biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 63:193-199, 2019 | DOI: 10.32615/bp.2019.022

Cassava microRNAs and storage root development

O. Patanun1,2, U. Viboonjun3, N. Punyasuk1, S. Thitamadee1, M. Seki2, J. Narangajavana1,4,*
1 Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
2 Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
3 Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand
4 Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, Thailand

Cassava storage roots serve as an outstanding source of starch that is commonly utilized for nourishment and industrial applications. Despite the extensive studies, which indicated diverse important roles of miRNAs as post-transcriptional regulators of gene expression, the potential contribution of microRNAs to storage root development in cassava are sparse. Here, we characterized the key miRNAs and auxin content in two main types of cassava roots, fibrous roots and storage roots. The differential expression pattern of miRNAs and their mRNA targets, miR164/NAC and miR167/ARF6, ARF8, revealed the correlation in storage root development. A higher content of indole-3-acetic acid was observed in storage roots in contrast with fibrous roots, and the possible role was discussed. Altogether, this first finding suggested the roles of miR164/miR167 in the molecular mechanism underlying cassava storage root development.

Keywords: auxin, fibrous roots, Manihot esculenta, miR164, miR167, RLM-RACE

Accepted: November 15, 2018; Prepublished online: November 15, 2018; Published online: January 19, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Patanun, O., Viboonjun, U., Punyasuk, N., Thitamadee, S., Seki, M., & Narangajavana, J. (2019). Cassava microRNAs and storage root development. Biologia plantarum63, Article 193-199. https://doi.org/10.32615/bp.2019.022
Download citation

