Research Article
BibTex RIS Cite

Factors associated with the development of screw cut-out after the fixation of intertrochanteric femoral fractures with a proximal femoral nail

Year 2021, Volume: 4 Issue: 2, 170 - 175, 28.03.2021
https://doi.org/10.32322/jhsm.860548

Abstract

Objective: To reveal the factors associated with screw cut-out in the fixation of proximal femur intertrochanteric fractures with a proximal femoral nail (PFN).
Material and Method: Patients who were diagnosed with proximal femoral intertrochanteric fractures and were being treated and followed up in our hospital between January 2014 and January 2019 were retrospectively analyzed. The hip fracture types of the patients were determined according to the American Foundation/American Orthopedic Trauma Association (AO/OTA) classification. AO/OTA 31-A1, A2 and A3 type fractures were included in the study. Twenty-seven patients with PFN fixation failure and screw cut-out (cut-out group, 11.4%) were compared with 208 patients who had successful osteosynthesis without cut-out (non-cut-out group, 88.6%). Age, gender, affected side, follow-up time, PFN design, tip-apex distance (TAD), calcar-referenced TAD, fracture type, reduction quality, posteromedial support loss, lag screw position, Singh index, and collo-diaphyseal angle (CDA) were compared between the two groups.
Results: The two groups significantly differed in terms of TAD and calcar-referenced TAD (p = 0.002 and 0.001, respectively). In the evaluation of reduction quality according to the Baumgaertner scale and the Garden alignment index, a significant difference was found between the two groups (p = 0.021 and 0.002, respectively). A significant difference was also observed between the two groups in terms of screw position and posteromedial cortex continuity (p = 0.009 and 0.037, respectively). However, there was no significant difference in relation to age, gender, affected side, CDA, PFN design, and osteoporosis severity.
Conclusion: Fracture type, poor reduction quality, loss of posteromedial support, TAD, calcar-referenced TAD, and lag screw position were found to be associated factors in the development of screw cut-out. Apart from the type of fracture, these factors that are under the control of the surgeon generally show the importance of anatomical reduction and accurate screw placement.

