Photosynthetica 2020, 58(SI):194-204 | DOI: 10.32615/ps.2019.131

Special issue in honour of Prof. Reto J. Strasser – Plant biomass in salt-stressed young maize plants can be modelled with photosynthetic performance

V. GALIĆ1, M. MAZUR1, D. ŠIMIĆ1, Z. ZDUNIĆ1, M. FRANIĆ2
Agricultural Institute Osijek, Department of Maize Breeding and Genetics, Južno predgrađe 17,
1 31000 Osijek, Croatia
2 52440 Poreč, Croatia

Predicting responses to stressful conditions is very important. Chlorophyll a fluorescence (ChlF) can be used to assess effects of various stresses on photosynthetic performance. We tested the responses of five 10-d old maize hybrids to salinity stress by measuring ChlF parameters, fresh (FM) and dry mass (DM). ChlF data were incorporated into a penalized regression model to predict biomass traits. The values of FM and DM significantly decreased under salt stress by 42 and 25%, respectively. Strong responses in ChlF parameters assessing the absorption dissipation and trapping fluxes to NaCl treatment were detected. In penalized regression models, 118 transients showed greater (R2 = 0.663 for FM and R2 = 0.678 for DM), although comparable, predictive abilities as 18 selected JIP-test parameters (R2 = 0.597 for FM and R2 = 0.636 for DM). Genetic assessment of developed models is needed, as they efficiently predict biomass traits and provide physiological context to the obtained predictions.

Additional key words: biomass predictions; NaCl stress; partial least squares regression; performance index; photosystem II.

Received: May 9, 2019; Accepted: September 23, 2019; Prepublished online: November 8, 2019; Published: May 28, 2020  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
GALIĆ, V., MAZUR, M., ŠIMIĆ, D., ZDUNIĆ, Z., & FRANIĆ, M. (2020). Special issue in honour of Prof. Reto J. Strasser – Plant biomass in salt-stressed young maize plants can be modelled with photosynthetic performance. Photosynthetica58(SPECIAL ISSUE), 194-204. doi: 10.32615/ps.2019.131
Download citation

