 
the forecasting equation for Fk. 
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Table 4 
Percentiles for p-values and Marginal R2 from Excluding Xj  from Xi Equation 

 
Specifications: 

 

(a) Xit = ΛiΦ(L)Xit–1 + βij(L)Xjt–1 + εt 
 

(b) Xit = ΛiΦ(L)Ft–1 + δi(L)Xit–1 + βij(L)Xjt–1 + εt  
 

(c) Xit = ( )j
i Lδ Xit + βij(L)Xjt + j

itν  
 

(d) Xit = j
iΛ Ft + ( )j

i Lδ Xit + βij(L)Xjt + j
itν  

 
(e) Xit = ΛiFt + δi(L) Xit + vit 

 
 

Percentile  
 0.010   0.050   0.100  0.250 0.500  0.750  0.900   0.950  0.990 
(i) P-values for testing δij(L) = 0 in specification: 

(a) 0.000   0.000   0.000  0.005  0.084  0.364  0.682   0.820   0.964 
(b) 0.000   0.004   0.017  0.093  0.306  0.603  0.825   0.910   0.980 
(c) 0.000   0.000   0.000  0.000  0.028  0.247  0.597   0.763   0.946 
(d) 0.000   0.000   0.001  0.028  0.195  0.497  0.756   0.862   0.967 

(ii) Marginal R-Squared associated with relaxing constraint that βijk = 0 in 
specification: 

(a) 0.001   0.002   0.002  0.006  0.013  0.026  0.049   0.069   0.120 
(b) 0.000   0.001   0.001  0.003  0.007  0.013  0.020   0.026   0.041 
(c) 0.001   0.002   0.004  0.008  0.018  0.043  0.098   0.163   0.420 
(d) 0.000   0.001   0.001  0.003  0.005  0.010  0.018   0.027   0.088 

(ii) Hausman test  for λ  in specifications (d) versus (e)  
 0.000   0.003   0.063  0.413  0.780  0.937  0.983   0.992   0.999 
 
Notes: The first two panels of the table summarize results from 17,292 
heteroskedasticity-robust exclusion tests for each of the X variables as a potential 
predictor of all of the other X variables. The first panel shows the percentiles of the 
17,292 p-values for the exclusion tests. The first row of this panel shows results for 
specification (a), the next row for specification (b), and so forth. The second panel shows 
the percentiles for the marginal R2 associated with including Xj in the equation for Xi for 
each of the specifications. All lag polynomials have six lags.  The final panel of the table 
shows the percentiles for the 17,292  p-values for the Hausman test of equality of Λi and 

j
iΛ  in specifications (d) and (e). 
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Table 5 

 
Estimation of the Number of Dynamic Factors qS among the Slow-Moving Variables 

 
 

# 
dynamic 
factors 

(q) 

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9 r = 10 

1.00 -0.555 -0.567 -0.572 -0.580 -0.592 -0.598 -0.602 -0.608 -0.612 -0.620 
2.00 . -0.625 -0.630 -0.639 -0.652 -0.658 -0.662 -0.668 -0.671 -0.678 
3.00 . . -0.641 -0.649 -0.666 -0.673 -0.677 -0.683 -0.686 -0.692 
4.00 . . . -0.651 -0.669 -0.676 -0.681 -0.686 -0.691 -0.698 
5.00 . . . . -0.667 -0.674 -0.679 -0.685 -0.690 -0.697 
6.00 . . . . . -0.670 -0.675 -0.681 -0.686 -0.693 
7.00 . . . . . . -0.672 -0.677 -0.683 -0.690 
8.00 . . . . . . . -0.667 -0.673 -0.680 
9.00 . . . . . . . . -0.659 -0.666 
10.0 . . . . . . . . . -0.654 

Notes: Entries are the Bai-Ng (2002) ICp2 information criterion, computed using only the 
slow-moving variables.  The estimates are based on the filtered data with 6 lags for D(L) 
and a VAR(1) for Ft.  See the notes to Table 1. 
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Table 6 

