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ABSTRACT

Auction theory is one of the richest areas of research in economics over the past three decades. Yet

whether and to what extent the introduction of secondary resale markets influences bidding behavior

in sealed bid first-price auctions remains under researched. This study begins by developing theory

to explore auctions with resale when private values are uncertain. We put our theory to the test by

examining both field data and experimental data from the lab. Our field data are from a unique data

set that includes nearly 3,000 auctions (over 10,000 individual bids) for cutting rights of standing

timber in British Columbia from 1996-2000. In comparing bidding patterns across agents who are

likely to have resale opportunities with those who likely do not, we find evidence that is consistent

with our theoretical predictions. Critical evaluation of the reduced-form bidding model, however,

reveals that sharp tests of the theoretical predictions are not possible because several other

differences may exist across these bidder types. We therefore use a laboratory experiment to

examine if the resale opportunity by itself can have the predicted effect. We find that while it does

have the predicted effect, a theoretical model based on risk-averse bidders explains the overall data

patterns more accurately than a model based on risk-neutral bidders. More generally, the paper

highlights the inferential power of combining naturally occurring data with laboratory data.

Andreas Lange
University of Maryland
Centre for European Economic Research
Mannheim, Germany
alange@arec.umd.edu

John A. List
Department of Economics and AREC
2200 Symons Hall
University of Maryland
and NBER
jlist@arec.umd.edu

Michael Price
University of Maryland
mprice@arec.umd.edu



-2- 

I.  Introduction 

 Auctions have a long and storied past.  From the human slave auctions carried out 

in ancient Egypt to the marriage auctions for brides in Asia Minor to the Praetorian 

Guard auctioning off the Roman Empire in A.D. 193, auctions have been used to allocate 

goods and services.  While auctions have certainly served an important purpose 

throughout history and are now used to sell almost anything one can imagine – vintage 

wines, Treasury bills, pollution permits, baseball cards, etc. – economists have only 

recently begun to explore rigorously the theoretical underpinnings of various auction 

formats.  The seminal work is due to Vickrey, who made several contributions – deriving 

the Nash equilibrium bidding strategy for first-price auctions, demonstrating revenue 

equivalence, and proposing the second-price auction as strategically equivalent to the 

English auction – in his 1961 study.1   

An extensive literature examining the optimal design and application of auctions 

has since developed.  Our point of departure in this study is to relax the maintained 

assumption that individual valuations are known with certainty at the time of the first-

price sealed bid auction.2  By relaxing the assumption of known use values and allowing 

secondary (resale) markets, we find ourselves in an environment that is quite common in 

practice.  U.S. Forest Service timber auctions, the procurement of governmental 

contracts, estate auctions, art auctions, FCC auctions and the like all fit in this general 

                                                 
1 This third contribution has recently been called into question by Lucking-Reiley (2000), who argues that 
stamp auctioneers were using second price auctions some 65 years before Vickrey’s seminal work. 
2 It is well established in the literature that when bidders receive multi-dimensional or uncertain signals, 
auctions may generate inefficient allocations (Pesendorfer and Swinkels (2000), Jehiel and Moldovanu 
(2001), Goeree and Offerman (2003)).  Efficiency and bidding strategies in such an environment are 
dependent upon the weight individual bidders assign to both the private and common value components of 
a signal and upon the number of participants in a given market. However, this literature has not considered 
the effects of secondary markets.  
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class of allocation mechanisms.3  Unlike the traditional auction literature that assumes 

independent private values (IPV) that are known with certainty, when bidders have ex 

ante uncertainty about independent private values and anticipate resale opportunities, 

equilibrium bidding strategies are dependent upon option values conveyed from the 

secondary market.  Intuitively, bidder behavior in this case is fundamentally linked to the 

existence and structure of potential resale markets.   

Our study attempts to make both theoretical and empirical advances in this area.  

Theoretically, we advance Haile (2001, 2003) by relaxing the maintained assumption of 

risk-neutral preferences.  With known valuations in an IPV first price auction, it is well 

documented that risk-averse agents will submit bids that first-order stochastically 

dominate those of risk-neutral counterparts.  In the context of a symmetric, common-

value auction, it is well documented that risk-averse agents submit bids that are first-

order stochastically dominated by a risk-neutral counterpart.  Since the auction markets 

considered herein contain features of both common and independent private values, we 

are a priori unable to predict the effects of risk aversion on bidder behavior without first 

developing an extension of extant theory.  By allowing symmetric agents with CARA 

preferences, we derive several testable implications. 

Our main empirical objectives are to (i) evaluate the validity of our theoretical 

model of auctions with resale, and (ii) provide empirical evidence of behavior in such 

markets that can aid in the design and implementation of efficient mechanisms for the 

allocation of goods and services.  To achieve these objectives, we combine insights from 

                                                 
3 There is a growing theoretical literature that examines the impacts of such resale opportunities on bidder 
behavior and a seller’s optimal choice of auction format (see, for example, Bikhchandani and Huang 
(1989), Gupta and Lebrun (1999), Haile (2000, 2001, 2003), Troger (2003), and Garratt and Troger 
(2003)). 
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naturally occurring data with insights gained from a controlled laboratory experiment.  

One benefit of our approach is that it enables a comparison of behavior across two 

different environments with varying levels of control and realism.   

Our naturally occurring data are drawn from nearly 3,000 timber auctions (over 

10,000 individual bids) from the Small Business Forest Enterprise Program (SBFEP) for 

the interior region of British Columbia (BC) for the period 1996-2000.  These data can be 

viewed as extending the empirical findings in Haile (2001), who used U.S. timber auction 

data to explore bidding behavior before and after a federal regulation that allowed resale.  

Unlike his temporal identification strategy, our identification rests on static comparisons 

between bidding patterns of three very different bidder groups:  loggers on the coast and 

interior of BC and mills located in the BC interior.  While we find evidence consonant 

with our theoretical predictions and in line with Haile’s (2001) findings, we are cautious 

to make strong inference because exact comparisons cannot be unequivocally made.  As 

in Haile’s (2001) study, where several identification assumptions are necessarily 

imposed, in our case variations in the underlying valuations, risk posture, and structure 

(nature) of secondary markets are largely unobserved and therefore may frustrate 

appropriate inference.  This fact highlights the difficulty of evaluating the impacts of 

resale on bidder behavior using uncontrolled field data.     

One way to approach this quandary is to make use of a laboratory experiment.  By 

studying artificial markets that differ only in whether a secondary market is available, we 

are permitted a unique insight into whether the resale market by itself can lead to such 

predicted consequences.  Experimental methods thus allow us to study the effects of 

resale possibilities that would be difficult to identify in naturally occurring data.  Keeping 
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an eye toward designing a laboratory setting that resembles naturally occurring markets 

while maintaining a strong theoretical link, we designed an experiment using the first-

price auction with both a second stage optimal auction (OA) as well as an English auction 

(EA) continuation game of complete information.  This particular design choice allows a 

controlled test of existing theory and a useful benchmark for making inference from field 

data, since the secondary market in BC most likely lies within these two market extremes.  

The lab results are broadly in line with theoretical expectations.  We find that 

experimental subjects submit bids that are significantly higher in markets with resale 

organized by an optimal auction than in those without such opportunity (or with 

secondary markets organized by an EA).  An interesting data pattern not anticipated by 

extant theory is that over lower ranges of the signal space, realized bids are less than the 

risk-neutral theoretical predictions, while over higher ranges of the signal space, realized 

bids are greater than the risk-neutral theoretical predictions.  Yet these tendencies are 

consonant with our theory of bidding by agents with CARA preferences.   

The remainder of the paper is crafted as follows.  Section II provides an overview 

of the SBFEP auction market and our strategy for identifying resale differences using 

reduced-form bid functions.  Section III develops a theory of bidding by agents with 

CARA preferences in auction markets that parallel our laboratory setting.  Section IV 

discusses the laboratory experiment and results.  Section V concludes. 

II. The SBFEP Auction Market 

The SBFEP Auction – Background and Predictions 

Our naturally occurring data are drawn from nearly 3,000 timber auctions (over 

12,000 individual bids) from the British Columbia SBFEP for the period 1996-2000 – the 
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identical data set that BC is using to begin its new pricing approach under the changed 

circumstance agreement for the U.S.-Canadian softwood lumber dispute.4  To examine 

the effects of ex post resale opportunities on bidder behavior, we compare reduced-form 

bid functions across distinct subsets of bidders that face different market conditions.  Our 

general approach is in the spirit of, for example, Porter and Zona (1999), in that we 

employ reduced-form methods to infer the nature of resale effects from differences in 

bidding patterns across subsets of bidders.   

SBFEP auctions in BC allocate standing timber of less than 50,000 metric board 

feet cubed (mb3) to small logging companies and contractors.  SBFEP timber sales 

account for approximately 13 percent of the harvested timber in the province.  About half 

of this timber is allocated via sealed bid tenders to the highest bidder under section 20 of 

the province’s Forest Act.  These auctions are subdivided into two types: Category 1 and 

Category 2, where Category 1 auctions include only market loggers.  Category 2 auctions 

are open to both registered market loggers and registered owners of processing facilities.  

 Category 1 bidders purchase timber cutting rights and sell harvested timber to end 

users.  In the interior of BC almost all harvested timber is sold to either major forest 

license holders or local sawmills.  Ex ante, bidders contract with a prospective buyer to 

arrange an agreement in principle to sell/buy if they win the auction.  The bidders then 

submit bids and the winner consummates the agreement in principle and chooses to lock 

in the stumpage price he bid.  In the coastal region of BC, Category 1 bidders ex ante 

contract with prospective buyers to deliver a portion of harvested timber and sell the 

                                                 
4 See Price and List (2004) for a discussion of the solution to the trade dispute. 
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remaining harvested timber on the Vancouver log market.5  Category 2 bidders purchase 

timber cutting rights to obtain raw materials for their processing operations.  Bidders 

either process harvested timber or trade it to obtain needed materials.  Since both loggers 

along the coast and processing facilities are actively engaged in the ex post buying and 

selling of harvested logs whereas loggers in the interior contract ex ante to deliver all 

harvest to a given buyer, we believe that resale might enter into the bidding strategies of 

the former but not the latter.  Intuitively, since the former set of bidders have an outside 

option to sell logs on a spot market whereas the latter do not have such an option, one 

would expect that loggers from the coast and processing facilities would provide an upper 

envelope on the observed bids of loggers from the interior.  It is thus hypothesized that 

bids should differ across these groups in the direction that theory predicts.  To identify 

whether this effect holds, we rely upon cross sectional variation.6   

Identifying Resale Effects from Reduced-Form Bid Functions 

 A bidding strategy ( ) : +⋅ →iB X R  maps characteristics to a bid function. 

