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The problems of vibrations of a plate of two layers are investigated, in the case when the tangential stresses
between the layers are zero. Based on the known equations obtained on the basis of Kirchhoff's conjecture, the
boundary conditions of the free edge of a rectangular plate are defined. Determined the frequencies of bending
vibrations localized in the vicinity of the free edge of the plate.
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Jlokau30BaHHbIe H3THOHBIE KOJIEGAHUS NPSIMOYT0JILHOM IBYXCJIOIHOI IVIACTHHBI NIPU HAJIMYHMH
CKOJIbKEHHUST MKy CJI0SIMH
KiroueBble cj10Ba: ABYXCIOHHAs IUIACTHHA, CKONBKEHHE, ycloBHs HaBbe, TOKanuM30BaHHBIC KOneOaHUS,
CBOOOIHBIH Kpail.

Hccnenyrores 3amaun KojeOaHMIl IUTACTHHBI M3 JIBYX CJIOEB B CIIydae, KOTJia MEXIy CJIOSMU KacaTelIbHbIe
HANpsDKeHUs paBHBI Hym0. Ha ocHOBe M3BECTHBIX ypaBHEHHIl, NOTydYEeHHBIX Ha OCHOBe rumores3bl Kupxroda,
YCTaHABIUBAIOTCS T'PaHUYHBIE YCIOBUS CBOOOJHOTO Kpas NpPSMOYTOJBHOW IIacTHHBL. OIpeneNeHsl 4acTOTHI
M3TUOHBIX KOJIeOaHui, JIOKJIM30BaHHBIX B OKPECTHOCTH CBOOOJHOTO Kpast INIACTUHBL.

Introduction. After the fundamental article by Konenkov, about possibility of
appearance of localized in the vicinity of the free edge of a plate of bending vibrations, a lot
of works on this subject have been published. A review of these works is given in the
monograph [2], in a review article [3], in articles [4, 5].

In this paper we discuss the problems of vibrations of two layered plate in case of the
tangential stresses between the layers are zero.

1. Statement of the problem. A thin rectangular plate in a rectangular Cartesian
coordinate system occupies the region: 0<x<a, 0<y<b, -h»<z<h,. The spatial equations of the
theory of elasticity are reduced to the following two-dimensional equations of oscillations of
a two-layer plate in the presence of slip between layers based on the assumptions of the
Kirchhoff hypothesis in [6, 7]:
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In the derivation of equations (1.1), the plane of contact of the layers of the plate is chosen
as the plane z=0. Index (1) refers to a plate with a thickness h; (0<z<h,), index (2) refers to a
plate with a thickness hy (-h,<z<0), ui, vi — planar displacements of a plate with an index (1),
u;, vi — plate with an index (2), bending functions w(x, y, t) — in accordance with the

hypothesis of Kirchhoff. Constants V,, V, are Poisson's ratio of materials of the

corresponding layers, A — two-dimensional Laplace operator. In (1.1) also used the
following notations:
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In (1.2) E, - Young's modules, p, — density of materials of the corresponding layers
of the plate.

Some variants of the boundary conditions for the edge of a rectangular plate are also given
in [6]. Most clearly these conditions are obtained for the boundary conditions Navier.
Suppose that at the edge of a two-layer plate x = const, it is necessary to satisfy the conditions
for the normal stress to be zero and the two tangential displacements (with respect to y and
z). As a result of the averaging, we obtain:

M =0,v, =0, w=0M"=04k=1.2 (1.3)

In (1.3) ];(k), M l(k) — Tensile (compressive) forces and bending moments for the
corresponding layers of the plate, which are determined by formulas:
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Where the minus refers to the layer with the index (1), and the plus to the layer with the
index (2) and:
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Equating (1.4) to zero and using v, =0, w= 0, we obtain:
ou, _h_kﬁzw 0. ou, _2h, 0°w _0 16)

¥ = ¥ =
ox 2 ox’ ox 3 ox’
2
From system (1.6) follows 8u%6x: 0, 0 %xz =0 and finally the Navier

conditions are reduced to the conditions of hinge plates:
2
aﬁ:O, v, =0, w=0, 0 Zv
ox X

Complexities arise, as in the Kirchhoff theory, when boundary conditions are established
for the free edge of a plate. The conditions for the stress components of the spatial problem
to be zero, after averaging according to Kirchhoff's conjecture, result in the vanishing of the
corresponding forces and moments (at x = const)

T® =0,8% =0, M® =0, H® =0, NV =0 k=1,2 (1.8)

New efforts (.S ®) _ shear forces, IV, l(k) — transverse shear forces, H ® _ torque) are

=0,k=1,2 (1.7)

determined by the formulas:
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From the conditions 7;*) =0, M* =0, according to (1.4), it follows that
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In (1.10), one condition for W is superfluous, it is natural to take the mean instead of the
two conditions for W from (1.10):
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What will correspond to the principle of averaging the boundary conditions.