Summary of Results from BBE SFAVAR Model 
 

Variable Impulse response to 
Fed Funds shock at horizon: 

Percentage of variance 
explained by Fed Funds shock 

at horizon: 

Test of overidentifying 
restriction: p-value 

Unrestricted 
model 

fraction of 
innovation 
variance 

explained by 
 0 6 12 24 36 0 6 12 24 36 ζR&ζF ζR ζF ζS ζF 

Federal Funds Rate  1.0 0.8 0.8 0.7 0.7 14.9 16.1 10.4 7.2 6.1 . . . 0.090 0.000 
Slow variables 

PI   0.2 0.0 -0.1 -0.1 -0.1 0.7 0.2 0.1 0.1 0.1 0.000 0.024 0.000 0.233 0.018 
PI less transfers  0.2 0.0 -0.2 -0.3 -0.3 0.6 0.2 0.2 0.3 0.3 0.000 0.033 0.000 0.252 0.017 
Consumption  -0.1 -0.8 -0.8 -0.8 -0.8 0.2 6.3 8.1 9.1 9.4 0.000 0.156 0.000 0.260 0.117 
M&T sales  -0.4 -1.7 -1.8 -1.8 -1.8 0.6 4.7 6.5 7.4 7.7 0.000 0.001 0.000 0.518 0.063 
Retail sales  -0.3 -1.6 -1.6 -1.6 -1.6 0.3 7.7 9.9 11.0 11.5 0.000 0.059 0.000 0.349 0.124 
IP: total  0.0 -0.6 -1.0 -1.1 -1.1 0.0 0.4 1.0 1.5 1.6 0.000 0.796 0.000 0.887 0.006 
IP: products  -0.1 -0.6 -0.9 -0.9 -0.9 0.0 0.4 1.1 1.6 1.7 0.000 0.243 0.000 0.842 0.017 
IP: final prod  -0.1 -0.5 -0.9 -0.9 -0.9 0.1 0.4 1.0 1.4 1.5 0.000 0.079 0.000 0.814 0.023 
IP: cons gds  -0.3 -0.8 -0.9 -0.8 -0.8 0.4 0.9 1.7 2.1 2.2 0.000 0.000 0.000 0.749 0.034 
IP: cons dble  -0.5 -2.0 -2.1 -2.0 -2.0 0.2 0.9 1.8 2.2 2.3 0.002 0.025 0.008 0.628 0.006 
IP: cons nondble  -0.1 -0.3 -0.3 -0.3 -0.3 0.1 0.3 0.6 0.8 0.9 0.000 0.194 0.000 0.298 0.095 
IP: bus eqpt  -0.1 -0.5 -1.3 -1.7 -1.7 0.0 0.2 0.5 1.0 1.2 0.010 0.532 0.004 0.439 0.010 
IP: matls  0.1 -0.7 -1.2 -1.2 -1.2 0.0 0.3 0.9 1.3 1.4 0.090 0.500 0.047 0.596 0.003 
IP: dble mats  0.0 -1.2 -2.0 -2.0 -2.0 0.0 0.3 1.0 1.4 1.5 0.000 0.795 0.000 0.578 0.023 
IP: nondble mats  0.1 -0.6 -1.0 -1.0 -1.0 0.1 0.3 0.9 1.3 1.4 0.038 0.493 0.022 0.266 0.010 
IP: mfg  -0.1 -0.8 -1.3 -1.3 -1.3 0.0 0.5 1.3 1.8 1.9 0.000 0.189 0.000 0.879 0.005 
IP: res util  0.9 0.6 0.7 0.8 0.8 0.4 0.9 0.9 1.0 1.0 0.000 0.065 0.000 0.202 0.032 
IP: fuels  -0.9 -1.0 -1.0 -0.9 -0.9 0.8 1.6 1.9 2.1 2.2 0.183 0.030 0.750 0.063 0.001 
NAPM prodn  2.5 -2.2 -0.9 -0.1 0.0 1.8 2.0 2.7 2.7 2.7 0.000 0.000 0.000 0.174 0.076 