Supplementary files

Download fileGalic 2282 supplement.docx

File size: 22.48 kB

References

  1. Akram M., Ashraf M.Y., Jamil M. et al.: Nitrogen application improves gas exchange characteristics and chlorophyll fluorescence in maize hybrids under salinity conditions. - Russ. J. Plant Physl+ 58: 394-401, 2011. Go to original source...
  2. Artherton J., Nichol C.J., Porcar-Castell A.: Using spectral chlorophyll fluorescence and the photochemical reflectance index to predict physiological dynamics. - Remote Sens. Environ. 176: 17-30, 2016. Go to original source...
  3. Brestič M., Živčák M., Kunderlíková K. et al.: Low PSI content limits the photoprotection of PSI and PSII in early growth stages of chlorophyll b-deficient wheat mutant lines. - Photosynth. Res. 125: 151-166, 2015. Go to original source...
  4. Chaves M.M., Flexas J., Pinheiro C.: Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. - Ann. Bot.-London 103: 551-560, 2009. Go to original source...
  5. Chen D., Wang S., Cao B.: Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings. - Front. Plant Sci. 6: 1214, 2016. Go to original source...
  6. Christen D., Schönmann S., Jermini M. et al.: Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. - Environ. Exp. Bot. 60: 504-514, 2007. Go to original source...
  7. Cooper M., Technow F., Messina C. et al.: Use of crop growth models with whole-genome prediction: application to a maize multienvironment trial. - Crop Sci. 56: 2141-2156, 2016. Go to original source...
  8. Deng C.N., Zhang G.X., Pan X.L., Zhao K.Y.: Chlorophyll fluorescence and gas exchange responses of maize seedlings to saline-alkaline stress. - Bulg. J. Agric. Sci. 16: 49-58, 2010.
  9. Dikilitas M., Karakas S.: Salts as potential environmental pollutants, their types, effects on plants and approaches for their phytoremediation. - In: Ashraf M., Ozturk, M., Ahmad M.S.A. (ed.): Plant Adaptation and Phytoremediation. Pp. 357-381. Springer, New York 2010. Go to original source...
  10. FAO: Global network on integrated soil management for sustainable use of salt-affected soils. FAO Land and Plant Nutrition Management Service, Rome 2005. http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/ (Accessed 4 November 2019)
  11. Farooq M., Hussain M., Wakeel A., Siddique K.H.M.: Salt stress in maize: effects, resistance mechanisms, and management. A review. - Agron. Sustain. Dev. 35: 461-481, 2015. Go to original source...
  12. Fricke W., Akhiyarova G., Wei W. et al.: The short-term growth response to salt of the developing barley leaf. - J. Exp. Bot. 57: 1079-1095, 2006. Go to original source...
  13. Galić V., Franić M., Jambrović A. et al.: Genetic correlations between photosynthetic and yield performance in maize are different under two heat scenarios during flowering. - Front. Plant Sci. 10: 566, 2019. Go to original source...
  14. Gao Y., Lu Y., Wu M.Q. et al.: Ability to remove Na+ and retain K+ correlates with salt tolerance in two maize inbred lines seedlings. - Front. Plant Sci. 7: e0116697, 2016. Go to original source...
  15. Goltsev V., Zaharieva I., Chernev P. et al.: Drought-induced modifications of photosynthetic electron transport in intact leaves: Analysis and use of neural networks as a tool for a rapid non-invasive estimation. - BBA-Bioenergetics 1817: 1490-1498, 2012. Go to original source...
  16. Guadagno C.R., Ewers B.E., Speckman H.N. et al.: Dead or alive? Using membrane failure and chlorophyll a fluorescence to predict plant mortality from drought. - Plant Physiol. 175: 223-234, 2017. Go to original source...
  17. Gupta B., Huang B.: Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. - Int. J. Genomics 2014: 701596, 2014. Go to original source...
  18. Hasanuzzaman M., Nahar K., Fujita M. et al.: Enhancing plant productivity under salt stress: relevance of poly-omics. - In: Ahmad P., Azooz M.M., Prasad M.N.V. (ed.): Salt Stress in Plants: Signalling, Omics and Adaptations. Pp. 113-156. Springer, New York 2013. Go to original source...
  19. Hniličková H., Hnilička F., Martinková J., Kraus K.: Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. - Plant Soil Environ. 63: 362-367, 2017. Go to original source...
  20. James R.A., Blake C., Byrt C.S., Munns R.: Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. - J. Exp. Bot. 62: 2939-2947, 2011. Go to original source...