Assuming that firms are risk neutral and “invert” the bid function Bi(
.) by defining the set 

of all firm characteristics that lead to a bid lower than bi as ( ) { }| ( )= ∈ ≤i i i i i ib x X B x bϕ , 

then the probability of a firm submitting a bid of bi winning an auction is 

( ) ( )( )Pr( ( ) for all )
≠

= ∈ ≠ =∏i i j i i j j i
j i

Q b x b j i F bϕ ϕ .    (1II) 

                                                 
5 Along the interior region of BC, no spot market for logs has developed due to differences in infrastructure 
and associated transportation costs that limit the profitability of spot market exchange.  
6 In this sense, our identification strategy is much different from Haile (2001), who analyzes individual 
bids from the U.S. timber auctions and makes use of the temporal variation in the imposition of federal 
regulations by examining bids prior to the onset of the regulations that effectively prohibited resale and 
comparing them to bids after the regulations took effect.   
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Without resale, firm i’s expected profits depend on its own (expected) value of the good 

given its characteristics, t(xi), and are thus given by 

( ) ( ), ; ( ) ( )− = −i i i i i i i i ib x B t x b Q bπ .     (2II) 

A competitive bidder derives an optimal bid strategy conditional upon his likely 

valuation and some probability distribution over the valuations (and hence bids) of all 

possible competitors.  In equilibrium, this imposes a structure on the relationship between 

a given firm’s bid and the probability of that bid winning the auction.  However, when 

bidders have resale opportunities, equation (2) must be adjusted to reflect expected 

profits from resale trade.  For example, when the second-stage continuation game is an 

optimal auction with complete information, the winning bidder obtains in equilibrium a 

payoff equal to the highest use value among all players, minus the price paid to the initial 

seller.  In such an environment, firm i’s expected profits are thus given by 

                                                ( ) ( ) ( )1, ; − = −i i i i i i ib x B t b Q bπ ,      (2II’) 

where t1 is the highest use value among all bidders in the auction and Qi(bi) is again the 

probability that bidder i wins the auction.  Haile (2003) examines bidder behavior in such 

situations and shows that optimal bid strategies in first-price auctions with resale 

represented by an OA continuation game differ from those of an equivalent first-price 

auction without resale.  Across all signal (valuation) ranges, bids in the former 

environment weakly dominate those in the latter. 

 To identify resale effects, we employ a general approach that is in the spirit of, for 

example, Porter and Zona (1993, 1999).  We employ reduced-form methods to infer the 

nature of resale effects by differences in bidding patterns across subsets of firms facing 

different outside options.  Our identification strategy characterizes equilibrium bidding 
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behavior as a function of both observed and unobserved auction-specific and firm effects 

assumed to affect firm i’s valuation and/or probability of winning a given auction.  Once 

an equilibrium bid function has been specified, a pooled regression model for the set of 

coastal Category 1, interior Category 1, and Category 2 bids is estimated using 

interaction effects for these distinct subsets of bidders.  Theoretically, if resale effects are 

present in the Category 2 and coastal bids, then parameter estimates from the interaction 

of these groupings with observed auction covariates should differ from those of the 

model covariates for interior loggers.  In particular, we should observe that the estimated 

comparative static effect of competition on observed bids is smaller for interior Category 

1 auctions than it is for otherwise equivalent Category 2 or coastal Category 1 auctions.     

Specifically, assume that equilibrium bidding behavior for symmetric, risk-neutral 

agents in a first-price sealed bid auction follows the linear specification 

ijijij XP εβ += ,        (3II) 

where Pij is the ith bidder’s bonus bid in auction j.  Xij is a set of regressors underlying the 

ith firm’s valuation for tract j plus a set of interaction terms between these regressors and 

dummy variables for coastal loggers and mills; εij = αi + uij; E[αi] = 0, E[αi
2] = σα

2, 

E[αiαk] = 0 for i ≠ k; αi and uij are orthogonal for all i and j.  αi is a random effect 

assumed to capture heterogeneity that would be left uncontrolled in a standard cross-

sectional model.   

The SBFEP Auction Data - Empirical Results 

We observe 2,671 (247) SBFEP sealed-bid tender first-price auctions conducted 

in the interior (coast) of British Columbia for the period January 1996 through December 

2002.  These auctions provide more than 11,500 individual bids, from which we 
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eliminate any bids submitted in auctions with only a single bidder, any bids submitted by 

a suspected cartel firm, any bids submitted in an auction with an estimated net cruise 

volume of less than 1,000 mb3, and any bids submitted in an auction employing a format 

other than a first-price sealed tender.  This results in a sample of nearly 1,300 firms that 

submit nearly 5,700 bids for the interior and a sample of nearly 475 firms that submit 

nearly 1500 bids on the coast.7     

To generate the data for the empirical model, we combine information from a 

number of sources.  First, a list of all bidders currently registered to participate in SBFEP 

timber auctions was provided by the Ministry of Forests (MOF) in BC.  This listing was 

used to generate unique identification codes for each bidder in the data set.  Second, the 

MOF provided bid sheets for each of the 2,918 auctions.  The bid sheets provide 

information on (i) the regional office holding and date of the auction, (ii) the estimated 

net cruise volume of timber on the plot, (iii) the announced upset rate for the auction, and 

(iv) the identity and bonus bid per metric board feet cubed for each participant in the 

auction.  Finally, the MOF provided a database that contains detailed information on the 

characteristics of each plot.8   

To condition behavior on observed auction characteristics in tests for resale 

effects, we estimate a series of reduced-form bid functions.  Specifically, we assume that 

equilibrium bidding behavior follows the linear specification in equation (3), and 

therefore estimate   

ijijij XP εβ += ,         (4II) 

                                                 
7 Collusion was evident among a subset of firms (Price and List 2004), thus we exclude these observations.   
8 Due to differences in how data is reported across the coastal and interior regions, the information on plot 
characteristics was used largely to fill in any missing information from the bid sheets. 
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where all variables are as defined above.  Auction covariates included in the vector of 

regressors include: 

• Mills – dummy variable that equals 1 if the bidder is a mill 
• Coast – dummy variable that equals 1 if the bidder is from the coast 
• Upset – the announced upset rate per mb3 
• Upset2 – the square of the upset rate 
• Bidders – the number of bidders in auction j 
• Bidders2 – the square of the number of bidders 
• NCV – the announced net cruise volume in mb3 
• NCV2 – the square of the announced net cruise volume 
• Coast_upset – an interaction of the coastal dummy and the upset rate 
• Coast_upset2 – an interaction of the coastal dummy and upset2 
• Coast_bidders – an interaction of the coastal dummy and bidders 
• Coast_bidders2 – an interaction of the coastal dummy and bidders2 
• Coast_ncv – an interaction of the coastal dummy and NCV 
• Coast_ncv2 – an interaction of the coastal dummy and NCV2 
 

Table 1 provides parameter estimates for equation (4) estimated for the set of 7,185 

observations across a number of specifications.   

 Empirical results for the pooled model in Table 1 are consistent with economic 

intuition.  First, since we consider SBFEP auctions as first-price IPV sealed bid tenders, 

economic theory predicts that bids should increase in the number of bidders over the 

relevant range (n=15 (n=18) is the boundary for the number of auction participants in the 

interior (on the coast).9  The positive and significant coefficient on the number of bidders 

across all model specifications is consistent with this prediction.  Second, bidders respond 

positively to the announced upset rate.  Since the announced upset rate is correlated with 

the value a bidder assigns to a given tract, this finding is consistent with economic theory.  

                                                 
9 We follow Haile (2001) and Athey and Levin (2001) in assuming these are IPV auctions.  This is 
intuitively appealing for these data considering that bidders face different capacity constraints (and possibly 
possess different technologies), suggesting that idiosyncratic, firm-specific cost factors are more important 
than plot-specific, uncertain costs.  
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Finally, there are temporal effects in bidder behavior.  Across all model specifications, 

the inclusion of fixed year effects improves the overall predictive power of our model. 

 Empirical results presented in Table 1 suggest an important difference in the 

behavior of mills and loggers along the coast relative to loggers in the interior that are 

suggestive of resale for the former set of bidders:  measured at the sample means, the 

estimated marginal effect of adding an additional bidder in an auction for our fully 

interactive model specification (F) with year fixed effects is approximately 47.16 percent 

($2.259 to $1.535) greater for Category 2 auctions than it is for Category 1 auctions.  For 

Category 1 bidders along the coast, this estimated difference is 30.29 percent ($2.00 to 

$1.535).  These estimates are consistent with resale opportunities for the former set of 

bidders and not for the latter.  Equilibrium bidding strategies in auctions with resale are 

conditioned upon information related to other bidders in the market that is absent in the 

strategy of a firm bidding in a market without resale.  Hence, we would expect greater 

competition in the former case when the secondary market institution is an OA 

continuation game of complete information (or a similar analog), as we assume for the 

Category 2 mills and Category 1 loggers along the coast.  This finding is consonant with 

the predictions and analysis employed by Haile (2001) to identify resale effects for U.S. 

timber auctions.  Combined with other parameter estimates in Table 1 (e.g., the estimated 

parametric shifter terms in the model), we take the empirical results to suggest that resale 

opportunities influence bidding in the direction that theory would predict.   

III. Risk, Resale, and Bidder Behavior – First-Price Auctions 

 Although we are able to extend the empirical findings of Haile (2001) and 

identify empirical differences across bidders indicative of the predicted comparative 
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static effects of resale opportunities on bids, the field data on SBFEP auctions do not 

allow us to control properly for many underlying determinants like the (expected) value 

from using the good, the division of surplus on the resale market, or the risk-posture of 

the firms.10  The effects of resale are inferred from differences in reduced-form 

parameters across the subsets of bidders.  Such analysis is sensitive to issues of model 

specification and the interpretation of estimated parameters.  In practice, both the “true” 

underlying model specification and its associated interpretation are unknown and/or 

unobserved in naturally occurring data.  While one may report empirical evidence 

consistent with the predicted comparative static effects of resale, to make more powerful 

inference of whether such differences are in fact generated by the existence and nature of 

secondary markets, one can examine behavior in a controlled environment.  We follow 

this line of reasoning and complement the field results with lab experiments.  To derive 

testable predictions, we first develop a model that allows risk aversion.11   

Consider a first-price auction with resale opportunities with n symmetric, risk-

averse players.  We assume that players are risk averse with constant absolute risk 

aversion (CARA).  That is, the von-Neumann-Morgenstern utility is given by 

                                                 
10 For example, there is a possibility that loggers are able to mitigate risk in the field by entering into 
contractual relationships with processors and/or logging companies that Category 2 bidders are unable to 
mitigate.  If so, then one could argue that loggers are less risk averse than are mills.  Hence, it is possible 
that estimated differences in behavior across these two groups are generated by differences in unobserved 
risk posture rather than differences in ex post resale opportunities. 
11 As noted by Haile (2003), auction markets with resale have components of both common and private 
value auctions.  It is well documented in the experimental literature that in a private value setting risk-
averse agents submit bids that first-order stochastically dominate those of risk-neutral agents.  In common 
value settings, however, this tendency is reversed.  Risk-averse agents in a common value auction submit 
bids that are stochastically dominated by risk-neutral counterparts.  Given the persistence of risk-averse 
behavior on the part of student subjects in the lab, and lacking an a priori theoretical prediction/conjecture 
about the effects of risk aversion on behavior in our setting, it is important to develop such theory to enable 
us to filter out the effects of risk aversion from those of resale opportunity.  Without such theory, empirical 
tests are potentially confounded and do not permit a direct test of our desired treatment effect. 
 



