Photosynthetica 2020, 58(3):702-711 | DOI: 10.32615/ps.2020.022

Transcription analysis of chlorophyll biosynthesis in wildtype and chlorophyll b-lacking rice (Oryza sativa L.)

M.K. NGUYEN1,2,3,5, T.H. SHIH1, S.H. LIN1, W.D HUANG6, C.M. YANG1,5
1 Biodiversity Research Center, Academia Sinica, Nangang, Taipei 115, Taiwan
2 Biodiversity Program, Taiwan International Graduate Program, Biodiversity Research Center, Academia Sinica and National Taiwan Normal University, Taipei 115, Taiwan
3 Department of Life Science, National Taiwan Normal University, Daan, Taipei 115, Taiwan
5 Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh, 70000, Vietnam
6 Department of Agronomy, National Taiwan University, Daan, Taipei 106, Taiwan

The aim of the present study was to investigate the photosynthetic properties and transcriptomic profiles of wildtype and chlorophyll (Chl) b-lacking rice (Oryza sativa L.). The plastid ultrastructure of the Chl b-lacking rice (i.e., loss of starch granules, abundant vesicles, and abundant plastoglobuli) indicated abnormal plastid development, whereas the analysis of transcriptome profiles and differentially expressed genes revealed that gene encoding PsbR (PSII core protein) was downregulated in the mutant, thereby reducing the Chl accumulation of the mutant. Meanwhile, in regards to Chl biosynthesis and degradation pathways, GluTR gene was downregulated, whereas UROD, CPOX, and MgCH genes were upregulated. The qPCR results were generally consistent with those of the transcription analysis, except for the finding that NOL genes, which regulate Chl b degradation, were upregulated. These results suggest that both the reduction in Chl accumulation and increase in conversion rate of Chl b to Chl a caused Chl a/b ratio amplification in mutant. The present study also provides evidence for Chl b degradation via pheophorbide b.

Additional key words: grana; next-generation sequencing; photosynthesis; RNA-Seq; transcriptome.

Received: September 11, 2019; Revised: December 9, 2019; Accepted: March 4, 2020; Prepublished online: April 18, 2020; Published: June 11, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
NGUYEN, M.K., SHIH, T.H., LIN, S.H., HUANG, W.D., & YANG, C.M. (2020). Transcription analysis of chlorophyll biosynthesis in wildtype and chlorophyll b-lacking rice (Oryza sativa L.). Photosynthetica58(3), 702-711. doi: 10.32615/ps.2020.022
Download citation