According to Kirchhoff's theory, it is required to combine the conditions of the equality
of zero the torque and the transverse shearing force by the general transverse shearing force.
In accordance with this, the last two conditions in (1.8) are replaced by the condition:
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The condition that the generalized transverse shearing force is zero (V. l(k) ) becomes:
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As in the case when the bending moment is zero, an extra condition appears, which,
similarly to (1.11), must be replaced by the averaged condition:
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Finally, the conditions for the free edge of a two-layer plate with slip at x = const will be:
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2. General solution of the problem. The system of equations (1.1) can be simplified
using the Lame transformation [7]
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Transformations analogous to transformations of the plane problem of the theory of
elasticity lead to equations
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Equations (2.2) with respect to planar shear waves in the first and second layers turn out
to be autonomous. Equations for longitudinal waves (2.3) and for transverse oscillations turn
out to be connected.
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We present the formulation of the Konenkov problem [1] for a two-layer plate, in the
presence of slip between layers. A semi-infinite plate is considered — strip 0<x<oo, 0<y<b, -
ho<z<h,. The plate consists of two layers 0<z<h; and —h,<z<0, the tangential stresses between
them are equal to zero. It is required to find solutions of the system of equations (2.2-2.4)
satisfying the Navier boundary conditions (hinge fixing) at edges y = 0; b, boundary
conditions of the free edge x = 0 and attenuation conditions:

lime, =0, limy, =0, imw=0 2.5)

The boundary conditions of the hinge fixing y = 0; b, similar to conditions (1.7), will have
the form:
2
=0, 0, w=0,2Y_0 2.6)
oy y
The conditions (2.6), after using the transformation (2.1) and some transformations [7],
have the following form:
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The new form of writing the boundary conditions for the free edge x = 0 (1.16) will be:
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Thus, it is required to find a solution of the system of equations (2.2) - (2.4) satisfying the
boundary conditions (2.2), (2.8) and the damping condition (2.5). The existence of such a
solution means the existence of oscillations localized in a neighborhood of the free edge.

The solutions of the system of equations (2.2), (2.4) satisfying the hinge-binding
conditions (2.7) can be represented in the form:

v, =€ Dy, (x)cosh,y, A, = %
n=0
(Pk = eimt Z (Pkn (x) sin }\’ny (29)

n=1

w=e"> w,(x)sinL,y
n=1
The substitution of (2.9) into (2.2-2.4) leads to the following system of ordinary
differential equations:
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The solution of system (2.10) is represented in the form:
v, =Fe", ¢, =Be", w = e (2.12)

so that the positive roots of the characteristic equation with respect to p satisfy the damping
conditions (2.5).
Substituting (2.12) into system (2.10) leads to algebraic equations with respect to arbitrary

constants F, , B, A:
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3. The system (2.13) admits various variants of obtaining the characteristic equation of
the problem. Let’s consider the case:

p*#1-E. p*#1-0,& 3.0
In this case we obtain from (2.13)
Fk=0,Bk:ih?"A (3.2)

Taking into account the expression for B, from (3.2) in the third equation of the system

(2.13) we obtain the characteristic equation

(P’ —1)2 -1’ =0, (33)
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Equations (3.3) coincide with the characteristic equation of the Konenkov problem. The
influence of the two-layered plate is included in the dimensionless parameter 1’]2 ,

characterizing the phase velocity roots of equation (3.3) satisfying the damping requirement
will be



p =1+, p,=41-n (3.5)

In this case, additional conditions are necessary:

0<n<l (3.6)
The final solution for the deflection function will be:
w=e" (Alne_ hr Azlze_ﬂk"”)sin A,y 3.7)
n=1

The substitution of (3.7) into the boundary conditions of the free edge (2.8) leads to a

system of homogeneous algebraic equations with respect to A4,,, 4, . The equation that

1n >
determines the dimensionless frequency of localized bending vibrations is obtained from the
condition that the determinant of this system is equal to zero [9].

2 2 2
b P, +2(1—Uc)p1p2—l)c =0 (3.8)
The difference from the Konenkov equation is that instead of the Poisson ratio, the mean
value of the Poisson coefficients of the two layers is here. This circumstance may be
important for anisotropic materials, or if there are materials with a negative Poisson's ratio.

Another difference between the problem considered here — the excitation of localized
bending vibrations leads to the appearance of localized longitudinal oscillations:

(pkn = 1%(141”6 rnta + AZneiﬂx’,x) (39)

Conclusion. The problems of localized bending vibrations of a rectangular two-layered
plate are considered in case of slip between layers. Under the conditions taken into account
in this paper, the Navier condition coincides with the hinging. The boundary conditions of
the free edge of a rectangular plate are obtained. A comparison of this problem with the
Konenkov problem is given. The difference from the Konenkov equation is that instead of
the Poisson ratio, the mean value of the Poisson coefficients of the two layers is in the
equation that determines the dimensionless frequency of localized bending vibrations. This
circumstance may be important for anisotropic materials, or if there are materials with a
negative Poisson's ratio. Another difference between the problem considered here —localized
bending vibrations leads to the appearance of localized longitudinal oscillations.
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