Photosynthetica 2021, 59(1):215-227 | DOI: 10.32615/ps.2021.012

Improving photosynthetic characteristics and antioxidant enzyme activity of capsule wall and subtending leaves increases cotton biomass under limited irrigation system

N.N. LI1, †, F. SHI1, †, H.Y. GAO1, †, A. KHAN1, F.Y. WANG2, X.H. KONG2, H.H. LUO1
1 Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, 832003 Shihezi, Xinjiang, China
2 Cotton Research Institute, Xinjiang Academy Agricultural and Reclamation Science/Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding (Xinjiang), Ministry of Agriculture, 832000 Shihezi, China

The photosynthetic performance of the canopy boll-leaf system (BLS) reflects the material and energy exchange abilities between plant and external environment. A two-year field experiment determined the response to irrigation regimes [600 (W1), 480 (W2), and 360 (W3) m3 ha-1] of cotton BLS physio-biochemical traits. Decreasing irrigation, photochemical quenching coefficient, the electron transfer rate of PSII, chlorophyll, and stomata width of the BLS decreased; nonphotochemical quenching (NPQ), the activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), hydrogen peroxide (H2O2), and malondialdehyde (MDA) contents increased at 7-21 day interval after anthesis (TAA). Among them, W2 increased SOD and POD by 3.5-42.1% and 1.4-57.8%, respectively, compared to W1 treatment. NPQ and carotenoid contents of capsule wall and CAT of subtending leaves increased. Principal component analysis showed that NPQ, MDA, H2O2, POD, and CAT were positively correlated with the seed biomass. Therefore, cotton could protect photosynthetic apparatus by maintaining lower membrane lipid peroxidation and higher heat dissipation capacity of capsule wall and subtending leaves to ensure higher biomass accumulation under limited irrigation.

Additional key words: antioxidative enzyme activity; boll-leaf system; drip irrigation; stomatal structure.

Received: August 12, 2020; Revised: December 6, 2020; Accepted: February 10, 2021; Prepublished online: March 17, 2021; Published: March 18, 2021  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
LI, N.N., SHI, F., GAO, H.Y., KHAN, A., WANG, F.Y., KONG, X.H., & LUO, H.H. (2021). Improving photosynthetic characteristics and antioxidant enzyme activity of capsule wall and subtending leaves increases cotton biomass under limited irrigation system. Photosynthetica59(1), 215-227. doi: 10.32615/ps.2021.012
Download citation