Cap util  -0.1 -0.7 -1.1 -1.1 -1.1 0.1 0.6 1.4 2.0 2.1 0.001 0.092 0.002 0.848 0.003 
Help wanted indx  1.0 -2.4 -3.7 -4.0 -4.0 0.8 1.3 2.4 3.2 3.4 0.000 0.013 0.000 0.150 0.080 
Help wanted/emp  0.0 -0.1 -0.1 -0.1 -0.1 0.2 2.1 3.4 4.4 4.6 0.000 0.179 0.000 0.219 0.118 
Emp CPS total  0.1 -0.1 -0.2 -0.3 -0.3 1.1 0.3 0.7 1.0 1.1 0.000 0.001 0.009 0.331 0.008 
Emp CPS nonag  0.1 -0.1 -0.2 -0.3 -0.3 0.9 0.3 0.6 0.9 1.0 0.001 0.001 0.032 0.322 0.006 
U: all  -0.1 0.1 0.2 0.2 0.2 1.4 0.4 1.1 1.7 1.8 0.000 0.000 0.000 0.424 0.028 
U: mean duration  0.1 0.1 0.4 0.5 0.5 0.3 0.3 0.6 1.3 1.6 0.000 0.042 0.000 0.281 0.021 
U < 5 wks  -3.0 0.9 1.2 1.1 1.1 1.6 0.8 0.8 0.7 0.7 0.000 0.000 0.000 0.109 0.033 
U 5-14 wks  0.3 3.6 4.8 4.9 4.9 0.0 0.8 1.8 2.5 2.7 0.000 0.729 0.000 0.162 0.036 
U 15+ wks  1.2 4.5 8.7 9.3 9.3 0.3 0.7 1.8 2.6 2.8 0.052 0.024 0.405 0.693 0.001 
U 15-26 wks  1.7 4.5 7.6 7.9 7.9 0.2 0.7 1.7 2.5 2.7 0.109 0.144 0.196 0.337 0.003 
U 27+ wks  0.5 4.3 9.4 10.7 10.7 0.0 0.4 1.2 2.1 2.3 0.430 0.616 0.267 0.418 0.003 
UI claims  0.0 6.3 6.7 6.5 6.5 0.0 2.5 3.9 4.6 4.8 0.000 0.966 0.000 0.300 0.065 
Emp: total  0.0 -0.2 -0.5 -0.6 -0.6 0.0 0.4 1.3 2.1 2.3 0.000 0.545 0.000 0.705 0.010 
Emp: gds prod  0.0 -0.3 -0.8 -0.9 -0.9 0.0 0.2 0.9 1.5 1.7 0.000 0.928 0.000 0.645 0.025 
Emp: mining  0.0 0.6 0.4 0.3 0.3 0.0 0.3 0.3 0.2 0.2 0.109 0.929 0.058 0.017 0.010 
Emp: const  -0.2 -0.9 -1.4 -1.5 -1.5 0.3 1.0 2.1 2.9 3.1 0.013 0.038 0.154 0.356 0.004 
Emp: mfg  0.1 -0.2 -0.6 -0.8 -0.8 0.1 0.2 0.5 1.0 1.2 0.000 0.304 0.000 0.538 0.029 
Emp: dble gds  0.1 -0.2 -0.7 -1.0 -1.0 0.1 0.2 0.4 0.8 0.9 0.000 0.188 0.000 0.494 0.034 
Emp: nondbles  0.0 -0.2 -0.5 -0.5 -0.5 0.0 0.2 0.9 1.6 1.7 0.075 0.642 0.037 0.227 0.009 
Emp: services  0.0 -0.1 -0.3 -0.4 -0.4 0.0 0.3 0.9 1.6 1.9 0.001 0.604 0.000 0.334 0.019 
Emp: TTU  0.1 -0.2 -0.4 -0.5 -0.5 0.3 0.3 1.0 1.8 2.0 0.332 0.085 0.855 0.384 0.000 
Emp: wholesale  0.1 0.0 -0.2 -0.4 -0.4 0.6 0.2 0.2 0.6 0.8 0.020 0.025 0.158 0.175 0.005 
Emp: retail  0.1 -0.2 -0.4 -0.5 -0.5 0.6 0.3 0.8 1.4 1.6 0.044 0.028 0.197 0.330 0.003 
Emp: FIRE  0.0 0.0 -0.1 -0.2 -0.3 0.0 0.0 0.1 0.3 0.4 0.036 0.791 0.014 0.029 0.015 