-14- 

1( ) exp( )= − −z zρ σ
σ

.  Prior to bidding, each player i receives a signal Xi on her use 

value Ui.  The signals [ , ]∈i l uX x x  are independently and identically distributed 

according to a differentiable and strictly increasing distribution ( )⋅F .  Use values 

[ , ]∈i l uU u u  are assumed to follow the conditional distribution ( | )⋅ iG X , which is 

differentiable with Gu > 0 on the support min max[ ( ), ( )]i iu X u X .  Furthermore, we assume 

that ( | )G u x  is continuous and decreasing in x , i.e., ( | )G u x  stochastically dominates 

( | )G u y  if >x y .12 This implies that both min max( ), ( )u x u x are increasing in x . 

We make the following assumption on the probability distributions: 

Assumption (A1): We assume that log ( | )d G u x
du

 is increasing in x. 

Note that Assumption A1 is satisfied in particular for all uniform distributions: 

min

max min

( )( | )
( ) ( )
−

=
−

u u xG u x
u x u x

. Here, 
min

1log ( | )
( )

=
−

d G u x
du u u x

, which increases in x as 

min ( )u x  is increasing in x. 

Bidder Behavior in Markets without Resale 

In order to provide a reference case, we first reconsider the case in which there is 

no secondary resale market.  In this case, the distribution of the use value is given by 

( | )⋅ iG X .  A player with signal x  who wins the auction with a bid of b has expected 

utility given by 

                                                 
12  G(u | x) is assumed strictly decreasing on the interior of the support.   
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ρ
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 (1) 

where ( )NK x  refers to the expected utility from consuming the good given a signal x . 

Given an increasing equilibrium bid function ( )⋅Nb , the expected utility of a player with 

signal x  who bids ( )%Nb x  is given by  

 

1 1

1 1

1 ( ) ( ) (1 ( ) ) (0)
( ( ))

1 ( ) ( ) (1 ( ) ) (0)
( ( ))

− −

− −

 
+ − 

  
 

= + − 
 

∫
%
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%
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%

l

x
n n

N
N x

n n
N

N

K x dF z F x
b x

K x F x F x
b x

ρ
ρ

ρ
ρ

. (2) 

Shading by a bidder of type x  leads to a tradeoff between earnings and the probability of 

winning the auction.  

 Maximizing the expected utility with respect to %x  and setting =%x x  leads to the 

following differential equation defining an optimal bidding function ( )Nb x : 

 
( )1

1
( ) '1 ( ) '

( ( )) ( )

n
n

N N

F x
F x

b x K xρ

−
− 

= 
 

. (3) 

From this expression, we obtain the following implicit definition of the optimal bidding 

function without resale opportunity: 

     1
1

1 1 1exp( ( )) ( )
( ( )) ( ) ( )

−
−= − = ∫

l

x
n

N n
N Nx

b x dF z
b x F x K z

σ σ
ρ

. (3’) 

Proposition 1 [corresponds to Theorem 14 of Milgrom and Weber (1982)]:  If no resale 
is possible, ( )Nb x  is the unique differentiable symmetric separating equilibrium bid 
function.  
Proof: (see Appendix A) 
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Using l’Hospital’s rule we obtain the following results.  Under risk neutrality, an optimal 

bidding function is defined by 

 1
1

1( ) ( | ) ( )  for 0
( )

−
−= =∫ ∫

u

l l

ux
n

N n
x u

b x udG u z dF z
F x

σ . (4) 

For infinitely high risk aversion, however, bids converge towards the minimal possible 

use value given a signal x, i.e., min( ) ( ) for → →∞Nb x u x σ .  Formal derivation of these 

results is provided in Appendix A. 

Bidder Behavior in Auctions with Resale 

 Whenever a player can resell a commodity won at auction on a secondary market, 

the value the bidder places on the commodity in the primary auction market depends on 

the price at which resale can take place. As discussed in Haile (2003), such prices are 

dependent upon the informational structure and trading institution assumed on the 

secondary market.   

We first study the case of complete information on a resale market characterized 

by an OA continuation game, i.e., we assume that use values are common knowledge 

among players and that the seller extracts the entire surplus by selling to the opponent 

with the highest use value on the resale market whenever such trade is profitable.  

 Let us denote the distribution of use values of a player given that her signal is less 

than or equal to y as  

( | ) ( )
( | )

( )
=
∫

l

y

x

G u z dF z
M u y

F y
. 

Further define 1( | )G u y  as the distribution of highest use value of an opponent of a player 

given that y is the maximal signal to an opponent.  Thus we have  
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2
1( | ) ( | ) ( | ) −= nG u y G u y M u y . 

Then, the distribution of highest use value of all players given signal x to one player and y 

being the maximal signal to an opponent is given by 

1 1( | , ) ( | ) ( | )=G u x y G u x G u y . 

The expected utility of a player with signal x – facing opponents with maximal signal y –

who wins an auction with a bid of b is given by  

        
1 1

(0)( ) ( | , ) ( ) ( | , )
( )

(0) ( , )
( )

− =

=

∫ ∫
u u

l l

u u

u u

OA

u b dG u x y u dG u x y
b

K x y
b

ρρ ρ
ρ

ρ
ρ

, (5) 

where ( , )OAK x y  refers to the expected utility from consuming the good given a signal x , 

where y  is again the maximal signal of all opponents.  Not winning the auction yields a 

payoff of zero. 

 If an English auction is carried out on the resale market, the second highest use 

value is decisive. Define 2 ( | )G u y  as the distribution of second highest use value of an 

opponent of a player given that y is the maximal signal to an opponent.  Thus we have  

[ ]2 3
2 ( | ) ( | ) ( 2) ( | ) ( | ) 1 ( | )− −= + − −n nG u y M u y n G u y M u y M u y . 

Further, 2 ( | , )G u x y  is the probability that neither the use value of a player with signal x 

nor the second highest use value of opponents whose highest signal is y exceeds u.   

 Then, the value of the good to a player with signal x  – facing opponents with 

maximal signal y – who wins an auction with a bid of b is given by his own use value if 

he has the highest or second highest use value, or the second highest use value of all 

opponents otherwise.  The expected utility from winning the auction is therefore given by 
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2 2

2

2

( ) ( | ) ( | ) ( ) ( | ) ( | )

( ) ( | , )

(0) ( ) ( | , )
( )

(0) ( , )
( )

− + −

= −

=

=

∫ ∫

∫

∫

u u

l l

u

l

u

l

u u

u u

u

u

u

u

EA

u b G u y dG u x z b G z x dG z y

u b dG u x y

u dG u x y
b

K x y
b

ρ ρ

ρ

ρ ρ
ρ

ρ
ρ

 (6a) 

where ( , )EAK x y  refers to the expected utility from obtaining the good given a signal x  

and y  being the maximal signal of all opponents. 

If a player does not win the auction, she can acquire the good on the resale market 

if she has the highest use value.  The expected value from losing the auction is therefore 

given by 

 1 1( ) ( | ) (0) ( | ) ( | )

( , ) (0)

 
− + 

  
=

∫ ∫ ∫
u u

l l

u uu

u u u

EA

u z dG z y dG z y dG u x

L x y

ρ ρ

ρ

 (6b) 

Using the definitions of ( , )RK x y  and ( , )RL x y  with { },∈R OA EA  and ( , ) 1=OAL x y , we 

can now derive the optimal bids for both types of resale markets simultaneously. 

Assuming an increasing bid function ( )⋅Rb , the expected utility of a player with 

signal x  who bids ( )%Rb x  can be written as 

 1 11 ( , ) ( ) ( , ) ( ) (0)
( ( ))

− −
 

+ 
  

∫ ∫
%

%
%

u

l

xx
n n

R R
R x x

K x z dF z L x z dF z
b x

ρ
ρ

. (7) 

Differentiating with respect to %x  and setting =%x x  leads to a differential equation for the 

optimal bidding function ( )tb x : 
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 1 1 11 1( ) ' ( , ) ( ) ( , )( ( ) ) ' ( , )( ( ) ) '
( ( )) ( ( ))

− − −+ =∫
l

x
n n n

R R R
R Rx

K x z dF z K x x F x L x x F x
b x b xρ ρ

, (7’) 

which reduces to the following linear equation: 

 
1 2

1 1( ) ' ( ) ( )
( ( )) ( ( ))

+ =
%R R

H x H x
b x b xρ ρ , (8)

 

where H1(x) is given by 

 
1

1
1

( , )( ( ) ) '( )
( , ) ( )

l

n
R

x
n

R
x

K x x F xH x
K x z dF z

−

−

=

∫
  

and H2(x) is given by  

 
1

2
1

( ( ) ) ' ( , )( )
( , ) ( )

−

−

=

∫
l

n
R

x
n

R
x

F x L x xH x
K x z dF z

.   

By a standard solution we thus obtain that an optimal bidding function bR(x) is given by 

 2 1 1 1
1 ( ) exp ( ) exp ( )

( ( ))

    
= + −          
∫ ∫ ∫

l l

x z x

R x x x

H z H y dy dz c H z dz
b xρ

 (9) 

for some constant 1c .  Noting that ( ) ( , ) ( )≤ ≤l R uu K x y uρ ρ , there exists a constant 2c  

such that 1 2 2( ) ( ) '/ ( ) [ln( ( ) ln( ( )]≤ = − = −∞∫ ∫
l l

x x

l
x x

H z dz c F x F x dz c F x F x . The second 

summand in (9) therefore vanishes and we arrive at the implicit definition for ( )Rb x : 

 

1 1

1

1
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−
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K y y K y w dF w dF y

L z z dF z
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K z y dF y
ρ

. (10) 
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Proposition 2: [corresponds to Theorem 2 of Haile (2003)]  If the resale market is 
organized via an optimal or English auction, ( )Rb x  ( { },∈R OA EA ) is the unique 
differentiable symmetric separating equilibrium bid function.  
Proof: See Appendix A 

To derive ( )R lb x , we note again that ( , )RK x y  converges for , → lx y x  to 

( , )R l lK x x .  Therefore, we obtain 

 

1 1

1
1

exp 1/ ( ) ( )
( , )1 lim ( )

( ( )) ( , ) ( )

( , )
( , )

− −

−
→ −

 
 
 =

=

∫
∫l

l

z
n n

x
x nR l l

x x n
R l R l l x

R l l

R l l

F y dF y
L x x dF z

b x K x x F z

L x x
K x x

ρ  (11) 

Consider the limiting case of risk neutrality, i.e., 0=σ . Applying l’Hospital’s rule for 

0→σ  yields the bidding function for the optimal auction on the resale market (see 

Appendix A): 

 1
11

1( ) ( | , ) ( )  for 0
( )

−
−= =∫ ∫

u

l l

ux
n

OA n
x u

b x udG u z z dF z
F x

σ , (12) 

which mimics the optimal bid function derived by Haile (2003) for a first-price auction 

followed by an OA continuation game with complete information.  