  21. Kalaji H.M., Govindjee, Bosa K. et al.: Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. - Environ. Exp. Bot. 73: 64-72, 2011. Go to original source...
  22. Kalaji H.M., Jajoo A., Oukarroum A. et al.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. - Acta Physiol. Plant. 38: 102, 2016. Go to original source...
  23. Kalaji H.M., Pietkiewicz S.: Salinity effects on plant growth and other physiological processes. - Acta Physiol. Plant. 15: 89-124, 1993.
  24. Kalaji H.M., Račková L., Paganová V. et al.: Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill? - Environ. Exp. Bot. 152: 149-157, 2018. Go to original source...
  25. Kan X., Ren J., Chen T. et al.: Effects of salinity on photosynthesis in maize probed by prompt fluorescence, delayed fluorescence and P700 signals. - Environ. Exp. Bot. 140: 56-64, 2017. Go to original source...
  26. Kocheva K., Lambrev P., Georgiev G. et al.: Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress. - Bioelectrochemistry 63: 121-124, 2004. Go to original source...
  27. Liska A.J., Shevchenko A., Pick U., Katz A.: Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. - Plant Physiol. 136: 2806-2817, 2004. Go to original source...
  28. Mateo-Sagasta J., Burke J.: Agriculture and Water Quality Interactions: A Global Overview. - SOLAW Background Thematic Report - TR08. Pp. 46. FAO, Rome 2011.
  29. Mehta P., Jajoo A., Mathur S., Bharti S.: Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. - Plant Physiol. Bioch. 48: 16-20, 2010. Go to original source...
  30. Mendiburu F., Simon R.: Agricolae - Ten years of an open source statistical tool for experiments in breeding, agriculture and biology. - PeerJ PrePrints 3: e1404v1, 2015. Go to original source...
  31. Menezes-Benavente L., Kernodle S.P., Margis-Pinheiro M., Scandalios J.G.: Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. - Redox Rep. 9: 29-36, 2004. Go to original source...
  32. Messina C.D., Technow F., Tang T. et al.: Leveraging biological insight and environmental variation to improve phenotypic prediction: Integrating crop growth models (CGM) with whole genome prediction (WGP). - Eur. J. Agron. 100: 151-162, 2018. Go to original source...
  33. Mevik B.-H., Wehrens R., Liland K.H.: pls: Partial least squares and principal component regression. R package version 2.7-0, 2018. Available at: https://CRAN.R-project.org/package=pls (Accessed 3 May 2019)
  34. Moriyuki S., Fukuda H.: High-throughput growth prediction for Lactuca sativa L. seedlings using chlorophyll fluorescence in a plant factory with artificial lighting. - Front. Plant Sci. 7: 394, 2016. Go to original source...
  35. Munns R.: Comparative physiology of salt and water stress. - Plant Cell Environ. 25: 239-250, 2002. Go to original source...
  36. Munns R.: Genes and salt tolerance: bringing them together. - New Phytol. 167: 645-663, 2005. Go to original source...
  37. Munns R., Tester M.: Mechanisms of salinity tolerance. - Annu. Rev. Plant Biol. 59: 651-681, 2008. Go to original source...
  38. Nedbal L., Soukupová J., Whitmarsh J., Trtílek M.: Postharvest imaging of chlorophyll fluorescence from lemons can be used to predict fruit quality. - Photosynthetica 38: 571-579, 2000. Go to original source...
  39. Negrão S., Schmöckel S.M., Tester M.: Evaluating physiological responses of plants to salinity stress. - Ann. Bot.-London 119: 1-11, 2017. Go to original source...
  40. Park H.J., Kim W.Y., Yun D.J.: A new insight of salt stress signaling in plant. - Mol. Cell 39: 447-459, 2016. Go to original source...
  41. Qu C.X., Liu C., Gong X.L. et al.: Impairment of maize seedling photosynthesis caused by a combination of potassium defi-ciency and salt stress. - Environ. Exp. Bot. 75: 134-141, 2012. Go to original source...
  42. R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna 2018. Available at: https://www.R-project.org/
  43. Satir O., Berberoglu S.: Crop yield prediction under soil salinity using satellite derived vegetation indices. - Field Crop. Res. 192: 134-143, 2016. Go to original source...
  44. Sayyad-Amin P., Jahansooz M.R., Borzouei A., Ajili F.: Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress. - J. Biol. Phys. 42: 601-620, 2016. Go to original source...
  45. Schleiff U.: Analysis of water supply of plants under saline soil conditions and conclusions for research on crop salt tolerance. -J. Agron. Crop Sci. 194: 1-8, 2008. Go to original source...