Emp: Govt  0.0 0.3 0.4 0.4 0.4 0.0 1.2 1.5 1.5 1.5 0.001 0.731 0.000 0.015 0.060 
Emp-hrs nonag  -0.3 -0.3 -0.5 -0.5 -0.5 1.0 0.6 1.2 1.8 2.0 0.000 0.006 0.000 0.420 0.041 
Avg hrs  -0.1 -0.1 -0.1 -0.1 -0.1 1.1 1.2 1.7 2.1 2.2 0.014 0.041 0.005 0.289 0.016 
Overtime: mfg  0.0 0.0 -0.1 -0.1 -0.1 0.1 0.4 0.6 0.7 0.8 0.116 0.299 0.086 0.179 0.004 
Avg hrs: mfg  -0.1 -0.1 -0.1 -0.1 -0.1 0.5 0.8 1.3 1.7 1.8 0.139 0.183 0.067 0.290 0.009 
NAPM empl  2.2 -1.1 -0.9 -0.2 0.0 2.5 1.2 1.5 1.7 1.7 0.000 0.000 0.000 0.198 0.063 
CPI-U: all  0.2 0.0 -0.1 0.0 0.0 0.0 0.9 0.7 0.4 0.3 0.087 0.626 0.037 0.733 0.005 
CPI-U: apparel  0.4 0.1 0.0 0.0 0.0 0.0 0.2 0.2 0.1 0.1 0.294 0.632 0.214 0.074 0.005 
CPI-U: transp  -0.9 -0.9 -0.8 -0.8 -0.8 0.1 0.4 0.4 0.4 0.4 0.003 0.380 0.001 0.543 0.010 
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CPI-U: medical  0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.238 0.511 0.148 0.010 0.005 
CPI-U: comm.  0.3 -0.2 -0.3 -0.2 -0.2 0.0 0.5 0.4 0.3 0.3 0.000 0.500 0.000 0.771 0.014 
CPI-U: dbles  2.1 0.6 0.8 0.9 0.9 1.6 2.8 2.8 2.8 2.8 0.040 0.008 0.776 0.054 0.001 
CPI-U: services  -0.2 -0.1 0.0 0.0 0.0 0.0 0.5 0.4 0.2 0.2 0.882 0.778 0.718 0.049 0.002 
CPI-U: ex food  0.3 0.0 0.0 0.0 0.0 0.0 0.8 0.6 0.4 0.3 0.637 0.440 0.462 0.548 0.002 
CPI-U: ex shelter  0.1 -0.2 -0.2 -0.2 -0.2 0.0 0.6 0.4 0.3 0.3 0.000 0.854 0.000 0.749 0.015 
CPI-U: ex med  0.0 -0.2 -0.1 -0.1 -0.1 0.0 0.8 0.6 0.4 0.3 0.026 0.910 0.016 0.715 0.006 
PCE defl  -0.2 -0.2 -0.2 -0.2 -0.2 0.0 0.5 0.4 0.4 0.4 0.000 0.516 0.000 0.603 0.027 
PCE defl: dlbes  1.2 0.5 0.4 0.4 0.4 0.6 0.8 0.8 0.7 0.6 0.008 0.026 0.038 0.029 0.010 
PCE defl: nondble  -0.4 -0.6 -0.6 -0.5 -0.5 0.0 0.5 0.6 0.6 0.6 0.000 0.325 0.000 0.747 0.014 
PCE defl: services  -0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.664 0.771 0.454 0.033 0.005 
AHE: goods  0.9 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.000 0.298 0.000 0.084 0.052 
AHE: const  2.5 0.5 0.4 0.4 0.4 0.6 0.6 0.6 0.6 0.6 0.098 0.076 0.197 0.045 0.006 
AHE: mfg  1.3 0.1 0.1 0.2 0.2 0.4 0.4 0.3 0.3 0.2 0.000 0.147 0.000 0.153 0.056 