References

  1. Bai J., Xu D.H., Kang H.M. et al.: Photoprotective function of photorespiration in Reaumuria soongorica during different levels of drought stress in natural high irradiance. - Photosynthetica 46: 232-237, 2008. Go to original source...
  2. Bailly C., Benamar A., Corbineau F., Come D.: Changes in malondialdehyde contents and in superoxide dismutase, catalase, glutathione reductase activities in sunflower seeds related to accelerated seed aging. - Physiol. Plantarum 97: 104-110, 2006. Go to original source...
  3. Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  4. Bange M.P., Milroy S.P., Thongbai P.: Growth and yield of cotton in response to waterlogging. - Field Crop. Res. 88: 129-142, 2004. Go to original source...
  5. Björkman O., Demmig B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. - Planta 170: 489-504, 1987. Go to original source...
  6. Björkman O., Demmig-Adams B.: Regulation of Photosynthetic Light Energy Capture, Conversion, and Dissipation in Leaves of Higher Plants. - In: Schulze E.D., Caldwell M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 17-47. Springer, Berlin-Heidelberg 1995. Go to original source...
  7. Cao C.Y., Dang H.K., Zhang C.L. et al.: [Fluorescence characteristics and drought resistance of wheat under different irrigation regimes.] - J. Triticeae Crop. 37: 1434-1444, 2017. [In Chinese]
  8. Chaves M.M., Pereira J.S., Maroco J. et al.: How plants cope with water stress in the field. Photosynthesis and growth. - Ann. Bot.-London 89: 907-916, 2002. Go to original source...
  9. Chen X.Y., Gao Z.H., Liu X.Y. et al.: [Effects of water stress on root/shoot relation and grain yield in winter wheat.] - Acta Agron. Sin. 30: 723-728, 2004. [In Chinese]
  10. Chen Z.K., Niu Y.P., Zhao R.H. et al.: The combination of limited irrigation and high plant density optimizes canopy structure and improves the water use efficiency of cotton. - Agr. Water Manage. 218: 139-148, 2019. Go to original source...
  11. Chen Z.X., Spreitzer R.J.: How various factors influence the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase. - Photosynth. Res. 31: 157-164, 1992. Go to original source...
  12. Cornic G.: Drought stress inhibits photosynthesis by decreasing stomatal aperture - not by affecting ATP synthesis. - Trends Plant Sci. 5: 187-188, 2000. Go to original source...
  13. da Costa V.A., Cothren J.T.: Drought effects on gas exchange, chlorophyll, and plant growth of 1-methylcyclopropene treated cotton. - Agron. J. 103: 1230-1241, 2011. Go to original source...
  14. Dhindsa R.S., Plumb-Dhindsa P., Thorpe T.A.: Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. - J. Exp. Bot. 32: 93-101, 1981. Go to original source...
  15. Fraser L.H., Greenall A., Carlyle C. et al.: Adaptive phenotypic plasticity of Pseudoroegneria spicata: Response of stomatal density, leaf area and biomass to changes in water supply and increased temperature. - Ann. Bot.-London 103: 769-775, 2009. Go to original source...
  16. Gao F., Chen J., Ma T.T. et al.: The glutathione peroxidase gene family in Thellungiella salsuginea: genome-wide identification, classification, and gene and protein expression analysis under stress conditions. - Int. J. Mol. Sci. 15: 3319-3335, 2014. Go to original source...
  17. Genty B., Briantais J.-M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - BBA-Gen. Subjects 990: 87-92, 1989. Go to original source...
  18. Gilmore A.M.: Xanthophyll cycle-dependent nonphotochemical quenching in Photosystem II: Mechanistic insights gained from Arabidopsis thaliana L. mutants that lack violaxanthin deepoxidase activity and/or lutein. - Photosynth. Res. 67: 89-101, 2001. Go to original source...
  19. Guo R., Lin T., Tian L. et al.: [Effect of regulated deficit irrigation on photosynthesis and chlorophyll fluorescence characteristics in flowering and boll-forming stages of island cotton.] - Agr. Res. Arid Areas 33: 130-134, 2015. [In Chinese]