Supporting Institution

yok

Project Number

-

Thanks

-

References

  • Yapici F, Ucpunar H, Camurcu Y, Emirhan N, Tanoglu O, Tardus I. Clinical and radiological outcomes of patients treated with the talon distalfix proximal femoral nail for intertrochanteric femur fractures. Injury 2020; 51: 1045-50.
  • Marsh JL, Slongo TF, Agel J, et al. Fracture and dislocation classification compendium – 2007: Orthopaedic Trauma Association classification, database and outcomes committee. J Orthop Trauma 2007; 21: S1–133.
  • Fogagnolo F, Kfuri M Jr, Paccola CA. Intramedullary fixation of pertrochanteric hip fractures with the short AOASIF proximal femoral nail. Arch Orthop Trauma Surg 2004; 124: 31–7.
  • Lenich A, Vester H, Nerlich M, Mayr E, Stöckle U, Füchtmeier B. Clinical comparison of the second and third generation of intramedullary devices for trochanteric fractures of the hip--Blade vs screw. Injury 2010; 41: 1292-6.
  • Bojan AJ, Beimel C, Taglang G, Collin D, Ekholm C, Jönsson A. Critical factors in cut-out complication after Gamma Nail treatment of proximal femoral fractures. BMC Musculoskelet Disord 2013; 14: 1.
  • Zirngibl B, Biber R, Bail HJ. How to prevent cut-out and cut-through in biaxial proximal femoral nails: is there anything beyond lag screw positioning and tip-apex distance? Int Orthop 2013; 37: 1363-8.
  • Caruso G, Andreotti M, Pari C, et al. Can TAD and CalTAD predict cut-out after extra-medullary fixation with new generation devices of proximal femoral fractures? A retrospective study. J Clin Orthop Trauma 2017; 8: 68-72.
  • Hao Y, Zhang Z, Zhou F, et al. Risk factors for implant failure in reverse oblique and transverse intertrochanteric fractures treated with proximal femoral nail antirotation (PFNA). J Orthop Surg Res 2019; 14: 350.
  • Li C, Xie B, Chen S, Lin G, Yang G, Zhang L. The effect of local bone density on mechanical failure after internal fixation of pertrochanteric fractures. Arch Orthop Trauma Surg 2016; 136: 223-32.
  • Caruso G, Bonomo M, Valpiani G, et al. A six-year retrospective analysis of cut-out risk predictors in cephalomedullary nailing for pertrochanteric fractures: Can the tip-apex distance (TAD) still be considered the best parameter? Bone Joint Res 2017; 6: 481-8.
  • Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33: 159–74.
  • Koyuncu Ş, Altay T, Kayalı C, Ozan F, Yamak K. Mechanical failures after fixation with proximal femoral nail and risk factors. Clin Interv Aging 2015; 10: 1959-65.
  • Kashigar A, Vincent A, Gunton MJ, Backstein D, Safir O, Kuzyk PR. Predictors of failure for cephalomedullary nailing of proximal femoral fractures. Bone Joint J 2014; 96: 1029-34.
  • Hsueh KK, Fang CK, Chen CM, Su YP, Wu HF, Chiu FY. Risk factors in cutout of sliding hip screw in intertrochanteric fractures: an evaluation of 937 patients. Int Orthop 2010; 34: 1273–6.
  • Geller JA, Saifi C, Morrison TA, Macaulay W. Tip-apex distance of intramedullary devices as a predictor of cut-out failure in the treatment of peritrochanteric elderly hip fractures. Int Orthop 2010; 34: 719–22.
  • Schipper IB, Steyerberg EW, Castelein RM, et al. Treatment of unstable trochanteric fractures. Randomised comparison of the gamma nail and the proximal femoral nail. J Bone Joint Surg Br 2004; 86: 86-94.
  • Menezes DF, Gamulin A, Noesberger B. Is the proximal femoral nail a suitable implant for treatment of all trochanteric fractures? Clin Orthop Relat Res 2005; 439: 221–7.
  • Uzun M, Ertürer E, Oztürk I, Akman S, Seçkin F, Ozçelik IB. Longterm radiographic complications following treatment of unstable intertrochanteric femoral fractures with the proximal femoral nail and effects on functional results. Acta Orthop Traumatol Turc 2009; 43: 457–63.
  • Valentini R, Martino M, Piovan G, De Fabrizio G, Fancellu G. Proximal cut-out in pertrochanteric femural fracture. Acta Biomed 2014; 85: 144-51.
  • De Bruijn K, den Hartog D, Tuinebreijer W, Roukema G. Reliability of predictors for screw cutout in intertrochanteric hip fractures. J Bone Joint Surg Am 2012; 94: 1266–72.
  • Lobo-Escolar A, Joven E, Iglesias D, Herrera A. Predictive factors for cutting-outin femoral intramedullary nailing. Injury 2010; 41: 1312–6.
  • Audige L, Hanson B, Swiontkowski MF. Implant-related complications in the treatment of unstable intertrochanteric fractures: meta-analysis of dynamic screw-plate versus dynamic screw-intramedullary nail devices. Int Orthop 2003, 27: 197–203.
  • Tsai SW, Lin CJ, Tzeng YH, et al. Risk factors for cut-out failure of Gamma3 nails in treating unstable intertrochanteric fractures: An analysis of 176 patients. J Chin Med Assoc 2017; 80: 587-94.
  • Duramaz A, İlter MH. The impact of proximal femoral nail type on clinical and radiological outcomes in the treatment of intertrochanteric femur fractures: a comparative study. Eur J Orthop Surg Traumatol 2019; 29: 1441-9.
  • Klatte TO, Vettorazzi E, Beckmann J, Pueschel K, Amling M, Gebauer M. The Singh Index does not correlate with bone mineral density (BMD) measured withdual energy X-ray absorptiometry (DXA) or peripheral quantitative computedtomography (pQCT). Arch Orthop Trauma Surg 2015; 135: 645–50.
  • Morvan A, Boddaert J, Cohen-Bittan J, Picard H, Pascal-Mousselard H, Khiami F. Risk factors for cut-out after internal fixation of trochanteric fractures in elderly subjects. Orthop Traumatol Surg Res 2018; 104: 1183-7.
  • Domingo LJ, Cecilia D, Herrera A, Resines C. Trochanteric fractures treated with a proximal femoral nail. Int Orthop 2001; 25: 298–301.
  • Buyukdogan K, Caglar O, Isik S, Tokgozoglu M, Atilla B. Risk factors for cut-out of double lag screw fixation in proximal femoral fractures. Injury 2017; 48: 414-8.
  • Basılgan S, Büyükkuşcu MÖ. Treatment criteria and methods in osteosynthesis failure. TOTBİD Derg 2021; 20: 1–7.
  • Marmor M, Liddle K, Pekmezci M, Buckley J, Matityahu A. The effect of fracture pattern stability on implant loading in OTA type 31-A2 proximal femur fractures. J Orthop Trauma 2013; 27: 683–9.
Year 2021, Volume: 4 Issue: 2, 170 - 175, 28.03.2021
https://doi.org/10.32322/jhsm.860548