Supplementary files

Download fileNguyen 2401 supplement.docx

File size: 77.6 kB

References

  1. Ambavaram M.M.R., Basu S., Krishnan A. et al.: Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. - Nat. Commun. 5: 5302, 2014. Go to original source...
  2. Audic S., Claverie J.M.: The significance of digital gene expression profiles. - Genome Res. 7: 986-995, 1997. Go to original source...
  3. Ben-Shem A., Frolow F., Nelson N.: Crystal structure of plant photosystem I. - Nature 426: 630-635, 2003. Go to original source...
  4. Bujaldon S., Kodama N., Rappaport F. et al.: Functional accumu-lation of antenna proteins in chlorophyll b-less mutants of Chlamydomonas reinhardtii. - Mol. Plant 10: 115-130, 2017. Go to original source...
  5. Chen X., Zhang W., Xie Y. et al.: Comparative proteomics of thylakoid membrane from a chlorophyll b-less rice mutant and its wild type. - Plant Sci. 173: 397-407, 2007. Go to original source...
  6. Chu P., Yan G.X., Yang Q. et al.: iTRAQ-based quantitative proteomics analysis of Brassica napus leaves reveals pathways associated with chlorophyll deficiency. - J. Proteomics 113: 244-259, 2015. Go to original source...
  7. Eckhardt U., Grimm B., Hörtensteiner S.: Recent advances in chlorophyll biosynthesis and breakdown in higher plants. - Plant Mol. Biol. 56: 1-14, 2004. Go to original source...
  8. Eskins K., Delmastro D., Harris L.: A comparison of pigment-protein complexes among normal, chlorophyll-deficient and senescent soybean genotypes. - Plant Physiol. 73: 51-55, 1983. Go to original source...
  9. Fan J., Liu Q., Hao Q. et al.: Crystal structure of uroporphyrinogen decarboxylase from Bacillus subtilis. - J. Bacteriol. 189: 3573-3580, 2007. Go to original source...
  10. Fang Y., Zhao S., Zhang F. et al.: The Arabidopsis glutamyl-tRNA reductase (GluTR) forms a ternary complex with FLU and GluTR-binding protein. - Sci. Rep.-UK 6: 19756, 2016. Go to original source...
  11. Fromme P., Melkozernov A., Jordan P., Krauss N.: Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems. - FEBS Lett. 555: 40-44, 2003. Go to original source...
  12. Goral T.K., Johnson M.P., Duffy C.D.P. et al.: Light-harvesting antenna composition controls the macrostructure and dyna-mics of thylakoid membranes in Arabidopsis. - Plant J. 69: 289-301, 2012. Go to original source...
  13. Gupta J.: Climate change and water law: The regimes compared. -In: Grover V.I. (ed.): Impact of Climate Change on Water and Health. Pp. 30-45. CRC Press, Boca Raton-London-New York 2013. Go to original source...
  14. Hanke G.T., Hase T.: Variable photosynthetic roles of two leaf-type ferredoxins in Arabidopsis, as revealed by RNA interference. - Photochem. Photobiol. 84: 1302-1309, 2008. Go to original source...
  15. Holtgrefe S., Bader K.P., Horton P. et al.: Decreased content of leaf ferredoxin changes electron distribution and limits photosynthesis in transgenic potato plants. - Plant Physiol. 133: 1768-1778, 2003. Go to original source...
  16. Horie Y., Ito H., Kusaba M. et al.: Participation of chlorophyll b reductase in the initial step of the degradation of light-harvesting chlorophyll a/b-protein complexes in Arabidopsis. -J. Biol. Chem. 284: 17449-17456, 2009. Go to original source...
  17. Huang J., Qin F., Zang G. et al.: Mutation of OsDET1 increases chlorophyll content in rice. - Plant Sci. 210: 241-249, 2013. Go to original source...
  18. Ito H., Ohtsuka T., Tanaka A.: Conversion of chlorophyll b to chlorophyll a via 7-hydroxymethyl chlorophyll. - J. Biol. Chem. 271: 1475-1479, 1996. Go to original source...
  19. Jin E., Yokthongwattana K., Polle J.E.W., Melis A.: Role of the reversible xanthophyll cycle in the photosystem II damage and repair cycle in Dunaliella salina. - Plant Physiol. 132: 352-364, 2003. Go to original source...
  20. Kim E.H., Li X.P., Razeghifard R. et al.: The multiple roles of light-harvesting chlorophyll a/b-protein complexes define structure and optimize function of Arabidopsis chloroplasts: A study using two chlorophyll b-less mutants. - BBA-Bioenergetics 1787: 973-984, 2009. Go to original source...
  21. Kräutler B.: Chlorophyll breakdown and chlorophyll catabolites in leaves and fruit. - Photoch. Photobio. Sci. 7: 1114-1120, 2008. Go to original source...
  22. Kusaba M., Ito H., Morita R. et al.: Rice Non-Yellow Coloring1 is involved in light-harvesting complex II and grana degradation during leaf senescence. - Plant Cell 19: 1362-1375, 2007. Go to original source...
  23. Li W., Yang S., Lu Z. et al.: Cytological, physiological, and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L. - Hortic. Res. 5: 12, 2018. Go to original source...
  24. Li Y., Zhang Z., Wang P. et al.: Comprehensive transcriptome analysis discovers novel candidate genes related to leaf color in a Lagerstroemia indica yellow leaf mutant. - Genes Genom. 37: 851-863, 2015. Go to original source...
  25. Lin Y.H., Pan K.Y., Hung C.H. et al.: Overexpression of ferredoxin, PETF, enhances tolerance to heat stress in Chlamydomonas reinhardtii. - Int. J. Mol. Sci. 14: 20913-20929, 2013. Go to original source...
  26. Liu W., Fu Y., Hu G. et al.: Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). - Planta 226: 785-795, 2007. Go to original source...
  27. Masuda T., Fujita Y.: Regulation and evolution of chlorophyll metabolism. - Photoch. Photobio. Sci. 7: 1131-1149, 2008. Go to original source...
  28. Meier S., Tzfadia O., Vallabhaneni R. et al.: A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana. - BMC Syst. Biol. 5: 77, 2011. Go to original source...
  29. Mitchell P.L., Sheehy J.E.: Supercharging rice photosynthesis to increase yield. - New Phytol. 171: 688-693, 2006. Go to original source...