Fast variables 
HStarts: Total  -3.0 -7.5 -5.3 -2.9 -1.7 0.6 6.2 7.8 8.4 8.5 . . . 0.201 0.027 
HStarts: NE  -6.0 -5.5 -4.4 -3.3 -2.5 0.5 1.7 2.1 2.4 2.5 . . . 0.130 0.003 
HStarts: MW  -3.8 -6.8 -5.1 -2.9 -1.7 0.3 2.7 3.6 4.0 4.1 . . . 0.124 0.012 
HStarts: South  -1.1 -6.3 -4.6 -2.8 -1.8 0.1 3.5 4.6 4.9 5.0 . . . 0.145 0.029 
HStarts: West  -3.8 -8.7 -6.5 -4.0 -2.6 0.4 4.5 5.6 6.0 6.1 . . . 0.025 0.040 
BP: total  -2.8 -8.8 -6.3 -3.8 -2.5 0.8 8.5 10.0 10.3 10.4 . . . 0.131 0.035 
BP: NE -2.8 -6.1 -5.2 -3.9 -3.0 0.2 2.7 3.6 4.1 4.2 . . . 0.111 0.004 
BP: MW  -7.6 -10.9 -8.2 -5.1 -3.4 2.0 9.2 10.8 11.4 11.6 . . . 0.158 0.022 
BP: South  -0.5 -7.0 -5.3 -3.8 -3.0 0.0 3.7 4.4 4.3 4.3 . . . 0.073 0.038 
BP: West  -2.6 -9.0 -6.7 -4.4 -3.1 0.3 5.7 6.6 6.7 6.7 . . . 0.028 0.032 
PMI  1.9 -2.0 -1.2 -0.3 -0.1 2.6 1.8 2.6 2.7 2.7 . . . 0.194 0.116 
NAPM new ordrs  2.5 -2.5 -1.0 -0.2 0.0 1.7 2.6 3.1 3.2 3.2 . . . 0.169 0.109 
NAPM vendor del  1.1 -1.9 -1.9 -0.4 -0.1 0.5 0.6 1.3 1.6 1.6 . . . 0.048 0.028 
NAPM Invent  0.6 -0.7 -0.9 -0.2 0.0 0.2 0.2 0.6 0.8 0.8 . . . 0.036 0.012 
Orders: cons gds  -0.4 -2.7 -2.7 -2.6 -2.6 0.1 3.3 4.7 5.5 5.7 . . . 0.478 0.069 
Orders: dble gds  -1.2 -3.7 -4.0 -3.9 -3.9 0.6 3.8 5.4 6.3 6.5 . . . 0.374 0.094 
Orders: cap gds  -2.1 -3.3 -3.7 -3.7 -3.7 0.4 1.5 2.5 3.3 3.6 . . . 0.084 0.027 
Unf orders: dble  -0.3 -2.4 -4.0 -5.4 -5.8 0.7 3.4 5.0 6.2 6.6 . . . 0.087 0.052 
M&T invent  -0.1 0.2 -0.1 -0.3 -0.3 0.8 0.3 0.1 0.2 0.2 . . . 0.086 0.050 
M&T invent/sales  0.0 0.0 0.0 0.0 0.0 0.3 6.3 8.4 9.3 9.6 . . . 0.500 0.129 
M1  3.2 -0.2 -0.7 -0.9 -0.9 1.5 4.8 3.9 2.9 2.4 . . . 0.042 0.121 
M2  0.7 -0.5 -0.7 -0.8 -0.8 0.3 5.6 4.3 3.1 2.7 . . . 0.095 0.180 
M3  0.9 -0.5 -0.5 -0.5 -0.5 0.4 2.5 2.0 1.5 1.3 . . . 0.039 0.095 
M2 (real)  0.1 -0.7 -0.8 -0.9 -1.0 0.2 3.0 2.3 1.6 1.3 . . . 0.324 0.113 
MB  2.5 0.3 0.2 0.1 0.1 1.3 1.4 1.0 0.7 0.5 . . . 0.009 0.091 
Reserves tot  14.7 2.2 2.0 2.1 2.1 1.1 1.3 1.2 1.0 0.9 . . . 0.023 0.028 
Reserves nonbor  -10.7 -3.5 -4.0 -4.2 -4.2 0.5 1.7 1.5 1.3 1.2 . . . 0.035 0.063 