  20. Guo Y.Y., Yu H.Y., Kong D.S. et al.: Effects of drought stress on growth and chlorophyll fluorescence of Lycium ruthenicum Murr. seedlings. - Photosynthetica 54: 524-531, 2016. Go to original source...
  21. Hu Y.Y.: [Photosynthetic characteristics and strategies of acclimation of non-foliar organs in cotton (Gossypium spp.) respond to water deficit.] Shihezi University, Shihezi, Xinjiang, China 2013. [In Chinese]
  22. Kochba J., Lavee S., Spiegel-Roy P.: Difference in peroxidase activity and isoenzymes in embryogenic and non-embryogenic 'Shamouti' orange ovular callus lines. - Plant Cell Physiol. 18: 463-467, 1977. Go to original source...
  23. Kramer P.J.: Water deficits and plant growth. - In: Kramer P.J. (ed.): Water Relations of Plants. Pp. 342-389. Academic Press, New York 1983. Go to original source...
  24. Kraus T.E., Fletcher R.A.: Paclobutrazol protects wheat seedlings from heat and paraquat injury. Is detoxification of active oxygen involved? - Plant Cell Physiol. 35: 45-52, 1994.
  25. Krause G.H., Weis E.: Chlorophyll fluorescence and photosyn-thesis: the basics. - Annu. Rev. Plant Phys. 42: 313-349, 1991. Go to original source...
  26. Li P., Zhang Y.J., Liu L.T. et al.: [Effects of water stress on water utilization and leaf photosynthetic characteristics in cotton (Gossypium hirsutum L.) seedlings.] - Cotton Sci. 26: 113-121, 2014. [In Chinese]
  27. Li Y.H., Zhang T., Zhang Z.Z., He K.N.: The physiological and biochemical photosynthetic properties of Lycium ruthenicum Murr in response to salinity and drought. - Sci. Hortic.-Amsterdam 256: 108530, 2019. Go to original source...
  28. Liu L.T., Sun H.C., Chen J. et al.: Cotton seedling plants adapted to cadmium stress by enhanced activities of protective enzymes. - Plant Soil Environ. 62: 80-85, 2016. Go to original source...
  29. Luo H.H., Zhang Y.L., Zhang W.F.: Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. - Photosynthetica 54: 65-73, 2016. Go to original source...
  30. Luo X.N., Chen B., Zhang J.S. et al.: [Photosynthetic characteristics and yield of cotton under different nitrogen application rate in Southern Xinjiang.] - Agr. Res. Arid Areas 8: 2679-2685, 2011. [In Chinese] Go to original source...
  31. McKersie B.D., Chen Y., de Beus M. et al.: Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). - Plant Physiol. 103: 1155-1163, 1993. Go to original source...
  32. Meeks C.D., Snider J.L., Babb-Hartman M.E., Barnes T.L.: Evaluating the mechanisms of photosynthetic inhibition under growth-limiting, early-season water deficit stress in cotton. - Crop Sci. 59: 1144-1154, 2019. Go to original source...
  33. Miao Y., Lv D., Wang P. et al.: An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. - Plant Cell 18: 2749-2766, 2006. Go to original source...
  34. Miller G., Suzuki N., Ciftci-Yilmaz S., Mittler R.: Reactive oxygen species homeostasis and signalling during drought and salinity stresses. - Plant Cell Environ. 33: 453-467, 2010. Go to original source...
  35. Mo W.C., Tang F.Y.: [Heterosis of dry matter of boll-leaf system in different development stages of upland cotton (Gossypium hirsutum L.).] - Hubei Agric. Sci. 52: 766-770, 2013. [In Chinese]
  36. Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S.I.: Photoinhibition of photosystem II under environmental stress. - BBA-Bioenergetics 1767: 414-421, 2007. Go to original source...
  37. Nakano Y., Asada K.: Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. -Plant Cell Physiol. 28: 131-140, 1987.
  38. Pan C.E., Tian L.P., Li Z.Z. et al.: [Studies on drought resistance on anatomical structure of leaves of five poplar clones.] - Chin. Agr. Sci. Bull. 27: 21-25, 2011. [In Chinese]
  39. Pilon C., Snider J.L., Sobolev V. et al.: Assessing stomatal and non-stomatal limitations to carbon assimilation under progressive drought in peanut (Arachis hypogaea L.). - J. Plant Physiol. 231: 124-134, 2018. Go to original source...
  40. Shahenshah, Isoda A.: Effects of water stress on leaf temperature and chlorophyll fluorescence parameters in cotton and peanut. - Plant Prod. Sci. 13: 269-278, 2010. Go to original source...