  30. Nakatani H.Y., Baliga V.: A clover mutant lacking the chloro-phyll a- and b-containing protein antenna complexes. - Biochem. Bioph. Res. Co. 131: 182-189, 1985. Go to original source...
  31. Nelson N., Yocum C.F.: Structure and function of photosystems I and II. - Annu. Rev. Plant Biol. 57: 521-565, 2006. Go to original source...
  32. Ouijja A., Farineau N., Cantrel C., Guillot-Salomon T.: Bioche-mical analysis and photosynthetic activity of chloroplasts and Photosystem II particles from a barley mutant lacking chlorophyll b. - BBA-Bioenergetics 932: 97-106, 1988. Go to original source...
  33. Reinbothe C., Bartsch S., Eggink L.L. et al.: A role for chloro-phyllide oxygenase in the regulated import and stabilization of light-harvesting chlorophyll proteins. - P. Natl. Acad. Sci. USA 103: 4777-4782, 2006. Go to original source...
  34. Rühle W., Reiländer H., Otto K.D., Wild A.: Chlorophyll-protein-complexes of thylakoids of wild type and chloro- phyll b mutants of Arabidopsis thaliana. - Photosynth. Res. 4: 301-305, 1983. Go to original source...
  35. Sato Y., Morita R., Katsuma S. et al.: Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. -Plant J. 57: 120-131, 2009. Go to original source...
  36. Schmitz A.J., Glynn J.M., Olson B.J.S.C. et al.: Arabidopsis FtsZ2-1 and FtsZ2-2 are functionally redundant, but Ftsz-based plastid division is not essential for chloroplast partitioning or plant growth and development. - Mol. Plant 2: 1211-1222, 2009. Go to original source...
  37. Seo T.S., Bai X., Ruparel H. et al.: Photocleavable fluorescent nucleotides for DNA sequencing on a chip constructed by site-specific coupling chemistry. - P. Natl. Acad. Sci. USA 101: 5488-5493, 2004. Go to original source...
  38. Shi L.X., Hall M., Funk C., Schröder W.P.: Photosystem II, a growing complex: Updates on newly discovered components and low molecular mass proteins. - BBA-Bioenergetics 1817: 13-25, 2012. Go to original source...
  39. Shimoda Y., Ito H., Tanaka A.: Conversion of chlorophyll b to chlorophyll a precedes magnesium dechelation for protection against necrosis in Arabidopsis. - Plant J. 72: 501-511, 2012. Go to original source...
  40. Spurr A.R.: A low-viscosity epoxy resin embedding medium for electron microscopy. - J. Ultrastruct. Res. 26: 31-43, 1969. Go to original source...
  41. Tanaka A., Tanaka R.: Chlorophyll metabolism. - Curr. Opin. Plant Biol. 9: 248-255, 2006. Go to original source...
  42. Tanaka A., Tanaka R.: The biochemistry, physiology, and evolution of the chlorophyll cycle. - Adv. Bot. Res. 90: 183-212, 2019. Go to original source...
  43. Terao T., Sonoike K., Yamazaki J. et al.: Stoichiometries of photosystem I and photosystem II in rice mutants differently deficient in chlorophyll b. - Plant Cell Physiol. 37: 299-306, 1996. Go to original source...
  44. Terao T., Yamashita A., Katoh S.: Chlorophyll b-deficient mutants of rice: I. Absorption and fluorescence spectra and chlorophyll a/b ratios. - Plant Cell Physiol. 26: 1361-1367, 1985a.
  45. Terao T., Yamashita A., Katoh S.: Chlorophyll b-deficient mutants of rice: II. Antenna chlorophyll a/b-proteins of photosystem I and II. - Plant Cell Physiol. 26: 1369-1377, 1985b.
  46. Thornber J.P., Highkin H.R.: Composition of the photosynthetic apparatus of normal barley leaves and a mutant lacking chlorophyll b. - Eur. J. Biochem. 41: 109-116, 1974. Go to original source...
  47. Wang F., Wang G., Li X. et al.: Heredity, physiology and mapping of a chlorophyll content gene of rice (Oryza sativa L.). - J. Plant Physiol. 165: 324-330, 2008. Go to original source...
  48. Wang L., Yue C., Cao H. et al.: Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar. - BMC Plant Biol. 14: 352, 2014. Go to original source...
  49. Wang Z., Gerstein M., Snyder M.: RNA-Seq: a revolutionary tool for transcriptomics. - Nat. Rev. Genet. 10: 57, 2009. Go to original source...
  50. Yang C.M., Chang K.W., Yin M.H. et al.: Method for the determination of the chlorophylls and their derivatives. - Taiwania 43: 116-122, 1998. Go to original source...
  51. Yang C.M., Chen H.Y.: Grana stacking is normal in a chlorophyll-deficient LT8 mutant of rice. - Bot. Bull. Acad. Sin. 37: 31-34, 1996.
  52. Yang C.M., Osterman J.C., Markwell J.: Temperature sensitivity as a general phenomenon in a collection of chlorophyll-deficient mutants of sweetclover (Melilotus alba). - Biochem. Genet. 28: 31-40, 1990. Go to original source...
  53. Yang H.Y., Xia X.W., Fang W. et al.: Identification of genes involved in spontaneous leaf color variation in Pseudosasa japonica. - Genet. Mol. Res. 14: 11827-11840, 2015a. Go to original source...
  54. Yang Y., Chen X., Xu B. et al.: Phenotype and transcriptome analysis reveals chloroplast development and pigment biosynthesis together influenced the leaf color formation in mutants of Anthurium andraeanum 'Sonate.' - Front. Plant Sci. 6: 139, 2015b. Go to original source...
  55. Yang Y., Xu J., Huang L. et al.: PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice. - J. Exp. Bot. 67: 1297-1310, 2015c. Go to original source...
  56. Zhang H., Zhang D., Han S. et al.: Identification and gene mapping of a soybean chlorophyll-deficient mutant. - Plant Breeding 130: 133-138, 2011. Go to original source...
  57. Zhao X., Chen T., Feng B. et al.: Non-photochemical quenching plays a key role in light acclimation of rice plants differing in leaf color. - Front Plant Sci. 7: 1968, 2017. Go to original source...
  58. Zhu H., Zhou Y.Y., Zhai H. et al.: Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato. - J. Integr. Agr. 18: 9-23, 2019. Go to original source...