Skip to main content
Log in

Interfacial energy of solid bismuth in equilibrium with Bi−In eutectic liquid at 109.5 °C equilibrating temperature

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The interfacial energy of solid bismuth (Bi) in equilibrium with Bi−In eutectic liquid was determined for the equilibrating temperature of 109.5 °C. A radial temperature gradient on the sample was established by heating it from the center with a single heating wire and cooling the outside of the sample at −10 °C with a heating/refrigerating circulating bath containing an aqueous ethylene glycol solution. The equilibrated grain boundary groove shapes of solid Bi in equilibrium with Bi In eutectic liquid (Bi- 47.3 at. %In) were observed from a sample quenched at 109.5 °C. The Gibbs-Thomson coefficient and the solid-liquid interfacial energy of the solid Bi in equilibrium with Bi In eutectic liquid were determined to be (8.4±0.4) × 10−8 K m and (54.0±5.4)×10−3 J m−2 from the observed grain boundary groove shapes. The grain boundary energy of the solid Bi phase was calculated to be (105.5±11.6)×10−3 J m−2 by considering a force balance at the grain boundary grooves. The thermal conductivities of Bi-47.3 at. %In eutectic liquid phase and the solid Bi-47.3 at. %In phase and their ratio at 109.5 °C were measured with a radial heat flow apparatus and a Bridgman type growth apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Eustathopoulos, M. G. Nicholas, and B. Drevet, Wettability at High Temperatures Pergamon, Oxford, United Kingdom (1999).

  2. J. W. Martin, R. D. Doherty, and B. Cantor, Stability of Microstructure in Metallic Systems, p. 241–346, Cambridge, University Press, UK (1997).

