biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 63:247-252, 2019 | DOI: 10.32615/bp.2019.028

Application of sucrose modulates the expressions of genes involved in proline and polyamine metabolism in maize seedlings exposed to drought

C. Altuntaº1, A. Sezgin1, M. Demiralay2, R. Terzi1,*, A. Sağlam3, A. Kadioğlu1
1 Karadeniz Technical University, Faculty of Science, Department of Biology, 61080, Trabzon, Turkey
2 Artvin Coruh University, Faculty of Forestry, Departmant of Forest Engineering, 0800, Artvin, Turkey
3 Karadeniz Technical University, Department of Molecular Biology and Genetics, 61080 Trabzon, Turkey

Sucrose, proline, and polyamines are compatible solutes accumulating in plant tissues and increasing cellular osmolarity under environmental stresses. These compatible solutes and hydrogen peroxide can function as signaling molecules in plants. There has been very little evidence how the supply of sucrose changes the biosynthesis of compatible solutes. This study aimed to assess the cross-talk among sucrose, H2O2, and compatible solutes on the expression of genes encoding key enzymes in the pathways of proline and polyamine metabolism in drought stressed maize seedlings. Drought stress (induced by polyethylene glycol solution) increased the expressions of genes encoding pyrroline-5-carboxylate synthetase (P5CS), arginine decarboxylase (ADC), and S-adenosylmethionine decarboxylase (SAMDC), while decreased proline dehydrogenase (ProDH), diamine oxidase (DAO), and polyamine oxidase (PAO) expressions. Addition of sucrose to the stressed seedlings increased the P5CS, ADC and SAMDC expressions more than drought stress alone and reduced more the ProDH, DAO, and PAO expressions. Moreover, exogenous sucrose increased leaf water potential and the content of proline, polyamines, and total soluble sugars, whereas decreased H2O2 content and membrane damages under the drought stress conditions. Consequently, exogenous sucrose contributed to the preservation of water status and the amelioration of damage in maize seedlings under the drought stress.

Keywords: arginine decarboxylase, diamine oxidase, hydrogen peroxide, polyamine oxidase, proline dehydrogenase, pyrroline-5-carboxylate synthetase, S-adenosylmethionine decarboxylase

Accepted: December 8, 2018; Prepublished online: December 8, 2018; Published online: January 19, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Altuntaº, C., Sezgin, A., Demiralay, M., Terzi, R., Sağlam, A., & Kadioğlu, A. (2019). Application of sucrose modulates the expressions of genes involved in proline and polyamine metabolism in maize seedlings exposed to drought. Biologia plantarum63, Article 247-252. https://doi.org/10.32615/bp.2019.028
Download citation