For the English auction continuation we obtain similarly 

 1
2 11

1( ) ( | , ) ( ) ( | ) ( | ) ( )   for 0
( )

u u

l l l l

u ux u
n

EA n
x u u u

b x udG u z z u w dG w z dG u z dF z
F x

σ−
−

 
= − − = 

  
∫ ∫ ∫ ∫ , 

  (12’) 

which is in line with Haile’s result. 

Furthermore, for agents with preferences characterized by infinitely high risk 

aversion, bids converge towards the minimal possible use value given a signal x for both 
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continuation games, i.e., min( ) ( ) for → →∞Rb x u x σ  ( { },∈R OA EA ).  The proof of this 

result is based on l’Hospital’s rule and provided in Appendix A. 

Implications for Optimal Bidding Strategies: Resale vs. No Resale 

First, note that for infinitely high risk aversion, bids converge towards the 

minimal possible use value given a signal x, i.e., 

min( ) ( ) ( ) for = = = ∞N Rb x b x u x σ . 

Therefore, resale has no effect on bidding strategies if players are infinitely risk averse. 

Hence, since a large majority of agents in the population are risk averse, the differences 

due to the possibility of resale are generally overstated if only risk neutrality is 

considered.  

Further, with a perfectly informative signal min max( ) ( | ) ( )= =∫
u

l

u

u

u x udG u x u x  for all 

x , resale also has no effect on optimal bids, independent of the level of risk aversion. To 

see this, note that ( , ) ( )=RK x y xρ  for >x y  and ( , ) 1=EAL x y . Hence 

 
1

1 11 1 ( ( ) ) '( ) ' ( ) ( ( ) ) '
( ( )) ( ( )) ( )

n
n n

R R

F xF x F x
b x b x xρ ρ ρ

−
− −+ = , (3”) 

which coincides with the bid function for markets without resale.  The intuition behind 

this result is that with resale opportunities an agent wins the auction only if she receives 

the highest signal, i.e., she has the largest use value.  The resale value, therefore, 

coincides with the use value without resale opportunity.  With an imperfectly informative 

signal, however, resale generally increases signals since the expected resale value is not 

smaller than the expected use value of an agent. 

Implications for Optimal Bidding Strategies: The Effect of Risk Aversion 
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The qualitative effects of risk aversion depend on whether the risk-neutral bids 

exceed or equal the minimal use value given by min ( )u x , which depends on the specific 

distributions of use values and signals.  However, the following cases might occur for a 

treatment { }, ,∈t N OA EA : 

1. Under risk neutrality, min( ) ( )>tb x u x : Risk aversion decreases bids for high degrees 
of risk aversion. 

2. Under risk neutrality, min( ) ( )<tb x u x : Risk aversion eventually increases bids. 
 

In our experimental markets described below, case 1 holds for small signals whereas 

case 2 applies to larger signals.  The effects of risk aversion therefore qualitatively 

change over the range of signals.  In our experimental markets, we would thus predict a 

crossing of optimal bid functions for both the resale and no-resale treatments for agents 

that demonstrate high levels of risk aversion.   

Implications for Optimal Bidding Strategies: Minimal Observable Bids 

The minimal bids in both resale and no-resale cases are given by the lowest signal 

type.  Note that, using l’Hospital’s rule again, the equilibrium bid functions lead to  

1 1
( ( )) ( )

=
N l N lb x K xρ

 

and 

( , )1
( ( )) ( , )

= R l l

R l R l l

L x x
b x K x xρ

. 

Unless the signal is perfectly informative at = lX x , we have that ( , ) ( )>R l l N lK x x K x , and 

further that ( , ) 1≤R l lL x x .  Therefore, the smallest observable bid should be higher if 

resale is possible.  In our experimental market, signals of X = xl are perfectly informative, 

and thus bids in both treatments should coincide at the lowest signal range.   
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IV. Experimental Design and Results  

Experimental Design 

 A total of 90 subjects participated in our laboratory experiment, which was 

conducted during the Fall 2003 and Spring 2004 semesters at the University of Maryland 

in College Park.  Each session consisted of two experimental parts: a first-price auction 

market with or without resale opportunity and the Holt and Laury (2002) experimental 

procedure to elicit the risk preference of each participant.  Each part of the laboratory 

experiment is described below.      

Part I: The Auction Market         

Each subject’s experience typically followed four steps: (1) consideration of an 

invitation to participate in an experiment, (2) learning the auction rules, (3) actual market 

participation, and (4) conclusion of the experiment and completion of the Holt and Laury 

(2002) risk-aversion experiment.  In Step 1, undergraduate students from the University 

of Maryland were recruited using e-mail solicitations and flyers hung in academic 

buildings across the campus.  Once the prerequisite number of subjects had responded, a 

second e-mail was sent to each participant inviting them to participate in an experimental 

session to be held at a given date/time.  After subjects were seated in a room, in Step 2 a 

monitor thoroughly explained the experimental instructions and auction rules (included in 

Appendices B and C).   

Before proceeding, a few key aspects of the experimental design should be 

highlighted.  First, all bidders were informed that earnings from the auction experiment 

would be added to earnings from a second, unrelated experiment to determine total 

earnings for the session.  Second, individuals were informed that they would be bidders 
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in the experiment.  In each of the 12 rounds (2 practice and 10 that count towards 

earnings), they would be given a bidder’s card that contained a number, known only to 

that bidder, representing a signal of the value of one unit of the fictitious commodity.  

Importantly, all agents were informed that this information was strictly private and that 

both signals and use values would change each round.  They were also informed about 

the number of other bidders in the market (4), that they would bid against the same four 

bidders for all ten rounds, and that agents may have different signals (use values). 

Third, the monitor explained how signals were determined in each market period 

and how these signals related to the agent’s final reservation (use) value.  Subjects were 

informed that in each period, they would receive a signal from the interval [$0, $50].  

These signals were determined by adding a random integer generated from a uniform 

distribution on the interval [-$10, $10] to the agent’s final use value which was itself an 

integer value randomly drawn on the uniform interval [$10, $40].  Several examples 

illustrated the relationship between a given use value and the range of signals that the 

bidder could receive in the first stage, and vice versa.                

 Fourth, the monitor explained how earnings were determined.  In the baseline, no 

resale treatment, the highest bidder earns the difference between their end use value and 

their bid.  All other bidders earn zero.  In the resale treatment with OA continuation 

game, the bidder who submits the highest bid earns the difference between the highest 

use value of all bidders and the winning bid.  All other bidders earn zero.  In the resale 

treatment with EA continuation game, the bidder who submits the highest bid receives 

the maximum of her use value and the second highest use value of all participants minus 

her winning bid.  The bidder who does not submit the high bid but has the highest use 
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value receives the difference between this value and the second highest use value of all 

other participants.  All other bidders earn zero for the round.  Total earnings for each 

treatment are computed by summing the earnings across the 10 periods. 

In the resale treatment with OA continuation game, it was publicly announced 

that following the completion of each round, ownership of the good would be sold to the 

agent with the highest use value in the group at a price equal to her value.  In the resale 

treatment with EA continuation game, it was publicly announced that following the 

completion of each round, ownership of the good would be sold to the agent with the 

highest use value in the group at a price equal to the second highest use value of all 

agents in the group.13  In the baseline no-resale treatment, several examples were 

provided that illustrated the irrationality of bidding more than $10 above a received 

signal.  In the resale treatments several examples were provided that illustrated the 

workings of the resale market and how prices for resale exchange and earnings for each 

bidder would be determined.14  Fifth, individuals participated in 2 practice rounds of 

bidding to gain experience with the auction market and rules.   

                                                 
13 Two important features of our experimental design that we should highlight include: i) our choice to limit 
participation on the secondary market to bidders from the primary auction market and ii) our decision to 
execute trades on the secondary market at the theoretical benchmarks for both the OA and EA game of 
complete information.  We elected to limit participation on the secondary market to maintain consistency 
with theory and our naturally occurring data—the interior secondary market for timber in BC is comprised 
of bidders registered to participate in the primary auctions.  We elected to execute trade on the secondary 
market at the theoretical benchmarks to maintain consistency with our conceptual model.  The focus of this 
analysis is on first-stage bidding strategies rather than secondary market exchange.  Allowing the 
endogenous determination of prices on the secondary market would surely have an influence on bidding 
strategies, as it is likely that rents would not be divided on the secondary market as predicated by theory.  
Anticipating this, bidders would adjust first-stage bidding strategies.  We hope that future work analyzes 
behavior in markets where prices are endogenously determined on the secondary market and new 
participants are allowed to enter the second-stage continuation game. 
14 An important consideration in designing our auction markets was the issue of bankruptcy and bidder 
behavior.  Theoretically, bankruptcy was not an issue if subjects played the risk-neutral Nash equilibrium.  
However, equilibrium payouts in a number of the periods were low enough to raise concern if subjects 
determined bids with a degree of error.  For reasons outlined in Hansen and Lott (1991), we decided to 
employ an unlimited liability rule and allow subjects to have negative earnings for Part I of the experiment.   
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 In Step 3, subjects participated in the market.  Each market consisted of 10 rounds 

of bidding that lasted about 3 minutes each.  After each 3-minute period, a monitor 

privately gathered each subject’s bidder card and gave the bidder a second card 

containing the subject’s final use value that was within [-$10, $10] of the original signal.  

Once all bidder cards were collected, a monitor publicly announced all bids and awarded 

the good to the highest bidder.  Final use values were publicly announced and, in the 

resale treatment, ownership of the commodity transferred to the agent with highest use 

value.   

It should be noted that throughout each session careful attention was given to 

prohibit communications between bidders that could induce collusive outcomes.  Step 4 

concluded the experiment – after subjects completed the Holt and Laury (2002) 

experiment (described in Part II of this section), they were paid their earnings in private. 

This simple procedure was followed in each of three treatments, which are 

summarized in Table 2.  Table 2 can be read as follows:  row 1, column 2 of Table 2 

contains treatment NR, denoting a no-resale auction market with 5 bidders, who each 

have unit demand for the good.  Table 3 presents buyer induced values and signals for 

each market period.  All signals were drawn and assigned using the following procedure.  

We first drew 50 integer numbers on the uniform distribution between [$10, $40] using 

Excel’s random number generator.  We added an integer drawn on the uniform 

distribution [-$10, $10] to this number to obtain signal values.  These values were then 

assigned so that unbeknownst to bidders, in each session (i) every bidder received the 

highest signal twice, (ii) each bidder received the highest use value but a lower ordered 

signal, and (iii) resale trade was potentially profitable in half of the periods. 
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Part II: The Holt-Laury Risk Experiment 

 Upon completion of Part 1 of the session, instructions and a decision sheet were 

handed out for the second part of the experiment.  This second part was designed to elicit 

subjects’ risk preferences.  In this part of the session, the low-payoff treatment of Holt 

and Laury (2002) was used (see Appendix C for instructions).15  The treatment is based 

on ten choices between paired lotteries.  The paired choices are included in Appendix C.  