Abstract

Project Number

-

References

  • Yapici F, Ucpunar H, Camurcu Y, Emirhan N, Tanoglu O, Tardus I. Clinical and radiological outcomes of patients treated with the talon distalfix proximal femoral nail for intertrochanteric femur fractures. Injury 2020; 51: 1045-50.
  • Marsh JL, Slongo TF, Agel J, et al. Fracture and dislocation classification compendium – 2007: Orthopaedic Trauma Association classification, database and outcomes committee. J Orthop Trauma 2007; 21: S1–133.
  • Fogagnolo F, Kfuri M Jr, Paccola CA. Intramedullary fixation of pertrochanteric hip fractures with the short AOASIF proximal femoral nail. Arch Orthop Trauma Surg 2004; 124: 31–7.
  • Lenich A, Vester H, Nerlich M, Mayr E, Stöckle U, Füchtmeier B. Clinical comparison of the second and third generation of intramedullary devices for trochanteric fractures of the hip--Blade vs screw. Injury 2010; 41: 1292-6.
  • Bojan AJ, Beimel C, Taglang G, Collin D, Ekholm C, Jönsson A. Critical factors in cut-out complication after Gamma Nail treatment of proximal femoral fractures. BMC Musculoskelet Disord 2013; 14: 1.
  • Zirngibl B, Biber R, Bail HJ. How to prevent cut-out and cut-through in biaxial proximal femoral nails: is there anything beyond lag screw positioning and tip-apex distance? Int Orthop 2013; 37: 1363-8.
  • Caruso G, Andreotti M, Pari C, et al. Can TAD and CalTAD predict cut-out after extra-medullary fixation with new generation devices of proximal femoral fractures? A retrospective study. J Clin Orthop Trauma 2017; 8: 68-72.
  • Hao Y, Zhang Z, Zhou F, et al. Risk factors for implant failure in reverse oblique and transverse intertrochanteric fractures treated with proximal femoral nail antirotation (PFNA). J Orthop Surg Res 2019; 14: 350.
  • Li C, Xie B, Chen S, Lin G, Yang G, Zhang L. The effect of local bone density on mechanical failure after internal fixation of pertrochanteric fractures. Arch Orthop Trauma Surg 2016; 136: 223-32.
  • Caruso G, Bonomo M, Valpiani G, et al. A six-year retrospective analysis of cut-out risk predictors in cephalomedullary nailing for pertrochanteric fractures: Can the tip-apex distance (TAD) still be considered the best parameter? Bone Joint Res 2017; 6: 481-8.
  • Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33: 159–74.
  • Koyuncu Ş, Altay T, Kayalı C, Ozan F, Yamak K. Mechanical failures after fixation with proximal femoral nail and risk factors. Clin Interv Aging 2015; 10: 1959-65.
  • Kashigar A, Vincent A, Gunton MJ, Backstein D, Safir O, Kuzyk PR. Predictors of failure for cephalomedullary nailing of proximal femoral fractures. Bone Joint J 2014; 96: 1029-34.
  • Hsueh KK, Fang CK, Chen CM, Su YP, Wu HF, Chiu FY. Risk factors in cutout of sliding hip screw in intertrochanteric fractures: an evaluation of 937 patients. Int Orthop 2010; 34: 1273–6.
  • Geller JA, Saifi C, Morrison TA, Macaulay W. Tip-apex distance of intramedullary devices as a predictor of cut-out failure in the treatment of peritrochanteric elderly hip fractures. Int Orthop 2010; 34: 719–22.
  • Schipper IB, Steyerberg EW, Castelein RM, et al. Treatment of unstable trochanteric fractures. Randomised comparison of the gamma nail and the proximal femoral nail. J Bone Joint Surg Br 2004; 86: 86-94.
  • Menezes DF, Gamulin A, Noesberger B. Is the proximal femoral nail a suitable implant for treatment of all trochanteric fractures? Clin Orthop Relat Res 2005; 439: 221–7.