Supplementary files

Download filePATANUN5659Suppl.pdf

File size: 907.28 kB

References

  1. Alptekin, B., Langridge, P., Budak, H.: Abiotic stress miRNomes in the Triticeae. - Funct. integr. Genomics 17: 145-170, 2017. Go to original source...
  2. Amiteye, S., Corral, J.M., Sharbel, T.F.: Overview of the potential of microRNAs and their target gene detection for cassava (Manihot esculenta) improvement. - Afr. J. Biotechnol. 10: 2562-2573, 2011. Go to original source...
  3. Ballen-Taborda, C., Plata, G., Ayling, S., Rodriguez-Zapata, F., Becerra Lopez-Lavalle, L. A., Duitama, J., Tohme, J.: Identification of cassava microRNAs under abiotic stress. - Int. J. Genomics 20: 857-986, 2013. Go to original source...
  4. Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y. Y., Sieburth, L., Voinnet, O.: Widespread translational inhibition by plant miRNAs and siRNAs. - Science 320: 1185-1190, 2008. Go to original source...
  5. Budak, H., Akpinar, B.A.: Plant miRNAs: biogenesis, organization and origins. - Funct. integr. Genomics. 15: 523-531, 2015. Go to original source...
  6. Chen, X., Xia, J., Xia, Z., Zhang, H., Zeng, C., Lu, C., Zhang, W., Wang, W.: Potential functions of microRNAs in starch metabolism and development revealed by miRNA transcriptome profiling of cassava cultivars and their wild progenitor. - BMC Plant Biol. 15: 33, 2015. Go to original source...
  7. Chorostecki, U., Crosa, V.A., Lodeyro, A.F., Bologna, N.G., Martin, A.P., Carrillo, N., Schommer, C., Palatnik, J.F.: Identification of new microRNA-regulated genes by conserved targeting in plant species. - Nucl. Acids Res. 40: 8893-8904, 2012. Go to original source...
  8. Druege, U., Franken, P., Lischewski, S., Ahkami, A.H., Zerche, S., Hause, B., Hajirezaei, M.R.: Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings. - Front. Plant Sci. 5: 494, 2014. Go to original source...
  9. Fu, L., Ding, Z., Han, B., Hu, W., Li, Y., Zhang, J.: Physiological investigation and transcriptome analysis of polyethylene glycol (PEG)-induced dehydration stress in cassava. - Inter. J. mol. Sci. 17: 283, 2016. Go to original source...
  10. Guilfoyle, T.: Plant biology: Sticking with auxin. - Nature 446: 621-622, 2007. Go to original source...
  11. Guo, H.S., Xie, Q., Fei, J.F., Chua, N.H.: MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. - Plant Cell 17: 1376-1386, 2005. Go to original source...
  12. Gutierrez, L., Bussell, J.D., Pãcurar, D.I., Schwambach, J., Pãcurar, M., Bellini, C.: Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. - Plant Cell 21: 3119-3132, 2009. Go to original source...
  13. Hillocks, R.J., Thresh, J.M., Bellotti, A.: Cassava: Biology, Production and Utilization. - CABI, New York 2002. Go to original source...
  14. Hu, W., Wei, Y., Xia, Z., Yan, Y., Hou, X., Zou, M., Lu, C., Wang, W., Peng, M: Genome-wide identification and expression analysis of the NAC transcription factor family in cassava. - PLoS ONE 10: e0136993, 2015. Go to original source...
  15. Jones-Rhoades, M.W., Bartel, D.P., Bartel, B.: MicroRNAS and their regulatory roles in plants. - Annu. Rev. Plant Biol. 57: 19-53, 2006. Go to original source...
  16. Khan, G.A., DeClerck, M., Sorin, C., Hartmann, C., Crespi, M., Lelandais-Briere, C.: MicroRNAs as regulators of root development and architecture. - Plant mol. Biol. 77: 47-58, 2011. Go to original source...
  17. Khatabi, B., Arikit, S., Xia, R., Winter, S., Oumar D., Mongomake K., Meyers B.C., Fondong V.N.: High-resolution identification and abundance profiling of cassava (Manihot esculenta Crantz) microRNAs. - BMC Genomics 17: 85, 2016. Go to original source...
  18. Kloosterman, B., Navarro, C., Bijsterbosch, G., Lange, T., Prat, S., Visser, R.G., Bachem, C.W.: StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. - Plant J. 52: 362-373, 2007. Go to original source...
  19. Lai, E.C., Wiel, C., Rubin, G.M.: Complementary miRNA pairs suggest a regulatory role for miRNA:miRNA duplexes. RNA 10: 171-175, 2004. Go to original source...
  20. Li, J., Ding, Q., Wang, F., Zhang, Y., Li, H., Gao, J.: Integrative analysis of mRNA and miRNA expression profiles of the tuberous root development at seedling stages in turnips. - PLoS ONE 10: e0137983, 2015. Go to original source...
  21. Meng, Y., Huang, F., Shi, Q., Cao, J., Chen, D., Zhang, J., Ni, J., Wu, P., Chen, M.:. Genome-wide survey of rice microRNAs and microRNA-target pairs in the root of a novel auxin-resistant mutant. - Planta 230: 883-898, 2009. Go to original source...