The payoff possibilities for Option A, $2.00 or $1.60, are much less variable than those 

for Option B, $3.85 or $0.10, which was considered the risky option.  The odds of 

winning the higher payoff for each of the options increased with each decision, and the 

paired choices are designed to determine degrees of risk aversion.  Holt and Laury (p. 

1649) provide a table that will be used to categorize subjects’ CARA risk preference 

levels based on their ten decision choices. 

 After the instructions were read and questions were answered, the subjects were 

asked to complete their decision sheets by choosing either A or B for each of the ten 

decisions.  The subjects were instructed that one of the decisions would be randomly 

selected ex post and used to determine their payoffs.  Part of a deck of cards was used to 

determine payoffs, cards 2-10 and the Ace to represent “1”.  After each subject completed 

his or her decision sheet, a monitor would approach the desk and randomly draw a card 

twice, once to select which of the ten decisions to use, and a second time to determine 

                                                 
15 We elected to use the low-payoff treatment of the Holt and Laury (2002) experiment to measure risk 
preference since the domain of earnings because this treatment [$0.10 to $3.85] approximates the 
equilibrium domain of per period earnings for our auction markets.  We also collected data for a higher-
payoff treatment of the Holt and Laury (2002) experiment, where the domain of earnings [$0.40 to $15.40] 
approximates the equilibrium domain of earnings at the session level in our auction markets.  In what 
follows, we report only the empirical results for risk preference based upon individual response to the low-
payoff Holt and Laury (2002) design.  However, all tests and results are robust to the use of response to the 
higher-payoff experiment.  
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what the payoff was for the option chosen, A or B, for the particular decision selected.  

After the first card was selected, it was placed back in the pile, the deck was reshuffled, 

and the second card was drawn.  For example, if the first draw was an Ace, then the first 

decision choice would be used.  Suppose the subject selected A in the first row.  The 

second draw would then be made.  If the Ace was drawn, the subject would win $2.00.  If 

a card numbered 2-10 was drawn, the subject would win $1.60.  The subjects were aware 

that each decision had an equal chance of being selected.   

 After all the subjects’ payoffs were determined, they combined their payoff from 

Part 1 with that of Part 2 to compute their final earnings.  The final payoffs were then 

verified against records maintained by a monitor, and subjects were paid privately in cash 

for their earnings.  Each of the sessions lasted approximately 75 minutes and average 

earnings were roughly $13. 

Theoretical predictions for the laboratory auction markets  

Figure 1 provides theoretical predictions for risk-neutral bidders in our 

experimental markets conditioned upon the signal.  Across all but the lowest range of our 

signal space $0.00, bidders in markets with resale opportunities represented by an OA 

continuation game are predicted to submit bids that are on average higher than those 

submitted by an equivalent bidder in a market without resale options.  These differences 

range from mere pennies for signals less than $5.00 to a maximum of about $3.40 for 

bids submitted in the signal range around $23.16  For signal ranges above $40.00 or below 

$20, the predicted differences in bids between the no-resale and resale treatments are less 

                                                 
16 The optimal bid functions were derived numerically.  Using the theory developed in Section III, we first 
calculated ( , )RK x y and ( , )RL x y  on a grid with 0.1 increments.  Using interpolating functions, we then 
solved the respective differential equations. 
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than $2.75.  In resale treatments represented by an EA continuation game, risk-neutral 

bidders are predicted to submit bids that are on average higher than those submitted by an 

equivalent bidder in a market without resale at ranges of our signal space of less than 

$27.00.  For signals larger than $27.00, risk-neutral bidders in our resale treatment with 

EA continuation game are predicted to submit bids that are on average less than those 

submitted by an equivalent bidder in the no-resale treatment.  These differences range 

from a maximum of $0.70 at a signal of approximately $20.00 to a minimum of $-0.56 at 

a signal of approximately $46.00.      

Experimental Results 

Table 4 provides summary statistics for the experimental data.  Entries in Table 4 

are at the period level and include average bid level and its standard deviation, the 

average winning bid and its standard deviation, average resale price, and average 

earnings for the auction winner and resale buyer.  Table 4 can be read as follows: on 

average, in period 1 of the No Resale treatment, subjects submit a bid of $20.84 (standard 

deviation = 9.32) and the average winning bid is $30.77 (standard deviation = 3.17).  

Perusal of the data summary in Table 4 leads to our first two results: 

Result 1:  Bids in a first-price auction followed by resale exchange in an OA 
continuation game are greater than those submitted in equivalent markets without 
resale. 
 
Result 2: Bids in a first-price auction followed by resale exchange in an OA 
continuation game are greater than those submitted in equivalent markets with an EA 
continuation game. 
 

These results can be seen most directly by examining both per period average and 

winning bids across our three laboratory treatments.  Across all ten market periods, both 

average and winning bids in the resale treatment with OA continuation game are greater 
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than bids in both the baseline, no-resale treatment and the resale treatment with EA 

continuation game.  The differences in average bids range from a minimum of $2.68 in 

period 4 to a maximum of $8.29 in period 6, with an average difference of $5.84.  For the 

EA treatment, differences in average bids range from a minimum of $2.84 in period 4 to a 

maximum of $8.53 in period 6, with an average difference of $5.63.  For the baseline 

treatment, the differences in average winning bids range from a minimum of $0.25 in 

period 7 to a maximum of $4.91 in period 1, with an average difference of $2.82.  For the 

EA treatment, the differences in average winning bids range from a minimum of $0.20 in 

period 1 to a maximum of $5.16 in period 5, with an average difference of $2.73. 

Figure 2 provides a comparison of bids submitted in our baseline no-resale 

treatment and our resale treatment with OA continuation game.  The figure illustrates the 

first part of result 1: bids in the resale treatment with OA continuation game are greater 

than those in the baseline no-resale treatment.  Interestingly, these differences are greatest 

at lower and intermediate ranges of the signal domain.  For signals above $32-35, there is 

no discernable difference in bids across the two treatments.   

Further support for these results is provided in Table 5, which presents Mann-

Whitney tests for differences in bids across the various experimental treatments.  Column 

1 provides average differences in bids at both the individual and session levels along with 

differences in average winning bids between our resale treatment with OA continuation 

game and the baseline, no-resale treatment.  As indicated in the table, average (winning) 

bids in the OA treatment are $5.84 ($2.82) greater than those submitted in the baseline 

treatment, and these differences are statistically significant at the p < 0.05 level.  Column 

2 provides average differences in bids at both the individual and session levels along with 
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differences in average winning bids between our resale treatment with EA continuation 

game and both the baseline, no-resale treatment and the resale treatment with OA 

continuation game.  As indicated in the table, differences in average and winning bids 

between the EA and OA treatments are statistically significant at the p < 0.05 level.   

Our last piece of evidence to support Results 1 and 2 comes from a random 

effects bid equation: 

Bit = v(Zit)+ εit,                    (17) 

where Bit is the bid of the ith buyer in period t.  Zit includes treatment dummy variables 

and the induced value signal the agent received; εit = αi + uit; E[αi] = 0, E[αi
2] = σα

2, 

E[αiαj] = 0 for i ≠ j; αi and uit are orthogonal for all i and t.  The random effects αi 

capture important heterogeneity across agents that would be left uncontrolled in a 

standard cross-sectional model. 

Columns A-D in Table 6 present regression results which provide support for 

Results 1 and 2.  For example, parameter estimates in columns A-D suggest that bids in 

the OA treatment are 5.847 higher than bids in the baseline treatment (the omitted 

categorical variable), a difference that is statistically significant at the p < .05 level.  

Furthermore, using a Chow test of coefficient equality, we find that OA bids are larger 

than EA bids at the p < .05 level.  As columns A-D show, these differences are robust 

across several different empirical specifications.   

Empirical results in Tables 5 and 6 suggest that baseline bids and EA treatment 

bids are isomorphic.  Yet, when bids are analyzed over ranges of signals less than 

(greater than) $26, where our theory predicts that bids from the EA treatment are 

predicted to be greater than (less than) those submitted in the baseline treatment, we find 
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evidence consonant with the theory.  From Table 5, we see that over lower ranges of the 

signal space, bids from the EA treatment are, on average, $2.73 larger than those from the 

baseline treatment, a statistically significant difference at the p < 0.05 level.  Over higher 

ranges of the signal space, bids from the EA treatment average $2.07 less than those from 

the baseline treatment, with these differences statistically significant at the p < 0.05 level.  

These data patterns lead to the next result: 

Result 3:  Over lower (higher) signal ranges, bidders in a first-price auction followed 
by an EA continuation game submit bids that are higher (lower) than those submitted 
by agents in an equivalent baseline market without resale opportunity.  
 

Figure 3, which provides a comparison of bids submitted in the baseline no-resale 

treatment and bids in the resale treatment with EA continuation game, highlights this 

result.  Over the entire signal domain, there is little discernable difference between bids, 

as suggested by the empirical estimates of the pooled data.  At lower ranges of the signal 

space, however, the highest bids from the EA treatment are greater than the highest bids 

from our baseline auction markets.  And, at a higher range of the signal space, the lowest 

bids from the EA treatment are less than the lowest bids from our baseline market. 

Combined, these first three results lead to our fourth result: 

Result 4:  Theoretical predictions of Haile (2003) adequately organize differences 
in bidder behavior across auction markets without resale and equivalent auction 
markets with resale opportunities organized as both an OA and EA continuation 
game of complete information. 
 

Risk Aversion and Bidder Behavior 

 Having found general support for the comparative static predictions of Haile 

(2003), we now examine more closely the point predictions of the theory by exploring the 

data conditioned upon underlying risk preference.  Figure 4 provides an illustration of 

bids in our baseline no-resale market relative to the theoretical predictions for risk-neutral 
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equilibrium bids.  As can be seen from the figure, risk-neutral point predictions do not fit 

the data well.  Over lower ranges of the signal space, realized bids are less than the risk-

neutral theoretical predictions while over higher ranges, realized bids are greater than the 

risk-neutral theoretical benchmarks.  This pattern of behavior is consistent with our 

theoretical model for risk-averse bidders.  Similar patterns, albeit less pronounced, 

emerge for both the OA and EA treatments.   

The theoretical model outlined in Section III indicates that there are several 

important differences in the equilibrium behavior of risk-averse agents relative to their 

risk-neutral counterparts.  From our theory we create Figure 5, which provides 

predictions for bids in our baseline markets for various levels of CARA risk preference.  