  • Uzun M, Ertürer E, Oztürk I, Akman S, Seçkin F, Ozçelik IB. Longterm radiographic complications following treatment of unstable intertrochanteric femoral fractures with the proximal femoral nail and effects on functional results. Acta Orthop Traumatol Turc 2009; 43: 457–63.
  • Valentini R, Martino M, Piovan G, De Fabrizio G, Fancellu G. Proximal cut-out in pertrochanteric femural fracture. Acta Biomed 2014; 85: 144-51.
  • De Bruijn K, den Hartog D, Tuinebreijer W, Roukema G. Reliability of predictors for screw cutout in intertrochanteric hip fractures. J Bone Joint Surg Am 2012; 94: 1266–72.
  • Lobo-Escolar A, Joven E, Iglesias D, Herrera A. Predictive factors for cutting-outin femoral intramedullary nailing. Injury 2010; 41: 1312–6.
  • Audige L, Hanson B, Swiontkowski MF. Implant-related complications in the treatment of unstable intertrochanteric fractures: meta-analysis of dynamic screw-plate versus dynamic screw-intramedullary nail devices. Int Orthop 2003, 27: 197–203.
  • Tsai SW, Lin CJ, Tzeng YH, et al. Risk factors for cut-out failure of Gamma3 nails in treating unstable intertrochanteric fractures: An analysis of 176 patients. J Chin Med Assoc 2017; 80: 587-94.
  • Duramaz A, İlter MH. The impact of proximal femoral nail type on clinical and radiological outcomes in the treatment of intertrochanteric femur fractures: a comparative study. Eur J Orthop Surg Traumatol 2019; 29: 1441-9.
  • Klatte TO, Vettorazzi E, Beckmann J, Pueschel K, Amling M, Gebauer M. The Singh Index does not correlate with bone mineral density (BMD) measured withdual energy X-ray absorptiometry (DXA) or peripheral quantitative computedtomography (pQCT). Arch Orthop Trauma Surg 2015; 135: 645–50.
  • Morvan A, Boddaert J, Cohen-Bittan J, Picard H, Pascal-Mousselard H, Khiami F. Risk factors for cut-out after internal fixation of trochanteric fractures in elderly subjects. Orthop Traumatol Surg Res 2018; 104: 1183-7.
  • Domingo LJ, Cecilia D, Herrera A, Resines C. Trochanteric fractures treated with a proximal femoral nail. Int Orthop 2001; 25: 298–301.
  • Buyukdogan K, Caglar O, Isik S, Tokgozoglu M, Atilla B. Risk factors for cut-out of double lag screw fixation in proximal femoral fractures. Injury 2017; 48: 414-8.
  • Basılgan S, Büyükkuşcu MÖ. Treatment criteria and methods in osteosynthesis failure. TOTBİD Derg 2021; 20: 1–7.
  • Marmor M, Liddle K, Pekmezci M, Buckley J, Matityahu A. The effect of fracture pattern stability on implant loading in OTA type 31-A2 proximal femur fractures. J Orthop Trauma 2013; 27: 683–9.
There are 30 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Original Article
Authors

Mehmet Ozbey Buyukkuscu 0000-0003-1014-246X

Seçkin Basılgan This is me 0000-0002-3019-3259

Abdulhamit Mısır 0000-0002-5270-1429

Abdulkadir Polat This is me 0000-0002-3224-7134

Hakan Basar This is me 0000-0002-7701-9952

Project Number -
Publication Date March 28, 2021
Published in Issue Year 2021 Volume: 4 Issue: 2

Cite

AMA Buyukkuscu MO, Basılgan S, Mısır A, Polat A, Basar H. Factors associated with the development of screw cut-out after the fixation of intertrochanteric femoral fractures with a proximal femoral nail. J Health Sci Med / JHSM. March 2021;4(2):170-175. doi:10.32322/jhsm.860548

Interuniversity Board (UAK) Equivalency: Article published in Ulakbim TR Index journal [10 POINTS], and Article published in other (excuding 1a, b, c) international indexed journal (1d) [5 POINTS].