    Google Scholar 

  3. D. Turnbull, J. Appl. Phys. 2, 1022 (1950).

    Article  ADS  Google Scholar 

  4. D. R. H. Jones, J. Mater. Sci. 9, 1 (1974).

    Article  ADS  CAS  Google Scholar 

  5. N. Eustathopoulos, Int. Met. Rev. 28, 189 (1983).

    CAS  Google Scholar 

  6. G. F. Bolling and W. A. Tiller, J. Appl. Phy. 31, 1345 (1960).

    Article  ADS  CAS  Google Scholar 

  7. D. R. H Jones and G. A. Chadwick, Phil. Mag. 22, 291, (1970).

    Article  ADS  CAS  Google Scholar 

  8. G. E. Nash and M. E. Glicksman, Phil. Mag. 24, 577 (1971).

    Article  ADS  CAS  Google Scholar 

  9. D. R. H. Jones and G. A. Chadwick, J. Cryst. Growth. 11, 260 (1971).

    Article  ADS  CAS  Google Scholar 

  10. D. R. H Jones, Phil. Mag. 27, 569 (1978).

    Article  ADS  Google Scholar 

  11. R. J. Schaefer, M. E. Glicksman, and J. D. Ayers, Phil. Mag. 32, 725 (1975).

    Article  ADS  CAS  Google Scholar 

  12. S. C. Hardy, Phil. Mag. 35, 471 (1977).

    Article  ADS  CAS  Google Scholar 

  13. N. B. Singh and M. E. Glicksman, J. Cryst. Growth. 98, 573 (1989).

    Article  ADS  CAS  Google Scholar 

  14. J. J. Hoyt, M. Asta, T. Haxhimali, A. Karma, R. E. Napolitano, and R. Trivedi, MRS Bulletin. 29, 935 (2004).

    CAS  Google Scholar 

  15. M. Gündüz and J. D. Hunt, Acta metall. 33, 1651 (1985).

    Article  Google Scholar 

  16. M. Gündüz and J. D. Hunt, Acta metall. 37, 1839 (1989).

    Article  Google Scholar 

  17. N. Maraşli and J. D. Hunt, Acta mater. 44, 1085 (1996).

    Article  Google Scholar 

  18. K. Keşlioĝlu and N. Maraşli, Mater. Sci. Eng. A 369, 294 (2004).

    Article  CAS  Google Scholar 

  19. K. Keşlioĝlu and N. Maraşli, Metall. Mater. Trans. A 35, 3665 (2004).

    Article  Google Scholar 

  20. M. Erol, K. Keşlioĝlu, and N. Maraşli. J. Phys. Condens. Matter. 19. 176003, 14 (2007).

    Google Scholar 

  21. M. Erol, N. Maraşli, K. Keşlioĝlu, and M. Gündüz, Scripta mater. 51, 131 (2004).

    Article  CAS  Google Scholar 

  22. B. Bayender, N. Maraşli, E. Çadirli, H. Şişman, and M. Gündüz, J. Cryst. Growth. 194, 119 (1998).

    Article  ADS  CAS  Google Scholar 

  23. J. D. Hunt, K. A. Jackson, and H. Brown, Rev. Sci. Instrum. 37, 805 (1966).

    Article  ADS  CAS  Google Scholar 

  24. N. Maraşli, K. Keşlioĝlu, and B. Arslan, J. Cryst. Growth. 247, 613 (2003).

    Article  ADS  Google Scholar 

  25. Y. Ocak, S. Akbulut, U. Böyük, M. Erol, K. Keşlioĝlu, and N. Maraşli, Scripta mater. 55, 235 (2006).

    Article  CAS  Google Scholar 

  26. S. Akbulut, Y. Ocak, U. Böyük, M. Erol, K. Keplioĝlu, and N. Maraşli, J. Appl. Phys. 100, 123505 (2007).

    Article  ADS  CAS  Google Scholar 

  27. U. Böyük, K. Keslioĝlu, and N. Maraşli, J. Phys. Condens. Matter 19, 116202 (2007).

    Article  CAS  Google Scholar 

  28. M. Hansen and K Anderko, Constitutions of Binary Alloys, p. 303, McGraw-Hill Book Company, New York (1958).

    Google Scholar 

  29. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermal Conductivity Metallic Elements and Alloys, Vol. 1, p. 39–40, New York, Washington (1970).

    Google Scholar 

  30. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens Thermal Conductivity Metallic Elements and Alloys, Vol. 1, p. 149, New York, Washington (1970).

    Google Scholar 

  31. D. A. Porter and K. E. Easterling. Phase Transformations in Metals and Alloys, p. 204, Van Nostrnad Reinhold Co. Ltd., UK (1991).

    Google Scholar 

  32. D. G. McCartney and D. Phil, Thesis, p. 85, University of Oxford, UK (1981).

  33. M. Erol, K. Keşlioĝlu, R. Şahingöz, and N. Maraşli, Met. Mater.-Int. 11 421 (2005).

    Article  CAS  Google Scholar 

  34. J. W. Christian, The Theory of Transformations in Metals and Alloys Part 1, 2 nd ed., Oxford, Pergamon (1975).

    Google Scholar 

  35. L. Hengli, S. Lizhu, and Z. Muyu, J. Chem. Thermodyn. 22, 821 (1990).

    Article  Google Scholar 

  36. M. Tassa and J. D. Hunt, J. Cryst. Growth. 34, 38 (1976).

    Article  ADS  CAS  Google Scholar 

  37. L. Garnasy, M. Tegze, and A. Ludwig, Mater. Sci. Eng. A 133, 577 (1991).

    Article  Google Scholar 

  38. W. A. Miller and G. A. Chadwick, Proc. Roy. Soc. A. 312, 257 (1969).

    Article  ADS  CAS  Google Scholar 

  39. Y. Waseda and W.A Miller, Trans. Jpn. Inst. Met. 19, 546 (1978).

    CAS  Google Scholar 

  40. V. P. Skripov, Homogeneous Nucleation in Metals and Amorphous Films, in Crystal Growth and Materials (eds., E. Kaldis and H. Schell), p. 327, North Holland, Amsterdam (1977).

    Google Scholar 

  41. I. A. Kotze and D. J. Kuhlmann-Wilsdorf, Appl. Phys. Letters. 9, 96 (1966).

    Article  ADS  CAS  Google Scholar 

  42. M. E. Glicksman and C. I. Vold, Acta met. 17, 1 (1969).

    Article  CAS  Google Scholar 

  43. M. E. Glicksman and C. I Vold, Scripta met. 5, 493 (1971).

    Article  CAS  Google Scholar 

  44. J. H. Prepezko, K. H. Rasmussen, I. E. Anderson, and C. R Loper, Undercooling of Low-melting metals and Alloy. Solidification and Casting of Metals, p. 169, Metals Society, London (1979).

    Google Scholar 

  45. C. Suryanarayana and M. Grant Norton, X-Ray Diffraction — A Practical Approach, p. 252, Plenum Press, New York (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necmettin Maraşli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ocak, Y., Akbulut, S., Maraşli, N. et al. Interfacial energy of solid bismuth in equilibrium with Bi−In eutectic liquid at 109.5 °C equilibrating temperature. Met. Mater. Int. 14, 177–187 (2008). https://doi.org/10.3365/met.mat.2008.04.177

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.3365/met.mat.2008.04.177

Keywords

Navigation