References

  1. Ashraf, M., Foolad, M.R.: Roles of glycine betaine and proline in improving plant abiotic stress resistance. - Environ. exp. Bot. 59: 206-216, 2007. Go to original source...
  2. Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water stress studies. - Plant Soil 39: 205-207, 1973. Go to original source...
  3. Ben-Gigirey, B., De Sousa, J.M.V.B., Villa, T.G., Barros-Velazquez, J.: Changes in biogenic amines and microbiological analysis in albacore (Thunnus alalunga) muscle during frozen storage. - J. Food Prot. 61: 608-615, 1998. Go to original source...
  4. Cao, Y.Y., Yanga, M.T., Lia, X., Zhoua, Z.Q., Wanga, X.J., Baia, J.G.: Exogenous sucrose increases chilling tolerance in cucumber seedlings by modulating antioxidant enzyme activity and regulating proline and soluble sugar contents. - Sci. Hort. 179: 67-77, 2014. Go to original source...
  5. Cao, Y.Y., Yang, M.T., Chen, S.Y., Zhou, Z.Q., Li, X., Wang, X.J., Bai, J.G.: Exogenous sucrose influences antioxidant enzyme activities and reduces lipid peroxidation in water-stressed cucumber leaves. - Biol. Plant. 59: 147-153, 2015. Go to original source...
  6. Do, P.T., Drechsel, O., Heyer, A.G., Hincha, D.K., Zuther, E.: Changes in free polyamine levels, expression of polyamine biosynthesis genes, and performance of rice cultivars under salt stress: a comparison with responses to drought. - Front. Plant Sci. 5:182, 2014. Go to original source...
  7. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. - Anal. Chem. 28: 350-356, 1956. Go to original source...
  8. Ebeed, H.T., Hassan, N.M., Aljarani, A.M.: Exogenous applications of polyamines modulate drought responses in wheat through osmolytes accumulation, increasing free polyamine levels and regulation of polyamine biosynthetic genes. - Plant Physiol. Biochem. 118: 438-448, 2017. Go to original source...
  9. Flores, H.E., Filner, P.: Polyamine catabolism in higher plants: characterization of pyrroline dehydrogenase. - Plant Growth Regul. 3: 277-291, 1985. Go to original source...
  10. Gao, L., Zhao, S., Lu, X., He, N., Zhu, H., Dou, J., Liu W.: Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon. - Plos ONE 13: 1-22, 2018. Go to original source...
  11. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., Ahmad, A.: Role of proline under changing environments. - Plant Signal Behav. 7: 1456-1466, 2012. Go to original source...
  12. Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplast. I. kinetics and stoichiometry of fatty acid peroxidation. - Arch. Biochem. Biophys. 125: 189-198, 1968. Go to original source...
  13. Hossain, M.A., Bhattacharjee, S., Armin, S.M., Qian, P., Xin, W., Li, H.Y., Burritt, D.J., Fujita, M., Tran, L.S.: Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. - Front Plant Sci. 6: 2-19, 2015. Go to original source...
  14. Kamada-Nobusada, T., Hayashi, M., Fukazawa, M., Sakakibara, H., Nishimura, M.: A putative peroxisomal polyamine oxidase, AtPAO4, is involved in polyamine catabolism in Arabidopsis thaliana. - Plant Cell Physiol. 49: 1272-1282, 2008. Go to original source...
  15. Khalid, A., Jaime, A., Da Teixeira, S., Weiming, C.: Water deficit and polyethylene glycol6000 affects morphological and biochemical characters of Pelargonium odoratissimum (L.). - Sci. Hort. 125: 159-166, 2010. Go to original source...
  16. Krasensky, J., Jonak, C.: Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. - J. exp. Bot. 63: 1593-1608, 2012. Go to original source...
  17. Lastdrager, J., Hanson, J., Smeekens, S.: Sugar signals and the control of plant growth and development. - J. exp. Bot. 65: 799-807, 2014. Go to original source...
  18. Li, Z., Jing, W., Peng, Y., Zhang, X.Q., Ma, X., Huang, L.K., Yan, Y.H.: Spermine alleviates drought stress in white clover with different resistance by influencing carbohydrate metabolism and dehydrins synthesis. - Plos ONE 10:1-16, 2015. Go to original source...
  19. Li, Z., Peng, Y., Zhang, X.Q., Ma, X., Huang, L.K., Yan, Y.H.: Exogenous spermidine improves seed germination of white clover under water stress via involvement in starch metabolism, antioxidant defenses and relevant gene expression. - Molecules 19: 18003-18024, 2014. Go to original source...