The figure highlights a number of testable hypotheses regarding the behavior of risk-

averse agents relative to risk-neutral agents.  First, over all but the highest range of the 

signal space (signal > $40), bids for risk-averse agents should be lower than bids of risk-

neutral agents.  For signals greater than $40, the bids of risk-averse agents should be 

greater than bids of risk-neutral subjects.  Second, at the lowest ranges of the signal 

domain (signal < $21), the slope of the bid function is shallower for risk-averse agents, 

with this difference increasing in the level of risk aversion.  Third, at higher ranges of the 

signal domain (signals > $21), the slope of the bid function in the signal space is greater 

for risk-averse agents, with this difference increasing in the level of individual risk 

aversion.  Similar patterns of predicted behavior emerge for risk-averse agents in the OA 

and EA treatments.17   

                                                 
17 Of course, unlike our experimental treatments risk posture should not be regarded as something we can 
exogenously impose on subjects.  Thus, we exercise caution when interpreting the data in that risk posture 
could be systematically related to person-specific unobservables that cause the data patterns discussed 
below.   
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Figure 6 presents bids for our baseline no-resale treatment grouped by revealed 

risk preference – either risk-neutral or risk-averse.18  A total of 29 bidders are labeled as 

risk neutral and 61 are labeled as risk-averse.  Figure 6 reveals two general patterns of 

behavior consistent with our theory of risk-averse bidding: (i) over lower ranges of the 

signal space, agents that are classified as risk-averse submit bids that are lower than those 

submitted by a risk-neutral subject, and (ii) over higher ranges of the signal space, agents 

that are classified as risk-averse submit bids that are higher than those submitted by a 

risk-neutral agent.  Similar patterns emerge for risk-neutral and risk-averse agents in the 

OA and EA treatments.       

 Figures 7 and 8 reveal a number of behavioral differences between risk-averse 

agents in the OA (EA) treatments and agents with identical risk preference in the baseline 

no-resale treatments.  First, over all ranges of the signal domain for the OA treatment, 

risk-averse agents submit bids that are greater than those of agents with identical risk 

preference in the baseline treatment.  Second, for signals less than approximately $20, 

these differences are increasing in signals.  For signals greater than $20, these differences 

are a decreasing function of the signal.  Third, across lower ranges of the signal space 

(less than approximately $21 for risk-neutral agents and up to approximately $39 for 

highly risk averse agents), risk-averse agents in the EA treatment submit bids that are 

higher than those submitted by agents with identical risk preference in the baseline, no-

                                                 
18 We categorize the level of CARA risk preference for the agent based upon estimates provided on p. 1649 
of  Holt and Laury (2002).  Risk-averse agents are those who select more than 4 of the “safe” choices.  
Slightly risk averse agents are those who select between 5 and 7 “safe” choices.  Highly risk averse agents 
are those who select more than 7 “safe” choices in the Holt and Laury experiment.  These categories 
correspond to a CARA value of 0.1 ≤ CARA ≤ 0.49 for slightly risk averse agents and 0.5 ≤ CARA ≤ ∞ for 
highly risk averse agents. 
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resale treatment.  Finally, these differences are an increasing function for signals less than 

$20, and a decreasing function for signals above this range. 

 To examine these differences in a statistical model, we estimate a random effects 

regression model where the absolute difference:  |risk neutral predicted bid – actual bid| is 

regressed on treatment dummy variables, individual risk preference, and an interaction of 

individual risk preference and signals.  This estimation leads to the next result: 

Result 5: Risk-averse bidders submit bids that differ more from the theoretical risk-
neutral benchmarks than do bids of risk-neutral (loving) agents, with the difference 
increasing in the level of observed risk aversion.         
 

Support for Result 5 can be found in Table 7.  For example, in column A, rows 4 and 7 of 

the table, we see that highly risk averse agents (denoted HRA in Table 7) submit bids 

that, on average, diverge from an associated risk-neutral prediction by $5.52, with this 

difference decreasing by $0.18 for a dollar increase in signal.  Both of these differences 

are significant at the p < 0.05 level.  These differences decrease to 2.88 and 0.09 when 

slightly risk averse agents (denoted SRA in the table) are considered.  As a robustness 

test, we considered grouping subjects according to their CARA midpoint level.  These 

estimates are provided in column B and provide similar insights.   

Table 7 reveals that there are statistical differences in the overall levels of 

divergence of bids from risk-neutral predictions between risk-averse and risk-neutral 

agents that are consistent with our theory of risk-averse bidding.  However, our 

theoretical model provides an additional set of testable implications for risk-averse 

bidding – these differences should be a decreasing function in observed signals.  This 

implies that the slope of the bid function in the signal space should be an increasing 

function of risk aversion.       
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To evaluate this theoretical prediction, we augment equation (17) by including an 

interaction of the individual’s risk preference with his/her induced signal and signal 

squared, and an interaction of these values with the treatment dummies.   Empirical 

estimates from these models are contained in columns E and F in Table 6.  We obtain the 

following insight from these results: 

Result 6: Risk averse agents in both the EA and OA treatments submit bids that are 
conditionally more responsive to induced signals than do risk-averse agents in the 
baseline no-resale treatment.  Furthermore, these differences decline over the range 
of the signal space greater than $20 for all but slightly risk averse agents in the EA 
treatment.   
 

The first part of Result 6 follows from estimated differences on the coefficients for the 

SRA_signal (HRA_signal) variable and the associated interaction of this variable with 

the treatment dummies.  For example, in Column E of Table 6 the estimated marginal 

effect of the induced signal on realized bids of slightly risk averse agents in the baseline 

treatment is given by [-0.325 + 0.010*signal], which is significant at the p < 0.05 level.  

In contrast, the estimated marginal effect of the induced signal on realized bids for 

slightly risk averse agents in the OA resale treatment is given by [0.284 – 0.004*signal] – 

the difference in the parameter estimates for SRA_signal and SRA_OA_signal minus the 

difference in the parameter estimates for SRA_signal2 and SRA_OA_signal2, and for 

slightly risk averse agents in the EA resale treatment the difference is given by [0.042 − 

0.001*signal].     

The second part of Result 6 follows from Column F of Table 6, which provides 

parameter estimates for our bid function for all observations where the signal received by 

the agent was greater than $20.  The estimated rate of change in the slope of the bid 

function in the signal space for slightly risk averse agents in the baseline treatment is 
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0.012.  For slightly risk averse agents in the OA resale treatment this rate of change is -

0.006 – the difference in the parameter estimates for SRA_signal2 and SRA_OA_signal2.   

V. Conclusions  

Auctions are ubiquitous.  Yet whether and to what extent the introduction of 

secondary resale markets influences bidding behavior when private values are uncertain 

remains largely unknown.  We begin by exploring a novel data set that provides insights 

into the importance of the resale effect.  Reduced-form empirical estimates suggest that 

bidding patterns are consistent with theoretical predictions.  Yet, akin to many empirical 

exercises, the strength of inference is attenuated when one considers the set of maintained 

assumptions needed to generate confident conclusions from these field data.    

Our approach to this problem is to make use of a laboratory experiment.  Such an 

effort gives up much of the realism associated with field data, but it permits us to 

investigate whether the resale market by itself can lead to such predicted consequences.  

We find that extant theory has considerable predictive power, but the accuracy of the 

theory is enhanced if we control for individual risk preferences.  Besides their obvious 

importance normatively, these results have practical policy significance as well.  For 

example, a necessary condition to lift the countervailing duty and anti-dumping ruling 

against Canadian softwood lumber exporters (who export to the U.S.) is that their auction 

markets be robust and not influenced unduly by collusion.  Without a proper 

understanding of the resale opportunities of the various bidders, the modeler may very 

well earmark bidding disparities among certain bidder types as evidence of collusion 

when it is in fact due merely to secondary market considerations.   
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Table 1: Random Effects Regression Estimates:  SBFEP Category 1 and Category 2 Data 
 Model 

(A) 
Model 

(B) 
Model 

(C) 
Model 

(D) 
Model 

(E) 
Model 

(F) 
Constant 5.830*** 

(0.402) 
8.8004*** 
(0.455) 

1.438** 
(0.663) 

3.938*** 
(0.699) 

1.806*** 
(0.679) 

4.389*** 
(0.714) 

Mills 1.117** 
(0.548) 

1.049** 
(0.535) 

    

Coast 1.927*** 
(0.470) 

1.447*** 
(0.475) 

    

Upset 0.00064 
(0.0085) 

-0.174** 
(0.009) 

0.129*** 
(0.025) 

0.160*** 
(0.025) 

0.119*** 
(0.028) 

0.147*** 
(0.028) 

Bidders 1.159*** 
(0.043) 

1.168*** 
(0.042) 

2.247*** 
(0.174) 

2.049*** 
(0.172) 

2.108*** 
(0.178) 

1.883*** 
(0.175) 

NCV -6.70e-06 
(0.00001) 

-4.25e-06 
(0.00001) 

0.00002 
(0.00002) 

0.00004 
(0.00003) 

0.0001*** 
(0.00005) 

0.0002*** 
(0.00005) 

Upset2   -0.002*** 
(0.0003) 

-0.003*** 
(0.0004) 

-0.002*** 
(0.0004) 

-0.003*** 
(0.0004) 

Bidders2   -0.089*** 
(0.012) 

-0.072*** 
(0.013) 

-0.81*** 
(0.013) 

-0.061*** 
(0.013) 

NCV2   -1.31e-10 
(3.98e-10) 

-4.59e-10 
(3.91e-10) 

-3.9e-9*** 
(1.33e-9) 

-4.85e-9** 
(1.37e-9) 

Coast_bidder   0.168 
(0.143) 

0.249* 
(0.144) 

0.257 
(0.225) 

0.447** 
(0.226) 

Coast_NCV     -0.0002** 
(0.00006) 

-0.0002** 
(0.00006) 

Coast_upset     -0.103* 
(0.058) 

-0.121** 
(0.057) 

Coast_bidder2   0.023* 
(0.012) 

0.009 
(0.012) 

0.020 
(0.015) 

0.0011 
(0.014) 

Coast_ncv2     5.2e-9*** 
(1.43e-9) 

6.06e-9** 
(1.04e-9) 

Coast_upset2     0.005*** 
(0.001) 

0.005*** 
(0.0009) 

Mills_bidder   0.592 
(0.393) 

0.650* 
(0.384) 

2.643*** 
(0.892) 

2.547*** 
(0.875) 

Mills_NCV     9.89e-6 
(0.0001) 

0.00002 
(0.00001) 

Mills_upset     -0.081 
(0.088) 

-0.0533 
(0.086) 

Mills_bidder2   -0.060 
(0.069) 

-0.076 
(0.067) 

-0.321*** 
(0.115) 

-0.320*** 
(0.113) 

Mills_ncv2     1.52e-9 
(1.83e-9) 

1.55e-9 
(1.80e-9) 

Mills_upset2     -0.006 
(0.001) 

-0.0011 
(0.0012) 

Time Effects No Yes No  Yes No  Yes 
       
Likelihood 
Ratio 

831.79 1092.19 936.55 1201.88 1043.53 1331.23 

# Obs 7185 7185 7185 7185 7185 7185 
Note: Cell entries indicate the marginal effect of model covariates (see text for description of covariates) on bid level.   
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Table 2:  Experimental Design – Laboratory Markets 
 

 
Resale Structure 

 

 
Market Summary 

 
No Resale 

 
NR 

5 bidders 
N=30 

 
Resale – OA Continuation: 

Resale price = High use 
value 

 
ROA 

5 bidders 
N=30 

 
Resale – EA Continuation: 

Resale price = Second 
highest use value 

 
REA 

5 bidders 
N=30 

Notes:  Each cell represents one unique treatment in which we gathered 
data in different sessions.  For example, “NR” in row 1, column 2, 
denotes that the no-resale treatment had 30 subjects in groups of 5 
competing in auction markets where ex post resale of the commodity 
was prohibited.  No subject participated in more than one treatment.  
 