C&I loans  6.5 0.5 -0.2 -0.2 -0.2 0.7 0.5 0.3 0.2 0.2 . . . 0.031 0.004 
C&I loans  31.2 3.6 -0.1 -0.2 0.0 1.1 1.0 0.9 0.8 0.8 . . . 0.023 0.002 
Cons credit  1.2 -1.2 -1.3 -1.3 -1.3 0.1 0.7 1.0 1.2 1.3 . . . 0.075 0.008 
Inst cred/PI  0.0 -0.1 -0.2 -0.3 -0.3 0.4 2.4 3.5 4.5 4.9 . . . 0.108 0.050 
S&P 500  -5.5 -11.3 -10.9 -10.7 -10.7 13.4 25.4 26.9 27.5 27.6 . . . 0.073 0.666 
S&P: indust  -5.1 -11.2 -10.8 -10.6 -10.6 10.9 23.2 24.8 25.4 25.6 . . . 0.072 0.684 
S&P div yield  0.2 0.4 0.4 0.4 0.4 15.6 28.4 29.0 28.6 28.4 . . . 0.063 0.551 
S&P PE ratio  -5.6 -13.2 -12.5 -12.0 -12.0 6.5 16.7 16.6 15.4 14.9 . . . 0.018 0.340 
Commpaper  1.5 1.3 1.2 1.2 1.2 40.9 34.7 25.4 19.9 18.1 . . . 0.066 0.001 
3 mo T-bill  1.4 1.2 1.0 1.0 1.0 45.1 32.5 24.3 19.5 17.8 . . . 0.049 0.039 
6 mo T-bill  1.5 1.3 1.1 1.1 1.1 59.6 38.7 29.2 23.8 21.9 . . . 0.046 0.038 
1 yr T-bond  1.6 1.5 1.3 1.3 1.3 69.4 43.1 33.3 27.7 25.8 . . . 0.034 0.045 
5 yr T-bond  1.3 1.4 1.3 1.3 1.3 71.8 48.0 41.7 38.1 36.9 . . . 0.006 0.059 
10 yr T-bond  1.1 1.2 1.2 1.2 1.2 67.4 48.5 44.0 41.7 41.0 . . . 0.010 0.060 
Aaabond  0.8 1.1 1.1 1.1 1.1 62.9 52.5 48.9 46.9 46.2 . . . 0.017 0.039 
Baa bond  0.7 1.3 1.3 1.3 1.3 58.7 55.5 53.5 52.2 51.8 . . . 0.021 0.023 
CP-FF spread  0.5 0.2 0.2 0.1 0.1 10.0 10.3 10.4 10.7 10.8 . . . 0.026 0.002 
3 mo-FF spread  0.3 0.1 0.1 0.1 0.1 3.2 1.8 1.5 1.5 1.5 . . . 0.040 0.060 
6 mo-FF spread  0.4 0.1 0.1 0.1 0.1 4.6 2.4 2.1 2.0 2.0 . . . 0.044 0.045 
1 yr-FF spread  0.6 0.1 0.2 0.2 0.1 7.7 4.3 3.9 3.8 3.8 . . . 0.037 0.042 
5 yr-FFspread  0.2 -0.1 0.1 0.1 0.1 0.7 1.1 0.7 0.6 0.5 . . . 0.077 0.021 
10yr-FF spread  0.0 -0.2 0.0 0.0 0.0 0.0 2.1 1.2 0.7 0.6 . . . 0.090 0.014 
Aaa-FF spread  -0.2 -0.2 -0.1 0.0 0.0 0.8 3.6 2.1 1.3 1.1 . . . 0.101 0.005 
Baa-FF spread  -0.3 -0.2 -0.1 0.0 0.0 1.9 4.0 2.3 1.5 1.3 . . . 0.117 0.003 
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Ex rate: avg  3.8 6.8 6.8 6.8 6.8 28.2 33.7 34.5 35.1 35.2 . . . 0.007 0.553 