  41. Shareef M., Zeng F., Gui D. et al.: Drought induced interactive changes in physiological and biochemical attributes of cotton (Gossypium hirsutum). - Int. J. Agric. Biol. 20: 539-546, 2018. Go to original source...
  42. Subbarao G.V., Chauhan Y.S., Johansen C.: Patterns of osmotic adjustment in pigeonpea - its importance as a mechanism of drought resistance. - Eur. J. Agron. 12: 239-249, 2000. Go to original source...
  43. Tang L.S., Li Y., Zhang J.H.: Physiological and yield responses of cotton under partial rootzone irrigation. - Field Crop. Res. 94: 214-223, 2005. Go to original source...
  44. Tang W., Luo Z., Wen S.M. et al.: [Comparison of inhibitory effects on leaf photosynthesis in cotton seedlings between drought and salinity stress.] - Cotton Sci. 19: 28-32, 2007. [In Chinese]
  45. Tao X.P., Luo H.H., Zhang Y.L. et al.: [Effects of water and nitrogen under root restriction on photosynthetic characters of cotton plants grown with under-mulch drip irrigation.] - Acta Ecol. Sin. 33: 3676-3687, 2013. [In Chinese] Go to original source...
  46. Ullah A., Sun H., Yang X.Y., Zhang X.L.: Drought coping strategies in cotton: increased crop per drop. - Plant Biotechnol. J. 15: 271-284, 2017a. Go to original source...
  47. Ullah I., Waqas M., Khan M.A. et al.: Exogenous ascorbic acid mitigates flood stress damages of Vigna angularis. - Appl. Biol. Chem. 60: 603-614, 2017b. Go to original source...
  48. Valladares F., Pearcy R.W.: Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia. - Plant Cell Environ. 20: 25-36, 2010. Go to original source...
  49. Wang K.L., Gao Y.Z., Li S. et al.: [Response of leaf stomata and photosynthetic parameters to short-term drought stress in cotton (Gossypium hirsutum L.).] - Chin. J. Eco-Agric. 27: 901-907, 2019. [In Chinese]
  50. Wang R., Gao M., Ji S. et al.: Carbon allocation, osmotic adjustment, antioxidant capacity and growth in cotton under long-term soil drought during flowering and boll-forming period. - Plant Physiol. Bioch. 107: 137-146, 2016. Go to original source...
  51. Xu Z.Z., Zhou G.S.: Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. - J. Exp. Bot. 59: 3317-3325, 2008. Go to original source...
  52. Yang Z.Q., Tan W., Liu Z.X. et al.: [Effect of soil water stress on stomatal characters of greenhouse tomato leaves.] - Chin. J. Ecol. 34: 1234-1240, 2015. [In Chinese]
  53. Yi X.P., Zhang Y.L., Yao H.S. et al.: Different strategies of acclimation of photosynthesis, electron transport and antioxidative activity in leaves of two cotton species to water deficit. - Funct. Plant Biol. 43: 448-460, 2016. Go to original source...
  54. Yu W.W., Liu Y., Song L.L. et al.: Effect of differential light quality on morphology, photosynthesis, and antioxidant enzyme activity in Camptotheca acuminata seedlings. - J. Plant Growth Regul. 36: 148-160, 2017. Go to original source...
  55. Zhang C.M., Shi S.L., Chen J.G.: [Effects of drought stress on chlorophyll fluorescence parameters and lipid peroxidation in alfalfa seedlings.] - Grassl. Turf 39: 18-29, 2019. [In Chinese]
  56. Zhang R.H., Xue J.Q., Pu J. et al.: [Influence of drought stress on plant growth and photosynthetic traits in maize seed- lings.] - Acta Agron. Sin. 37: 521-528, 2011b. [In Chinese] Go to original source...
  57. Zhang X., Zhang L., Wang S.H. et al.: [Effect of source-sink regulation on the transportation and allocation of boll-leaf photosynthetic products in cotton.] - Acta Agron. Sin. 33: 843-848, 2007. [In Chinese]
  58. Zhang Y., Zhang Y., Wang Z., Wang Z.: Characteristics of canopy structure and contributions of non-leaf organs to yield in winter wheat under different irrigated conditions. - Field Crop. Res. 123: 187-195, 2011a. Go to original source...
  59. Zhang Y.L., Feng G.Y., Hu Y.Y. et al.: [Photosynthetic activity and its correlation with matter production in non-foliar green organs of cotton.] - Acta Agron. Sin. 36: 701-708, 2010. [In Chinese] Go to original source...