 
 
Table 3: Bidder Signals and Use Values (in dollars) 

  
Pd. 1 

 
Pd. 2 

 
Pd. 3 

 
Pd. 4 

 
Pd. 5 

 
Pd. 6 

 
Pd. 7 

 
Pd. 8 

 
Pd. 9 

 
Pd. 10 

 
Buyer 

1 

 
36 

(29) 

 
9 

(19) 

 
25 

(26) 

 
36 

(37) 

 
14 

(13) 

 
14 

(21) 

 
44 

(39) 

 
32 

(24) 

 
40 

(33) 

 
23 

(17) 
 

Buyer 
2 

 
17 

(27) 

 
4 

(12) 

 
14 

(19) 

 
42 

(32) 

 
36 

(38) 

 
10 

(14) 

 
25 

(34) 

 
29 

(22) 

 
32 

(24) 

 
44 

(40) 
 

Buyer 
3 

 
19 

(18) 

 
41 

(36) 

 
20 

(12) 

 
32 

(29) 

 
39 

(31) 

 
32 

(39) 

 
22 

(23) 

 
25 

(17) 

 
22 

(22) 

 
26 

(34) 
 

Buyer 
4 

 
12 

(10) 

 
34 

(26) 

 
38 

(37) 

 
26 

(20) 

 
29 

(28) 

 
34 

(34) 

 
18 

(22) 

 
29 

(39) 

 
21 

(17) 

 
23 

(25) 
 

Buyer 
5 

 
37 

(36) 

 
25 

(33) 

 
33 

(34) 

 
6 

(13) 

 
25 

(21) 

 
24 

(28) 

 
23 

(14) 

 
38 

(33) 

 
35 

(40) 

 
28 

(23) 
Notes:  Each cell entry represents the signal received by the bidder in a given period and her induced use 
value (in parentheses).  For example, buyer #1 received a signal of $36.00 and an induced use value of 
$29.00 in market period 1 (column 2, row 2).  Each buyer received the high signal in 2 of the market 
periods and the high use value in 2 of the market periods.  In five of the market periods (4, 5, 6, 8, and 9) 
we would ex ante predict resale exchange, as the agent who received the high signal did not receive the 
high induced use value.   
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Table 4: Mean Performance Measures—Lab Markets 
 Pd 

1 
Pd 
2 

Pd 
3 

Pd 
4 

Pd 
5 

Pd 
6 

Pd 
7 

Pd 
8 

Pd 
9 

Pd 
10 

No Resale           
Avg. Bid $20.84 

(9.32) 
$20.07 
(12.74) 

$24.31 
(7.13) 

$26.42 
(10.02) 

$27.68 
(8.12) 

$22.35 
(8.89) 

$24.80 
(9.56) 

$29.51 
(3.40) 

$28.03 
(6.17) 

$28.31 
(7.36) 

Win Bid $30.77 
(3.17) 

$36.63 
(3.07) 

$33.00 
(3.87) 

$35.55 
(1.58) 

$35.47 
(0.82) 

$32.23 
(2.64) 

$37.77 
(1.52) 

$34.10 
(2.14) 

$34.15 
(1.21) 

$37.25 
(2.27) 

Resale 
Price 

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

 OA           
Avg. Bid $26.97 

(7.49) 
$25.86 
(9.38) 

$30.24 
(5.46) 

$29.10 
(9.97) 

$31.80 
(6.98) 

$30.64 
(7.25) 

$32.47 
(5.38) 

$35.57 
(2.86) 

$33.75 
(7.58) 

$34.39 
(5.41) 

Win Bid $35.68 
(4.94) 

$37.18 
(2.55) 

$36.92 
(3.94) 

$36.73 
(2.47) 

$38.68 
(1.22) 

$36.55 
(2.06) 

$38.02 
(1.91) 

$37.87 
(1.52) 

$38.15 
(1.66) 

$39.30 
(1.08) 

Resale 
Price 

$36 $36 $37 $37 $38 $39 $39 $39 $40 $40 

EA           
Avg. Bid $24.06 

(9.72) 
$21.55 
(12.47) 

$24.11 
(10.48) 

$26.26 
(9.31) 

$26.69 
(7.78) 

$22.11 
(10.99) 

$26.51 
(7.86) 

$29.63 
(6.53) 

$26.77 
(7.63) 

$26.96 
(9.27) 

Win Bid $35.48 
(2.94) 

$36.25 
(3.97) 

$35.25 
(4.37) 

$36.27 
(3.34) 

$33.52 
(1.54) 

$32.00 
(3.74) 

$34.68 
(3.25) 

$36.35 
(3.48) 

$33.17 
(1.75) 

$34.67 
(3.22) 

Resale 
Price 

$29 $33 $34 $32 $32 $34 $34 $33 $33 $34 

Note: Entries in the table provide mean performance measures across our three experimental treatments.  
The data are summarized by period and can be read as follows: in period 1 of the No Resale treatment the 
average bid was $20.84 with a standard deviation of $9.32.  The average winning bid for the round was 
$30.77 with a standard deviation of $3.17. 
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Table 5: Non-Parametric Test Results (Mean Performance Measures) 
 OA EA 
 All Agents 
No-Resale Session Bids $5.848** 

(2.88) 
$0.235 
(0.480) 

Resale OA Session Bids  -$5.623** 
(2.882) 

 All Agents 
No-Resale Individual Bids $5.848** 

(5.574) 
$0.235 
(1.205) 

No Resale (Signal < 26)  $2.73** 
(2.680) 

No Resale (Signal > 26)  -$2.07** 
(2.090) 

Resale OA Individual Bids  -$5.623** 
(4.702) 

 Winning Bids Only 
No-Resale Sessions $2.82** 

(5.102) 
$0.09 

(0.261) 
Resale OA Sessions  -$2.73 

(4.615) 
 Highly Risk Averse Agents Only 
No-Resale Individual Bids $4.105 

(1.155) 
$3.144 
(1.279) 

Note:  Cell entries represent the difference in mean bid levels between the column and row treatments.  Z-
statistics for the Mann-Whitney test are in parentheses.  ** Indicates statistical significance at the p < 0.05 
level.  For example, $5.848 in row 2, column 2, of the table indicates that average bids at the session level 
for the resale treatment followed by an OA continuation game are on average $5.85 greater than those 
placed in the baseline, no-resale session.  This difference is significant at the p < 0.05 level using a Mann-
Whitney test.  Tests for differences in bids across highly risk averse agents in the resale and baseline 
treatments use the Holt and Laury (2002) measure of implied CARA risk preference. 
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Table 6 – Random Effects Regression Bid Levels 
 Model (A) 

 
 Model (B) Model (C) Model (D) Model (E) Model (F) 

(Signal > 20) 

Constant 25.231** 
(0.648) 

21.928** 
(1.024) 

8.359** 
(0.965) 

3.862** 
(1.421) 

4.415** 
(1.513) 

1.924 
(6.173) 

OA 5.847** 
(0.916) 

5.847** 
(0.916) 

5.847** 
(0.894) 

5.847** 
(0.884) 

5.293** 
(1.355) 

3.488** 
(1.446) 

EA 0.235 
(0.916) 

0.235 
(0.916) 

0.235 
(0.894) 

0.235 
(0.884) 

-0.872 
(1.374) 

-3.028** 
(1.448) 

Signal   0.561** 
(0.019) 

0.978** 
(0.099) 

0.936** 
(0.109) 

1.244** 
(0.376) 

Signal2    -0.008** 
(0.001) 

-0.007** 
(0.002) 

-0.013** 
(0.006) 

SRA_signal     -0.325** 
(0.120) 

-0.435** 
(0.123) 

SRA_signal2     0.010** 
(0.002) 

0.012** 
(0.003) 

HRA_signal     -0.204 
(0.191) 

-0.322* 
(0.196) 

HRA_signal2     0.007 
(0.005) 

0.009** 
(0.005) 

HRA_OA_sig     0.385 
(0.261) 

0.276 
(0.268) 

HRA_OA_sig2     -0.014** 
(0.006) 

-0.009 
(0.006) 

SRA_OA_sig     0.606** 
(0.155) 

0.676** 
(0.156) 

SRA_OA_sig2     -0.018** 
(0.003) 

-0.018** 
(0.003) 

HRA_EA_sig     0.736** 
(0.242) 

0.755** 
(0.246) 

HRA_EA_sig2     -0.020** 
(0.006) 

-0.019** 
(0.006) 

SRA_EA_sig     0.367** 
(0.162) 

0.364** 
(0.161) 

SRA_EA_sig2     -0.011** 
(0.004) 

-0.008** 
(0.003) 

Period Effects No Yes Yes Yes Yes Yes 
       
Sigma_U 2.344 2.511 2.981 2.944 2.828 2.687 
Sigma_E 8.421 7.927 5.573 5.518 5.333 4.879 
Log Likelihood -3220.605 -3171.527 -2883.937 -2874.892 -2843.842 -2108.307 
Note: Cell entries indicate the marginal effect of model covariates (see text for description of covariates) on recorded 
bid level.  For example, in row 2 of Column E the estimated marginal effect of being in the OA treatment is an increase 
of $5.293 on bids, ceteris paribus.  SRA (HRA) indicates a slightly (highly) risk averse agent, where the baseline group 
is risk neutral agents.   
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Table 7: Random Effects Regression of Absolute Difference in Predicted Risk 
Neutral Bid and Actual Bid 
 Model  

(A) 
Model  

(B) 
Constant 5.06** 

(0.36) 
5.37** 
(0.438) 

SRA 2.88** 
(0.71) 

 

SRA_mid  2.28** 
(0.72) 

HRA 5.52** 
(1.09) 

 

HRA_mid  5.01** 
(1.07) 

SRA_signal -0.096** 
(0.019) 

 

SRA_mid_signal  -0.089** 
(0.019) 

HRA_signal -0.180** 
(0.033) 

 

HRA_mid_signal  0.181** 
(0.031) 

   
Log Likelihood -2590.21 -2589.52 
Sigma_U 1.47 1.48 
Sigma_E 4.13 4.12 
Note: The table provides results of a random effects regression model, where the absolute difference in 
predicted risk-neutral and observed bids is regressed on treatment effects, individual risk preference, and an 
interaction of individual risk preference and signals.  Standard errors are in parentheses. **denotes 
significance at the 95 percent level.  Entries in the table can be interpreted as follows.  From Column 1, 
Rows 5 and 9, we see that highly risk averse agents submit bids that on average diverge from an associated 
risk-neutral prediction by $5.52, with this difference decreasing by $0.18 for a dollar increase in signals.  
Both of these differences are significant at the p < 0.05 level. 
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Figure 1: Risk-Neutral Predictions for Bids 
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Figure 2: No Resale vs. OA Bids 
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Figure 3: Bids No-Resale vs. EA Treatment 
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Figure 4: All Bids No-Resale Treatment 
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Figure 5: Predicted Bids No-Resale Treatment by Risk Preference 
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Figure 6:  Bids by Risk Posture – No-Resale Treatment  
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Figure 7: Predicted Differences OA vs. No-Resale by Risk Preference 
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Figure 8: Predicted Differences EA vs. No-Resale by Risk Preference 
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APPENDIX A.  Theoretical Derivations 
 

In the proofs, we use the following characteristic of stochastic dominance: 

Lemma 1:  

For any given strictly increasing function φ  and distributions 1( )H u and 2 ( )H u  on 

min max[ , ]∈u u u , where 1( )H u , which stochastically dominates 2 ( )H u , 

max max

min min

1 2( ) ( ) ( ) ( )>∫ ∫
u u

u u

u dH u u dH uφ φ  whenever the expectation exists. 