  20. Liu, J.H., Nakajima, I., Moriguchi, T.: Effects of salt and osmotic stresses on free polyamine content and expression of polyamine biosynthetic genes in Vitis vinifera. - Biol. Plant. 55: 340-344, 2011. Go to original source...
  21. Liu, J.H., Wang, W., Wu, H., Gong, X., Moriguchi, T.: Polyamines function in stress tolerance: from synthesis to regulation. - Front. Plant Sci. 6: 196-206, 2015. Go to original source...
  22. Miller, G, Stein, H., Honig, A., Kapulnik, Y., Zilberstein, A.: Responsive modes of Medicago sativa proline dehydro-genase genes during salt stress and recovery dictate free proline accumulation. - Planta 222: 70-79, 2005. Go to original source...
  23. Mohammadkhani, N., Heidari, R.: Water stress induced by polyethylene glycol 6000 and sodium chloride in two maize cultivars. - Pak. J. biol. Sci. 11: 92-97, 2008. Go to original source...
  24. Moschou, P.N., Paschalidis, K.A., Roubelakis-Angelakis, K.A.: Plant polyamine catabolism. The state of the art. - Plant Signal Behav. 3: 1061-1066, 2008. Go to original source...
  25. Moustakas, M., Sperdouli, I., Kouna, T.: Exogenous proline induces soluble sugar accumulation and alleviates drought stress effects on photosystem II functioning of Arabidopsis thaliana leaves. - Plant Growth. Regul. 65: 315-325, 2011. Go to original source...
  26. Neill, S.J., Desikan, R., Hancock, J.: Hydrogen peroxide signaling. - Curr. Opin. Plant Biol. 5: 388-395, 2002. Go to original source...
  27. Pál, M., Szalai, G., Janda, T.: Speculation: polyamines are important in abiotic stress signaling. - Plant Sci. 237:16-23, 2015. Go to original source...
  28. Qiu, Z.B., Wang, Y.F., Zhu, A.J., Peng, F.L., Wang, L.S.: Exogenous sucrose can enhance tolerance of Arabidopsis thaliana seedlings to salt stress. - Biol. Plant. 58: 611-617, 2014. Go to original source...
  29. Reddy, A., Das, V.S.R.: Stomatal movement and sucrose uptake by guard cell protoplasts of Commelina benghalensis L. - Plant Cell Physiol. 27: 1565-1567, 1986.
  30. Roychoudhury, A., Banerjee, A., Lahiri, V.: Metabolic and molecular-genetic regulation of proline signaling and its cross-talk with major effectors mediates abiotic stress tolerance in plants. - Turk. J. Bot. 39: 887-910, 2015. Go to original source...
  31. Saruhan, N., Turgut-Terzi, R., Kadioglu, A.: The effects of exogenous polyamines on some biochemical changes during drought stress in Ctenanthe setosa (Rosc.) Eichler. - Acta biol. hung. 57: 221-229, 2006. Go to original source...
  32. Savage, M.J., Cass, A.: Psychrometric field measurement of water potential changes following leaf excision. - Plant Physiol. 74: 96-98, 1984. Go to original source...
  33. Singh, M., Kumar, J., Singh, S., Singh V.P., Prasad, S.M.: Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. - Rev. environ. Sci. Biotech. 14: 407-427, 2015. Go to original source...
  34. Solfanelli, C., Poggi, A., Loreti, E., Alpi, A., Perata, P.: Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. - Plant Physiol. 140: 637-646, 2006. Go to original source...
  35. Sulmon, C., Gouesbet, G., Couée, I., Amrani, A.E.: Sugar induced tolerance to atrazine in Arabidopsis seedlings: interacting effects of atrazine and soluble sugars on psbA mRNA and D1 protein levels. - Plant Sci. 167: 913-923, 2004. Go to original source...
  36. Szabados, L., Savouré, A.: Proline: a multifunctional amino acid. - Trends Plant Sci. 15: 89-97, 2010. Go to original source...
  37. Taiz, L., Zeiger, E.: Plant Physiology. 4th Ed. - Sinauer Associates Inc., Sunderland 2006.
  38. Tognetti, J.A., Pontis, H.G., Martinez-Noel, G.M.: Sucrose signaling in plants: a world yet to be explored. - Plant Signal Behav. 8: 1-10, 2013. Go to original source...
  39. Velikova, V., Yordanov, I., Edreva, A.: Oxidative stress and some antioxidant systems in acid rain treated bean plants protective role of exogenous polyamines. - Plant Sci. 151: 59-66, 2000. Go to original source...
  40. Verbruggen, N., Hermans, C.: Proline accumulation in plants: a review. - Amino Acids 35:753-759, 2008. Go to original source...
  41. Wang, J., Sun, P.P., Chen, C.L., Wang, Y., Fu, X.Z., Liu, J.H.: An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis. - J. exp. Bot. 62: 2899-2914, 2011. Go to original source...