Ex rate: Switz  5.6 8.7 9.0 9.0 9.0 20.9 21.5 21.5 21.8 21.9 . . . 0.008 0.463 
Ex rate: Japan  4.6 7.8 7.7 7.6 7.6 17.2 19.3 20.4 21.1 21.2 . . . 0.007 0.332 
Ex rate: UK  -3.9 -6.0 -6.0 -6.0 -6.0 14.5 15.2 15.3 15.3 15.3 . . . 0.007 0.371 
EX rate: Canada  1.4 2.7 2.8 2.8 2.8 7.7 13.8 14.2 14.3 14.4 . . . 0.029 0.092 
PPI: fin gds  1.1 -0.6 -0.8 -0.8 -0.8 0.2 0.4 0.6 0.8 0.9 . . . 0.425 0.024 
PPI: cons gds  0.8 -1.1 -1.2 -1.2 -1.2 0.1 0.5 0.8 1.1 1.3 . . . 0.445 0.023 
PPI: int mat’ls  1.4 -1.7 -1.9 -1.8 -1.8 0.2 0.8 1.4 1.9 2.1 . . . 0.341 0.033 
PPI: crude mat’ls  -5.4 -7.2 -7.3 -7.2 -7.2 0.1 0.9 1.3 1.8 2.0 . . . 0.184 0.036 
Commod: spot price  5.0 -4.3 -5.6 -6.1 -6.1 0.2 1.6 1.9 2.2 2.3 . . . 0.010 0.100 
Sens mat’ls price  9.4 -4.6 -4.4 -4.4 -4.4 1.4 2.9 2.8 2.7 2.6 . . . 0.031 0.091 
NAPM com price  1.2 -1.1 -1.7 -0.7 -0.3 0.3 0.4 0.6 0.8 0.8 . . . 0.113 0.026 
Consumer expect  1.1 -1.6 -1.0 -0.8 -0.8 0.3 0.7 0.7 0.5 0.4 . . . 0.082 0.122 

 
Notes:  Estimated using the structural FAVAR with Bernanke-Boivin-Eliasz (2005) 
identification of the monetary policy shock.  The model has 9 static factors, 7 dynamic 
factors, 4 slow-moving dynamic factors, a VAR(2) specification for Ft, and 6 lags in 
D(L). The first 6 numerical columns show the impulse responses and fraction of variance 
explained by the Federal Funds shock (ζR) over different horizons. The p-value columns 
test the hypothesis that ζR and ζF have no contemporaneous effect on each slow series; 
that ζR

 has no contemporaneous effect; and that ζF has no contemporaneous effect, 
respectively.  The final three columns show the fraction of 1-month ahead forecast error 
variance explained by ζS and ζF in a specification that allows all of the shocks to enter the 
equation. 
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Figure 1 
Business Cycle Components of Selected Series  

and the Part Explained by the Common Dynamic Factors 
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Figure 1 (continued) 
 
 

 
  

 
 
 