  46. Shabala S.N., Shabala S.I., Martynenko A.I. et al.: Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: A comparative survey and prospects for screening. - Aust. J. Plant Physiol. 25: 609-616, 1998. Go to original source...
  47. Shrivastava P., Kumar R.: Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. - Saudi J. Biol. Sci. 22: 123-131, 2015. Go to original source...
  48. Soares A.L.C., Geilfus C.M., Carpentier S.C.: Genotype-specific growth and proteomic responses of maize toward salt stress. - Front. Plant Sci. 9: 661, 2018. Go to original source...
  49. Stepien P., Klobus G.: Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. - Biol. Plantarum 50: 610-616, 2006. Go to original source...
  50. Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. - J. Photoch. Photobio. B 104: 236-257, 2011. Go to original source...
  51. Strasser B.J., Strasser R.J.: Measuring fast fluorescence tran-sients to address environmental questions: The JIP test. - In: Mathis P. (ed.): Photosynthesis: From Light to Biosphere. Vol. 5. Pp. 977-980. Kluwer Academic Publishers, Dordrecht 1995. Go to original source...
  52. Strasser R.J., Srivastava A., Tsimilli-Michael M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. - In: Yunus M., Pathre U., Mohanty P. (ed.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. Pp. 445-483. CRC Press, New York 2000.
  53. Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. - BBA-Bioenergetics 1797: 1313-1326, 2010. Go to original source...
  54. Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht 2004. Go to original source...
  55. Sultana N., Ikeda T., Itoh R.: Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. - Environ. Exp. Bot. 42: 211-220, 1999. Go to original source...
  56. Šimić D., Lepeduš H., Jurković V. et al.: Quantitative genetic analysis of chlorophyll a fluorescence parameters in maize in the field environments. - J. Integr. Plant Biol. 56: 695-708, 2014. Go to original source...
  57. Technow F., Messina C.D., Totir L.R., Cooper M.: integrating crop growth models with whole genome prediction through approximate Bayesian computation. - PLoS ONE 10: e0130855, 2015. Go to original source...
  58. Tomescu D., Şumălan R., Copolovici L., Copolovici D.: The influence of soil salinity on volatile organic compounds emission and photosynthetic parameters of Solanum lycopersicum L. varieties. - Open Life Sci. 12: 135-142, 2017. Go to original source...
  59. Umar M., Uddin Z., Siddiqui Z.S.: Responses of photosynthetic apparatus in sunflower cultivars to combined drought and salt stress. - Photosynthetica 57: 627-639, 2019. Go to original source...
  60. van Eeuwijk F.A., Bustos-Korts D., Millet E.J. et al.: Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding. - Plant Sci. 282: 23-39, 2018. Go to original source...
  61. Vu V.: ggbiplot: A ggplot2 based biplot. R package version 0.55, 2011.
  62. Woo N., Badger M.R., Pogson B.J.: A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. - In: Stewart P., Globig S. (ed.): Photosynthesis: Genetic, Environmental and Evolutionary Aspects. Pp. 266-288. Apple Academic Press, Oakville 2011.
  63. Yamori W., Shikanai T.: Physiological functions of cyclic electron transport around photosystem i in sustaining photosynthesis and plant growth. - Annu. Rev. Plant Biol. 67: 81-106, 2016. Go to original source...
  64. Yang X., Lu C.: Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. - Physiol. Plantarum 124: 343-352, 2005. Go to original source...
  65. Yusuf M.A., Kumar D., Rajwanshi R. et al.: Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. - BBA-Bioenergetics 1797: 1428-1438, 2010. Go to original source...
  66. Zhang H., Xu N., Wu X. et al.: Effects of four types of sodium salt stress on plant growth and photosynthetic apparatus in sorghum leaves. - J. Plant Interact. 13: 506-513, 2018. Go to original source...
  67. Zörb C., Schmitt S., Neeb A. et al.: The biochemical reaction of maize (Zea mays L.) to salt stress is characterized by a mitigation of symptoms and not by a specific adaptation. - Plant Sci. 167: 91-100, 2004. Go to original source...
  68. Zörb C., Geilfus C.M., Dietz K.J.: Salinity and crop yield. - Plant Biol. 21: 31-38, 2018. Go to original source...
  69. Živčák M., Brestič M., Olšovská K., Slamka P.: Performance index as a sensitive indicator of water stress in Triticum aestivum L. - Plant Soil Environ. 54: 133-139, 2008. Go to original source...