The Directories (indexes) and Platforms we are included in are at the bottom of the page.

Note: Our journal is not WOS indexed and therefore is not classified as Q.

You can download Council of Higher Education (CoHG) [Yüksek Öğretim Kurumu (YÖK)] Criteria) decisions about predatory/questionable journals and the author's clarification text and journal charge policy from your browser. https://dergipark.org.tr/tr/journal/2316/file/4905/show







The indexes of the journal are ULAKBİM TR Dizin, Index Copernicus, ICI World of Journals, DOAJ, Directory of Research Journals Indexing (DRJI), General Impact Factor, ASOS Index, WorldCat (OCLC), MIAR, EuroPub, OpenAIRE, Türkiye Citation Index, Türk Medline Index, InfoBase Index, Scilit, etc.

       images?q=tbn:ANd9GcRB9r6zRLDl0Pz7om2DQkiTQXqDtuq64Eb1Qg&usqp=CAU

500px-WorldCat_logo.svg.png

atifdizini.png

logo_world_of_journals_no_margin.png

images?q=tbn%3AANd9GcTNpvUjQ4Ffc6uQBqMQrqYMR53c7bRqD9rohCINkko0Y1a_hPSn&usqp=CAU

doaj.png  

images?q=tbn:ANd9GcSpOQFsFv3RdX0lIQJC3SwkFIA-CceHin_ujli_JrqBy3A32A_Tx_oMoIZn96EcrpLwTQg&usqp=CAU

ici2.png

asos-index.png

drji.png





The platforms of the journal are Google Scholar, CrossRef (DOI), ResearchBib, Open Access, COPE, ICMJE, NCBI, ORCID, Creative Commons, etc.

COPE-logo-300x199.jpgimages?q=tbn:ANd9GcQR6_qdgvxMP9owgnYzJ1M6CS_XzR_d7orTjA&usqp=CAU

icmje_1_orig.png

cc.logo.large.png

ncbi.pngimages?q=tbn:ANd9GcRBcJw8ia8S9TI4Fun5vj3HPzEcEKIvF_jtnw&usqp=CAU

ORCID_logo.png

1*mvsP194Golg0Dmo2rjJ-oQ.jpeg


Our Journal using the DergiPark system indexed are;

Ulakbim TR Dizin,  Index Copernicus, ICI World of JournalsDirectory of Research Journals Indexing (DRJI), General Impact FactorASOS Index, OpenAIRE, MIAR,  EuroPub, WorldCat (OCLC)DOAJ,  Türkiye Citation Index, Türk Medline Index, InfoBase Index


Our Journal using the DergiPark system platforms are;

Google, Google Scholar, CrossRef (DOI), ResearchBib, ICJME, COPE, NCBI, ORCID, Creative Commons, Open Access, and etc.


Journal articles are evaluated as "Double-Blind Peer Review". 

Our journal has adopted the Open Access Policy and articles in JHSM are Open Access and fully comply with Open Access instructions. All articles in the system can be accessed and read without a journal user.  https//dergipark.org.tr/tr/pub/jhsm/page/9535

Journal charge policy   https://dergipark.org.tr/tr/pub/jhsm/page/10912


Editor List for 2022

Assoc. Prof. Alpaslan TANOĞLU (MD)  

Prof. Aydın ÇİFCİ (MD)

Prof. İbrahim Celalaettin HAZNEDAROĞLU (MD)

Prof. Murat KEKİLLİ (MD)

Prof. Yavuz BEYAZIT (MD) 

Prof. Ekrem ÜNAL (MD)

Prof. Ahmet EKEN (MD)

Assoc. Prof. Ercan YUVANÇ (MD)

Assoc. Prof. Bekir UÇAN (MD) 

Assoc. Prof. Mehmet Sinan DAL (MD)


Our journal has been indexed in DOAJ as of May 18, 2020.

Our journal has been indexed in TR-Dizin as of March 12, 2021.


17873

Articles published in the Journal of Health Sciences and Medicine have open access and are licensed under the Creative Commons CC BY-NC-ND 4.0 International License.