  22. Meng, Y., Ma, X., Chen, D., Wu, P., Chen, M.: MicroRNA-mediated signaling involved in plant root development. - Biochem. biophys. Res. Commun. 393: 345-349, 2010. Go to original source...
  23. Naconsie, M., Lertpanyasampatha, M., Viboonjun, U., Netrphan, S., Kuwano, M., Ogasawara, N., Narangajavana, J.: Cassava root membrane proteome reveals activities during storage root maturation. - J. Plant Res. 129: 51-56, 2016. Go to original source...
  24. Noh, S.A., Lee, H.S., Huh, E.J., Huh, G.H., Paek, K.H., Shin, J.S., Bae, J.M.: SRD1 is involved in the auxin-mediated initial thickening growth of storage root by enhancing proliferation of metaxylem and cambium cells in sweet potato (Ipomoea batatas). - J. exp. Bot. 61: 1337-1349, 2010. Go to original source...
  25. Nuwamanya, E., Baguma, Y., Kawuki, R., Rubaihayo, P.: Quantification of starch physicochemical characteristics in a cassava segregating population. - Afr. Crop Sci. J. 16: 191-202, 2008. Go to original source...
  26. Olsen, A.N., Ernst, H.A., Leggio, L.L., Skriver, K.: NAC transcription factors: structurally distinct, functionally diverse. - Trends Plant Sci. 10: 79-87, 2005. Go to original source...
  27. Patanun, O., Lertpanyasampatha, M., Sojikul, P., Viboonjun, U., Narangajavana, J.: Computational identification of microRNAs and their targets in cassava (Manihot esculenta Crantz.). - Mol. Biotechnol. 53: 257-269, 2013. Go to original source...
  28. Pérez-Quintero, Á.L., Quintero, A., Urrego, O., Vanegas, P., López, C.: Bioinformatic identification of cassava miRNAs differentially expressed in response to infection by Xanthomonas axonopodis pv. manihotis. - BMC Plant Biol. 12: 29, 2012. Go to original source...
  29. Phookaew, P., Netrphan, S., Sojikul, P., Narangajavana, J.: Involvement of miR164- and miR167-mediated target gene expressions in responses to water deficit in cassava. - Biol. Plant. 58: 469-478, 2014. Go to original source...
  30. Pinweha, N., Asvarak, T., Viboonjun, U., Narangajavana, J.: Involvement of miR160/miR393 and their targets in cassava responses to anthracnose disease. - J. Plant Physiol. 174: 26-35, 2015. Go to original source...
  31. Rogans, S.J., Rey, C.: Unveiling the micronome of cassava (Manihot esculenta Crantz). - PLoS ONE 11: e0147251, 2016. Go to original source...
  32. Ru, P., Xu, L., Ma, H., Huang, H.: Plant fertility defects induced by the enhanced expression of microRNA167. - Cell Res. 16: 457-465, 2006. Go to original source...
  33. Saithong, T., Saerue, S., Kalapanulak, S., Sojikul, P., Narangajavana, J., Bhumiratana, S.: Gene co-expression analysis inferring the crosstalk of ethylene and gibberellin in modulating the transcriptional acclimation of cassava root growth in different seasons. - PLoS ONE 10: e0137602, 2015. Go to original source...
  34. Sojikul, P., Kongsawadworakul, P., Viboonjun, U., Thaiprasit, J., Intawong, B., Narangajavana, J., Svasti, M.R.J.: AFLP-based transcript profiling for cassava genome-wide expression analysis in the onset of storage root formation. - Physiol. Plant. 140: 189-298, 2010. Go to original source...
  35. Sojikul, P., Saithong, T., Kalapanulak, S., Pisuttinusart, N., Limsirichaikul, S., Tanaka, M., Utsumi, Y., Sakurai, T., Seki, M., Narangajavana, J.: Genome-wide analysis reveals phytohormone action during cassava storage root initiation. - Plant mol. Biol. 88: 531-543, 2015. Go to original source...
  36. Xia, J., Zeng, C., Chen, Z., Zhang, K., Chen, X., Zhou, Y., Song, S., Lu, C., Yang, R., Yang, Z., Zhou, J., Peng, H., Wang, W., Peng, M., Zhang, W.: Endogenous small-noncoding RNAs and their roles in chilling response and stress acclimation in cassava. - BMC Genomics 15: 634, 2014. Go to original source...
  37. Xie, Q., Frugis, G., Colgan, D. Chua, N.H.: Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. - Genes Dev. 14: 3024-3036, 2000. Go to original source...
  38. Xu, L., Wang, J., Lei, M., Li, L., Fu, Y., Wang, Z., Ao, M., Li, Z.: Transcriptome analysis of storage roots and fibrous roots of the traditional medicinal herb Callerya speciosa (Champ.) ScHot. - PLoS ONE 11: e0160338, 2016. Go to original source...
  39. Yang, J., An, D., Zhang, P.: Expression profiling of cassava storage roots reveals an active process of glycolysis/ gluconeogenesis. - J. integr. Plant Biol. 53: 193-211, 2011. Go to original source...