Proof of Proposition 1 (Optimal bid without resale): 
We must ensure that ( )Nb x  is increasing in x and that the first-order condition describes an 
optimum. For the latter (with standard arguments in Haile 2003 and Milgrom and Weber 1982), it 

is sufficient to show that 
2

( ) 0∂
= >

∂ ∂
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%

EU x x
x x

 where, EU refers to the expected utility given x and 

y. 
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which follows since ( )NK x  is increasing in x  (from Lemma 1). 
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Optimal bid for risk-neutral players without resale as a limit for 0lim ( )→ Nb xσ : 
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Optimal bid for risk-neutral players without resale as a limit for lim ( )→∞ Nb xσ : 
Analogously to the limit 0→σ , 
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Lemma 2: 1( | , )G u x y  and 2 ( | , )G u x y  are decreasing in x  and y .  

Proof of Lemma 2: 
Since ( | )G u x  is decreasing in x by assumption, the same property follows immediately for 

( | , )iG u x y , i=1,2. To see that ( | , )iG u x x  is also decreasing in x, 

1
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where both summands are negative since ( | )G u y  and ( | )M u y  are decreasing in y. 
Similarly, using ( | ) ( | )≤G u y M u y : 
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Assumption 1 (A1): We assume that ( | )G u x  satisfies 
2

log ( | ) 0≥
d G u x

dxdu
. 

 

Lemma 3: 2

1

( | )
( | )

G u x
G u x

 is decreasing in u. 
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where the first two terms are decreasing in u. 
 
 
 

Lemma 4: Given (A1), 1
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Lemma 5: Let 1( )uφ  and 2 ( )uφ  be positive and decreasing functions and ( )uµ  a positive 
function on min max[ , ]∈u u u . Then 

max max max max

min min min min

1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )>∫ ∫ ∫ ∫
u u u u

u u u u

u u u du u du u u du u u duφ φ µ µ φ µ φ µ  whenever the 

expectations exist. 
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u z z dzφ φ µ . Then we 

have 
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Lemma 6: 
( , )
( , )

R

R

K x x
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 is increasing in x for R=OA. Given (A1), 
( , )
( , )

R

R

K x x
L x x

is also increasing in x 

for R=EA. 
Proof: ( , )RK x y  is increasing in both arguments, whereas ( , )RL x y  is constant for R=OA and 
decreases in x but increases in y for R=EA (from Lemma 2). It remains to show that 
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and, therefore, 
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We can apply Lemma 5 to the last two summands with 
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Lemma 7: 
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Proof of Proposition 2 (Optimal bid function with resale) 
With standard arguments (Haile 2003 and Milgrom and Weber 1982): Existence and optimality is 
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From Lemma 6 we have that 
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Further, we have to show:  
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Optimal auction (R=OA) 

The claimed relationship follows immediately as we have already shown that 
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English auction (R=EA) 
Using (7’), we have to show that  
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where the last inequality was proven in Lemma 6. 
 
 
Optimal bid for risk-neutral players with resale: 0lim ( )→ Rb xσ  and lim ( )→∞ Rb xσ : 
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from which one obtains the claimed relationships. The proof for →∞σ  is similar. 
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Appendix B: Experimental Instructions – OA Resale Treatment 
 
Welcome to Lister’s Auctions!  You have the opportunity to bid in a series of 
experimental auctions today and you can earn cash by participating.   
 
Auction Rules: 
In this auction you will bid against four (4) other people and the person with the highest 
bid is the winner, and pays the amount of their bid for the “fictitious” commodity.  The 
auction is a sealed bid auction so you don’t know the bids of the other participants.  We 
will repeat the auction for 10 rounds.  At the end of the session, your earnings from this 
experiment and another unrelated experiment will be summed and paid to you in cash.  
 
There are six steps in the auction process, each of which are explained in detail below.  
The six steps include: (i) determining your signal of the value of the fictitious 
commodity, (ii) determining your bid, (iii) determining your use value for the fictitious 
good, (iv) determining the winner, (v) the resale market, and (vi) determining your 
payouts for the round. 
 

1.  Determining your signal of the good’s value:  At the beginning of each period, a 
monitor will hand you a card numbered from zero dollars ($0) to fifty dollars ($50) in 
one dollar ($1) increments.  The value on the card handed to you will be a signal of 
your use value for the fictitious good.  The other bidders in your auction will have 
their signals determined in exactly the same way.  Signals are private and independent 
across buyers, and your signal will change across rounds.   
 

Signals and Use Values 
 
Use values, V, in each round are drawn from a uniform distribution on the interval 
[10, 40].  That is, every dollar value between 10 and 40 is equally likely to be 
drawn as your use value.  These values are independently drawn for each subject 
and will differ across periods. 
 
The signal you will receive is determined by adding a random number drawn on 
the interval [-10, 10] to your use value.  Again, each dollar value between -10 and 
10 is equally likely to be drawn and added to your use value.  Your first-stage 
signal, S, is hence given by: 
 

numberrandomVS  +=  
 
Your signal, S, is thus distributed on the interval [$0, $50].   
 
Given your signal, you can compute the expected use value.  For example, if you 
were to receive a signal of $30 in the first stage, you know that your final use 
value must lie somewhere in the interval [$20, $40].  Since each of these values is 
equally likely to have been selected as your use value, on average your use value 
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is $30.  However, any value in this range could have been assigned as your use 
value.   

 
2.  Determining your bid value:  After receiving your signal, you will choose your 
bid value for the fictitious good.  In order to choose your bid, consider how your 
earnings for each period are calculated.  If you are the person with the highest bid you 
are the winner of the auction.  Your earnings are equal to your use value minus your 
bid amount if you have the highest end use value: 
 

Earnings = your good’s use value (V) – your bid 
 

If you are the person with the highest bid but do not have the highest use value, your 
earnings are equal to the highest use value of all participants minus your bid amount: 
 

Earnings = highest use value – your bid 
 
If you are not the high bidder in a round, your earnings for the period are zero.  If 
there is a tie, the winner will be determined by the flip of a coin (if more than two 
people tie we will draw a card to determine the winner).  Your bid can be any amount 
in the range from zero ($0) to forty dollars ($40) in ten cent ($0.10) increments.   
 
3.  Determining your use value:  Once all bids have been received, a monitor will 
hand you a second slip of paper numbered from ten dollars ($10) to forty dollars 
($40) that gives your final use value, V.  Your use value will lie within 10$± of your 
signal, S.   
 
4.  Determining the auction winner:  All bids will be publicly announced and 
recorded by a monitor on the blackboard.  Your bid will be compared with those of 
the four other participants in the auction.  The person with the highest bid amount is 
the winner. 
 
5.  The resale market: In the resale market, each participant can see the use values 
for all other participants.  The highest bidder in the auction market will sell the 
“fictitious” commodity to the individual with the highest use value.  In this 
experiment this happens automatically.  The payoff for the winner is the highest use 
value of all participants minus his/her bid amount.  If you did not win the auction, 
your payout for the period will be zero.  The payout for the auction winner can be 
positive even if your bid was greater than your use value.      
 
6.  Determining your payouts:  If you are the auction winner, you will receive the 
difference between the highest use value and your bid.  If you did not win the auction, 
you receive zero for that period.  Your total earnings for this experiment is the sum of 
your earnings for each of the 10 periods.   

 
Do you have any questions about the auction process?   
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Appendix C: Experimental Instructions for Risk Aversion Experiment 
 
 Record your subject number from the previous part on your decision sheet. Your 
decision sheet shows ten decisions listed on the left.  Each decision is a paired choice 
between OPTION A and OPTION B.  You will make ten choices and record these in the 
final column, but only one of them will be used in the end to determine your earnings.  
Before you start making your ten choices, please let me explain how these choices will 
affect your earnings for this part of the experiment. 
 
 We will use part of a deck of cards to determine payoffs; cards 2-10 and the Ace 
will represent “1”.  After you have made all of your choices, we will randomly select a 
card twice, once to select one of the ten decisions to be used, and a second time to 
determine what your payoff is for the option you chose, A or B, for the particular 
decision selected. (After the first card is selected, it will be put back in the pile, the deck 
will be reshuffled, and the second card will be drawn.)  Even though you will make ten 
decisions, only one of these will end up affecting your earnings, but you will not know 
in advance which decision will be used.  Obviously, each decision has an equal chance 
of being used in the end. 
 
 Now, please look at Decision 1 at the top.  OPTION A pays $2.00 if the Ace is 
selected, and it pays $1.60 if the card selected is 2-10.  OPTION B yields $3.85 if the 
Ace is selected, and it pays $0.10 if the card selected is 2-10.  The other decisions are 
similar, except that as you move down the table, the chances of the higher payoff for 
each option increase.  In fact, for Decision 10 in the bottom row, the cards will not be 
needed since each option pays the highest payoff for sure, so your choice here is 
between $2.00 or $3.85. 
 
 To summarize, you will make ten choices: for each decision row you will have 
to choose between OPTION A and OPTION B.  You may choose A for some decision 
rows and B for other rows, and you may change your decisions and make them in any 
order.  When you are finished, we will come to your desk and pick a card to determine 
which of the ten decisions will be used.  Then we will put the card back in the deck, 
shuffle, and select a card again to determine your money earnings for the OPTION you 
chose for that decision.  Earnings for this choice will be added to your previous 
earnings, and you will be paid all earnings in cash when we finish. 
 
 So now please look at the empty boxes on the right side of the record sheet.  You 
will have to write a decision, A or B in each of these boxes, and then the card selection 
will determine which one is going to count.  We will look at the decision that you made 
for the choice that counts, and circle it, before selecting a card again to determine your 
earnings for this part.  Then you will write your earnings in the blank at the bottom of 
the page. 
 
 Are there any questions?  Now you may begin making your choices.  Please do 
not talk with anyone else while we are doing this; raise your hand if you have a 
question. 




